Networking Named Content

Xinghong Fang (xf214)
The Problems

● Networking abstraction
 ○ Host-to-host

● Availability
 ○ Pre-planned mechanism
 ○ Extra bandwidth cost

● Security
 ○ Untrustworthy location

● Location-dependence
 ○ Complicated mapping configuration
Related Works

- **DONA**
 - Name and content are not bond securely
 - Content must be published or registered
 - Resolution handler: large forwarding table
- **DHT-based System**
 - Require explicit content publishing
 - No guarantee to retrieve the closest copy
- **PSIRP**
 - Unsecure directory service
- **TRIAD**
 - Relies on trusted directory to authenticate
Key Idea of CCN

● New networking abstraction
 ○ "named host" -> "named data"
 ○ No notion of host
 ○ Address names content

● Plus TCP/IP design decision
 ○ makes it simple, robust and scalable
 ○ e.g. FIB, longest-prefix match
Main Contributions of CCN

- Decoupling location from
 - identity, security and access
- Scalability, security and performance
- Layer over anything
- Strategy
 - Take advantage of multiple connectivities
 - Operate under changing conditions
- Security
 - Secure content itself
CCN Node Model

- Two packet types
 - Interest and Data
- Basic pattern
 - Consumer broadcasting interest
 - Node with data respond on hearing interest
- ContentName
 - Hierarchical: prefix match
 - Allow dynamic generation
 - Can be context-dependent
CCN Node Model - Data Structures

- **Forward Information Base (FIB)**
 - Forward interest to potential data holders
 - Allow multiple interface, parallel query

- **ContentStore**
 - Remember data packet
 - Reducing upstream bandwidth demand
 - Minimising downstream delay

- **Pending Interest Table (PIT)**
 - Keep track of interest source
 - Timeout & re-express interest
Strength of the model

● Consumer driven
 ○ Screen unsolicited data

● ContentStore
 ○ Transparent caching
 ○ Sharing by multicasting

● Multipoint data retrieval
 ○ Maintain communication in highly dynamic environment
 ○ DTN: works in isolated location
Weakness of the model

- **Stateful vs Stateless**
 - Install states in every nodes
 - Complicated forwarding node implementation
- **ContentStore**
 - Require extra cache memory
 - Needs explicit version control
Transport

● On top of unreliable packet delivery service
 ○ Retransmission (strategy layer)
 ○ Discard duplicated packets
 ■ Packet network
 ■ Multipoint distribution

● Flow control
 ○ No need for congestion control over a path

● Rich connectivity
 ○ No bind between IP address to MAC address
 ○ Strategy layer
Routing

- Reuse routing schemes for IP
- Prefix announcement
 - IP: need spanning tree, traffics go through a single node
 - CCN: interests forwarded to all the nodes to announce the prefix
Security

- Content-based security
- Digital signature, encryption
 - publicly authenticatable
 - a set of algorithms: fit performance requirement
 - individually verifiable
- Content validated by receiver
 - IP: must retrieve from original source to trust it
- Authenticate binds
 - Names, contents and supporting data
- User/application-meaningful names
 - Instead of self-certifying name
 - No need for indirection infrastructure
Security (cont.)

- Trust depends on the purpose of use
 - more flexible and easier
- Allowing content to securely link to others
 - allow content to certify other content
- Tackling traditional key management problems
 - keys accessible via simple naming conventions
 - Trust relationship ("key + name" signed by key)
- Evidence-based security
 - delegation, secure reference
- No trusted server required
 - only authorised user can decrypt
Security - Attack Protection

- Hard to attack a specific target
 - no notion of host
- Hard to perform DDoS
 - Flow balance between Interests and Data
 - Consumer driven (rate controlled by consumer)
 - Multiple request to same data will be combined
 - Upstream bandwidth not affected
Strength of Security

- Flexibility in algorithm and packet authentication
- No need for secured connection
- Secure reference to other content
- Chain of trust
- Attack protection
Weakness of Security

- Encryption/Decryption overhead
- Consumer's discretion of trust
- Risk of root key leaks
- Unsecure referenced content
Issues in Evaluation

- **Bulk data transfer**
 - 6MB, is the size too small?
 - 5x pipelining than TCP (store-and-forward)

- **Content distribution**
 - strength: little increase of total download time when clients increases

- **VoIP**
 - Capability to use multiple connectivity
Conclusion

- Named data
- Inherited from TCP/IP design decision
- Consumer driven
- Attack protection
- Encryption overhead
- Issues of content reference
Questions?