Six Faces of Data Centric Networking

Eiko Yoneki

University of Cambridge Computer Laboratory

Data Centric Networking

- Shift of Communication Paradigm
 - From end-to-end to data centric
 - Data as communication token
 - Multipoint communication (Anycast and Multicast)

- Integration of complex data processing with networking
 - A key vision for future computing
 - A huge number of data sources and high volume of data accessible to applications
Geocast as an Example

- Data and Context decide Destination
- Data is forwarded when data is getting closer to the target region

![Geocast Diagram](image)

Forwarding Zone in Geocast

What is Content Routing?

- Indirection point for multiplexing data messages based on content (semantic & syntactic) rather than network host addresses

- Features
 - Network address independence
 - Content based addressing
 - Asynchronous communication
 - Symmetric communication between source and sink
 - Cross layer (between middleware and network components)
 - Application and network level of programming paradigm
 - Integrate event correlation with networking

![Content Routing Diagram](image)
Functional Point of View

Content routing from a functional point of view:

- Application layer
 - DNS tricks, HTTP redirects, P2P systems (routing on content hashes)
 - XML routers, ESB (Enterprise Service Bus), Publish/Subscribe systems, Application level of multicast
- Transport layer
 - Load balancing HTML switches in data centres
- Network layer
 - IP Multicast
- Lower layer
 - Sensor networks data-centric routing

6 Faces of DCN

1. Content-Based Networking (CBN) and Content Distribution Networks (CDN)
2. Content-Centric Networking (CCN) and Named Data Networking (NDN)
3. Programming in Data Centric Environment
4. Stream Data Processing and Data/Query Model
5. Delay Tolerant Networks (DTN)
6. Network Structure/Characteristics and Contexts
6 main Topics

1. Content-Based Networking (CBN) and Content Distribution Networks (CDN)
2. Content-Centric Networking (CCN) and Named Data Networking (NDN)
3. Programming in Data Centric Environment
4. Stream Data Processing and Data/Query Model
5. Delay Tolerant Networks (DTN)
6. Network Structure/Characteristics and Contexts

Multi-Point Communication

- Application level multicast
 - IP multicast is not supported well over wide area networks
 - Use DHT (Distributed Hashing Table)
 - Use tree routing in order to get logarithmic scaling
 - Bayeux/Tapestry and CAN
 - Service model of multicast is less powerful than content-based messaging system

- Research prototypes of messaging systems
 - Scribe (Topic-based system using DHT over Pastry)
 - SIENA (Content-based distributed event service)
 - JEDI (Content-based messaging system)
 - Gryphon (Topic/content-based message brokering system)
Content Based Networking

- Publish/Subscribe Paradigm
- Subscription model:
 - Topic-based (Channel)
 - Topics can be in hierarchies but not with several super topics
 - Content-based
 - Express interests as a query over the contents of data
 - How to turn subscriptions into routing mechanism in decentralised environments?

Publish data Subscribe data

Publish/Subscribe over P2P

- Peer-to-peer techniques
 - Distributed hash tables (Pastry, CAN, Chord,..)
 - Overlay network of nodes with unique ids
 - Hash operation from key to node id
 - Scalable and efficient
- Advantages of P2P for publish/subscribe
 - High abstraction for building pub/sub systems
 - P2P overlay handles neighbouring set for brokers
 - Easy to manage
 - Dynamic mapping
 - Efficient routing
 - Fault-tolerance
Publish/Subscribe Architecture

Subscription Types
- Topic-Based
- Content-Based
- Type-Based

Routing Strategy
- Simple Flooding
 - Event Flooding
 - Subscription Flooding
- Parametric Flooding
 - Gossiping
 - Adaptive Gossiping
- Subsetting
 - Rendezvous
 - Filter-Based

Overlay Types
- Brokers Overlay
- P2P Structured Overlay
- P2P Unstructured Overlay

Network Protocols
(TCP/IP, IP multicast, SOAP, 802.11g, MAC broadcast...)

Publish/Subscribe System

- Content-Based Networking (CBN)

![Diagram showing Publish/Subscribe System](image)
Content Distribution Networks

- Cache of data at various points in a network
- Content served closer to client
 - Less latency, better performance
- Load spread over multiple distributed systems
 - Robust (to ISP failure)
 - Handle flashes better (load spread over ISPs)
- Limitation
 - No mechanism with dynamic/personalized content, while more content is becoming dynamic
 - Difficult to manage content lifetimes and cache performance, dynamic cache invalidation
- CDN Providers
 - Coral Content Distribution Network
 - Akamai
 - BitTorrent
 - ...

Content Routing Principle

- Content is served from content servers nearer to the client

Cornell'09
Related Open Source Projects

- **SIENA** http://www.inf.usi.ch/carzaniga/cbn/
- **CORAL** http://www.coralcdn.org/

6 main Topics

1. Content-Based Networking (CBN) and Content Distribution Networks (CDN)
2. **Content-Centric Networking (CCN) and Named Data Networking (NDN)**
3. Programming in Data Centric Environment
4. Stream Data Processing and Data/Query Model
5. Delay Tolerant Networks (DTN)
6. Network Structure/Characteristics and Contexts
CCN and NDN

- Content-Centric Networking (CCN) and Named Data Networking (NDN)
- To networking that enables networks to self-organize and push relevant content where needed
- Pioneered by Van Jacobson

IP Internet Today

A Success tale of “two worlds with a little glue”

“Networking” is independent of processing and storage of content.

“Simple” store-and-forward networking

“Rich” end-to-end services: Processing and storage of content

Routing designed for points of attachment, assuming there is end-to-end physical connectivity

Garcia-Luna-Aceves'09
Content Centric Networking

- Original Internet
 - 70s technology, conversational pipes, end-to-end
- Now, Internet use (>90%):
 - Content retrieval & Service access
 - Request & Delivery of named data
 - CDNs and P2P
- Shift to a content-centric view:
 - end-to-data
 - Content-awareness and massive storage
- Goals:
 - Remove the need to make DNS lookups
 - New naming system for services and data
 - Place the name lookup scheme in the network
 - Route to one of many possible service instances
 - Any-cast routing to a service instance
 - Find closest instance
 - Allow for service instances to move locations
 - Allow for self-certifying name

Why CCN?

- Networks are used to access content
 - Source becomes less important – content itself matters
 - However there is no persistent content naming scheme
 - Different encodings/protection of same information, e.g. mp3, wav
- Efficiently handle increasing volume of information
 - No standard way to find and get nearest copy
 - Intelligent distribution of information (e.g. capacity, latency)
 - Include content inspection, filtering, video rendering
- Usable security is currently not content centric
 - Mainly based on securing channels (encryption) and trusting servers (authentication)

→ From CDNs to native Content Networks
Existing Related Projects

- Next generation Internet proposals:
 - LNA, TRIAD, NIRA, ROFL, i3, DONA
- Van Jacobsen Content-Centric Networking
- PSIRP (Publish/Subscribe Internet Routing Paradigm)
- 4WARD - Architecture and Design for the Future Internet
 - NetInf
- Traditional Publish/Subscribe Systems, P2P and sensor networks

CCN in Practice

- Network delivers content from closest location
- Integrates a variety of transport mechanisms
- Integrated caching (short-term memory)
- Aggregation helps for right representation
- Search for related information
- Verify authenticity and control access
History of CCN I

- As early as 2002, Stoica et al (Berkeley) proposed the Internet Indirection Infrastructure (I3) in which routing is based on IDs with rendezvous-based communication
 - Sigcomm 2002, most CCN architectures today adopt ID-based routing
- In 2004, Balakrishnan et al (MIT-Berkeley) proposed a 3 Level Name Resolution: user-id to service-id, service-id to endpoint-id and endpoint-id to network address
 - Sigcomm 2004, today's locator-ID separation is a simplification of this
- In 2006, Caesar et al (Berkeley) proposed the Routing on Flat Labels (ROFL) approach which does not split identity and location but gets rid of location for direct ID-based routing
 - Sigcomm 2006, superseded by the DCON approach of the same group

History of CCN II

- In 2007, Koponen et al (Berkeley) proposed the Data-Oriented Network Architecture (DONA) in which name resolution and routing are combined, based on IDs
 - Sigcomm 2007, key influence on emerging CCN architectures today
- In 2008, Jakes et al (Ericsson) proposed the Line Speed P2P Sub-Inter-Networking (LIPSIN) approach which employs an Internet-scale sub-sub approach for content access
 - Sigcomm 2008, spanned from the EU FF7 project P2PSF
- In 2009, Jacobson et al (Xerox Parc) - confirmed speaker for FIA Valencia - proposed the Networking Named Content (NNC) approach which treats content as a network primitive and retrieves content directly by name
 - ConiCex 2009, to be hosted by FF7 instead of JS RG projects
CDN approach

Pushing content closer to the users
• Hop count reduction (overall network traffic reduction) → energy savings

CDN Strategies:
• Limelight — placing CDN servers near a small # of ISP core nets
• Akamai — placing CDN servers deep into a large # of ISP networks’ sites
• Nano Data Center (NaDa) — home gateways (STBs/modems) as CDN servers
 (peer-to-peer delivery among NaDa servers)

CCN approach

CCN enables efficient content dissemination to users

Energy efficiency of CCN content routers
• Extra memory hierarchy that requires minimal power draws
• Ex) Memory 4G – 10W, SSD 32G – 1W, Disk – 12W (if needed)
Related Open Source Projects

6 main Topics

1. Content-Based Networking (CBN) and Content Distribution Networks (CDN)
2. Content-Centric Networking (CCN) and Named Data Networking (NDN)
3. **Programming in Data Centric Environment**
4. Stream Data Processing and Data/Query Model
5. Delay Tolerant Networks (DTN)
6. Network Structure/Characteristics and Contexts
Programming in Data Centric Environment

- **Cloud**: Programming is becoming a data-centric fashion (e.g. transformations to data sets)
- **Network meets data flow programming**

Data Centre and Cloud environments

- **Applications**: as a service
- **Components**: Platform as a service (e.g. Google AppEngine, MS Azure)
- **Processes**: Infrastructure as a Service (e.g. Amazon EC2)
- ** Challenges:**
 - Programming Model (exposure of concurrency, parallelism) and its implementation
 - Physical architecture (new communication protocols, structures)
 - High volume (e.g. billions of entities and terabytes of data)

Cloud Programming Model

Batch computing: Condor, Grid Engine, Amazon SQS
- Programming Models: Relatively easy, but restricted
- Challenges: Scheduling, Load Balancing, Fault Tolerance
- Resources: Sufficient local memory & cores, fast file system

Loosely coupled: Hadoop, Dryad, Amazon EMR
- Programming Models: More complicated, more expressive
- Challenges: Parallel Communication
- Resources: 4 cores, 1 TB/core disk, 4GB/core RAM
 - Cluster Recommendation: http://example.com

Tightly coupled: MPI, Pregel, Hadoop
- Programming Models: Most complicated, most expressive
- Challenges: Parallel Algorithms
- Resources: High Bandwidth, low latency interconnects
 - Amazon Cloud Compute Instance Type
Data Flow Programming

- Data parallel programming (e.g. MapReduce, Skywriting)
- Declarative networking (e.g. P2)
 - Declarative language: “ask for what you want, not how to implement it”
 - Declarative specifications of networks, compiled to distributed dataflows
 - Runtime engine to execute distributed dataflows
 - Adopting a data centric approach to system design and by employing declarative programming languages simplify distributed programming

Skywriting

- JavaScript-like job specification language
 - Supports functional programming
 - Data-dependent control flow

- Distributed execution engine (Ciel)
 - Assigns tasks to devices
 - Publish/subscribe for results
D³N Data-Driven Declarative Networking

- How to program distributed computation?
- Use Declarative Networking
 - Use of Functional Programming
 - Simple/clean semantics, expressive, inherent parallelism
 - Queries/Filer etc. can be expressed as higher-order functions that are applied in a distributed setting

http://www.cl.cam.ac.uk/~ey204/pubs/2009_MOBIHELD.pdf

D³N and Functional Programming I

- Functions are first-class values
 - They can be both input and output of other functions
 - They can be shared between different nodes (code mobility)
 - Not only data but also functions flow
- Language syntax does not have state
 - Variables are only ever assigned once; hence reasoning about programs becomes easier (of course message passing and threads encode states)
- Strongly typed
 - Static assurance that the program does not ‘go wrong’ at runtime unlike script languages
- Type inference
 - Types are not declared explicitly, hence programs are less verbose
\section*{D³N and Functional Programming II}

- Integrated features from query language
 - Assurance as in logical programming

- Appropriate level of abstraction
 - Imperative languages closely specify the implementation details (how); declarative languages abstract too much (what)
 - Imperative – predictable result about performance
 - Declarative language – abstract away many implementation issues

\section*{Related Open Source Projects}

- \textit{Boom} \url{https://trac.declarativity.net/}
- \textit{Ciel} \url{http://www.cl.cam.ac.uk/netos/ciel/}
- \textit{Apache Hadoop} \url{http://hadoop.apache.org/}
- \textit{DryadLINQ} \url{http://research.microsoft.com/en-us/projects/dryadling/}
- \textit{MapReduce Online} \url{http://code.google.com/p/hop/}
- \textit{P2} \url{http://p2.berkeley.intel-research.net/}
- \textit{Opis} \url{http://perso.eleves.bretagne-ens-cachan.fr/~daqand/opis/}
6 main Topics

1. Content-Based Networking (CBN) and Content Distribution Networks (CDN)
2. Content-Centric Networking (CCN) and Named Data Networking (NDN)
3. Programming in Data Centric Environment
4. Stream Data Processing and Data/Query Model
5. Delay Tolerant Networks (DTN)
6. Network Structure/Characteristics and Contexts

Stream Data Processing

- Stream Data Processing and Data/Query Model
 - Stream: infinite sequence of \{tuple, timestamp\} pairs
 - Continuous query is result of a continuous query is an unbounded stream, not a finite relation

- Data stream processing emerged from the database community (90’s)

- Database systems and Data stream systems
 - Database
 - Mostly static data, ad-hoc one-time queries
 - Store and query
 - Data stream
 - Mostly transient data, continuous queries

- Stream data processing is analogue to Complex Event Processing
 - Composite events
Filtering, Aggregation, and Correlation

- Composite events represent complex patterns of activity from distributed system.

Sensor Networks

- Programming models
 - TinyOS
 - The need to move beyond node centric programming
- Macro-programming examples
 - State-space, EnviroTrack, Hood, Abstract region
 - Declarative/query: TinyDB
- Common interfaces
TinyDB

- Declarative SQL-like query interface
- Multiple concurrent queries and persistent storage,
- In-network, distributed query processing
- Fault mitigation: redundancy

```
SELECT MAX(mag) FROM sensors WHERE mag > thresh
SAMPLE PERIOD 64ms
```

Related Open Source Projects

- TelegraphCQ http://telegraph.cs.berkeley.edu/telegraphcq/v0.2/
- TinyDB http://telegraph.cs.berkeley.edu/tinydb/software.html
6 main Topics

1. Content-Based Networking (CBN) and Content Distribution Networks (CDN)
2. Content-Centric Networking (CCN) and Named Data Networking (NDN)
3. Programming in Data Centric Environment
4. Stream Data Processing and Data/Query Model
5. Delay Tolerant Networks (DTN)
6. Network Structure/Characteristics and Contexts

Delay Tolerant Networks

- Delay Tolerant Networks (DTN)
 - Network holds data
 - Path existing over time
 - Store and forward paradigm
- Weak and episodic connectivity - Eventual connectivity
- Non-Internet-like networks
 - Stochastic mobility
 - Periodic/predictable mobility
 - Exotic links
 - Deep space [40+ min RTT; episodic connectivity]
 - Underwater [acoustics: low capacity, high error rates & latencies]
- DTN routing takes place on a time-varying topology
 - Links come and go, sometimes predictably
Prototypes: Architecture

- Providing Connectivity to Developing Countries: DakNet
- Vehicular Communications: DriveThru, DieselNet
- Wildlife Tracking: ZebraNet
- Haggle: Pocket Switched Networks, Social Networking
- DTNRG and the Bundle Protocol (RFC 5050)
 - Mostly an engineering approach to implement the InterPlaNetary Internet

Haggle Node Architecture

- Each node maintains a data store: its current view of global namespace
 - Persistence of search: delay tolerance and opportunism
- Semantics of publish/subscribe and an event-driven + asynchronous operation
- Multi-platform (written in C++ and C)
 - Windows mobile
 - Mac OS X, iPhone
 - Linux
 - Android
Search-based Networking

- Matching keywords against metadata
 - Non-boolean (e.g., not filtering)
 - Ranking, sorting out low-quality matches
 - Limits (e.g., ‘10 results per page’)

- Finding data
 - Flood based request-response (e.g., Gnutella) does not work
 - Requires synchronous connectivity
 - Queries time out (non-persistency)

- Publish/Subscribe inspired

Relation Graph

- A node’s view of the world
- Data object relations based on attributes
 - Weighting and ranking of relations
Relation Graph

- Graph updated as nodes are encountered
 - Common interests determine data exchange
 - Node descriptions exchanged as any other data objects

Summary of Haggle Primitives

- Resolution – the search aspect of Haggle
 - Find the “target nodes” in relation graph matching a data object, or vice versa
 - Data objects (and nodes) are ranked

- Interest forwarding
 - Give data object to neighbor with matching interests

- Delegate forwarding
 - Delegate data object to neighbor with higher forwarding metric but no interest in the data object
Interest Forwarding

Data disseminated among interest group

Delegate Forwarding
Related Open Source Projects

- **DTN at TKK Comnet** http://www.netlab.tkk.fi/~jo/dtn/

6 main Topics

1. Content-Based Networking (CBN) and Content Distribution Networks (CDN)
2. Content-Centric Networking (CCN) and Named Data Networking (NDN)
3. Programming in Data Centric Environment
4. Stream Data Processing and Data/Query Model
5. Delay Tolerant Networks (DTN)
6. Network Structure/Characteristics and Contexts
Network Structure

- Build network structure/topology for data dissemination (e.g. overlay construction) for improving performance or reliability
 - What context should be used for building a topology?
 - How to decide next hop (e.g. k random selection)?

- With given network graph/topology, how does data diffuse?
 - Data flow in network graph
 - Based on node capacity

- Understanding graph in networking

Example: Opportunistic Networks

- Opportunistic Contacts
- 1st effort: Epidemic Routing to deal with lack of knowledge
 - Minimum delay IF infinite buffer/bandwidth
 - Prohibitive resource usage
- 2nd effort: How to achieve epidemic routing delays with much less overhead?
- One answer: Smarter routing schemes
 - Controlled replication
 - Utility-based forwarding
 - Using logical backbone network
Optimisation of Epidemic Forwarding

- Epidemic forwarding - highly robust against disconnection, mobility, and node failures; simple, decentralised, and fast
- Control Flooding is necessary (e.g. Location, Count-base, Timer, History)
- Exploit contextual information

Use of Social Structure (e.g. Topology)

- Social hubs (e.g. celebrities and postman) as betweenness centrality and combining community structure for improved routing efficiency

LABEL Community based

RANK Centrality based: Global and Local ranking of popularity

BUBBLE RAP Combination of centrality and community
Summary: 6 Faces of DCN

1. Content-Based Networking (CBN) and Content Distribution Networks (CDN)
2. Content-Centric Networking (CCN) and Named Data Networking (NDN)
3. Programming in Data Centric Environment
4. Stream Data Processing and Data/Query Model
5. Delay Tolerant Networks (DTN)
6. Network Structure/Characteristics and Contexts