CIEL

Control-flow in a distributed execution engine

Derek Murray
University of Cambridge
10 February 2011

o ~ tricky
Distributed execution is hard

1. Data and code distribution
2. Communication

3. Fault tolerance

4. Scheduling

2/13/2011

Task parallelism

Distributed execution engines

1. Data and code distribution
2. Communication

3. Fault tolerance

4. Scheduling

2/13/2011

Task dependencies/data-flow

Mh—0)— Q

Q
Q
Q

D
D
D

MapReduce

Qe

R R R

2/13/2011

Dryad

Jobs represented as:
» directed acyclic graphs
» static graphs

Distributed execution engines

Data and code distribution
Communication

Fault tolerance
Scheduling

Dependency tracking

a bk wbdE

2/13/2011

Cyclic dependencies?

A B

D C

while (!converged) {

Distributed execution engines

Data and code distribution
Communication

Fault tolerance
Scheduling

Dependency tracking
Control flow?

o bk wdE

2/13/2011

Dryad

Jobs represented as:
» directed acyclic graphs
» static graphs

Idea: dynamic task graphs

» Allow tasks to spawn other tasks

Nput A _ > Output X
Input B publishes

spawns

— e - -
-—eem sl -

2/13/2011

CIEL

» Execution engine for dynamic task graphs

» Supports various execution languages

— Including Skywriting (later)

» Reliable execution on a distributed cluster
— Client/master/worker fault tolerance (later)

CIEL architecture

Master

—

— N
Worker Worker Worker
N\ N\ N\
O] O] O]
L] L] L]

2/13/2011

Tasks and references

References
* Name objects
* Have GUIDs 4

* Are immutable
* May be concrete or future

Tasks

* Represent computation

= Atomic
= Non-blocking
= Deterministic

* Depend on references

* Publish references
* Spawn tasks

,,,,,,,,,,,,,,,,,,

CIEL architecture

Master

Tasks Workers

References

Scheduler

Tasks to execute

Spawned tasks ¢ Published references

2/13/2011

2/13/2011

CIEL architecture

Spawn w Publish
Y
H .

.NET Shell-script

Java

Local objects

~

Worker

Defining dynamic task graphs

Input A Output X

-—eem sl -

Skywriting

» Language for dynamic task graphs
— Interpreted, dynamically-typed, C-like syntax
— ...Including a while statement

* Runs end-to-end on CIEL
— One script, one job
— Stored-program model
— Fault tolerance throughout execution

Skywriting in a nutshell

X = spawn(f);

Future

Dereference
operator

2/13/2011

10

Blocking on futures

X = spawn(f);

= ¥y -
y = X, publishes 2 spawns
return V; continuation

Initial
script

2/13/2011

11

k-means clustering

k-means in Skywriting

points = [..]; curr = .;
do {

sums = [];

for (p in points) {

sums += spawn(km_map, [p, curr]);

}

old = curr;

curr = spawn(km_reduce, [sums]);
done = spawn(is_converged, [curr, old]);
} while (!*done);
return curr;

2/13/2011

12

2/13/2011

k-means on CIEL

MapReduce in Skywriting

function apply(f, list) {

ivl.::pgsi: E‘E]lzge(len(list))) { M ap Red u Ce
outputs[i] = f(list[i]);
}

return outputs;

}

function shuffle(inputs, num_outputs) {
outputs = []; .
for (i in range(num_outputs)) { 1nc
outputs[i] = [];
for (j in range(len(inputs))) {
outputs[i][j] = inputs[3I[i];
}

}Qw”mms ret FQ 4 FQ d'FQ)5

function mapreduce(inputs, mapper, reducer, r) {
map_outputs = apply(mapper, inputs);
reduce_inputs = shuffle(map_outputs, r);
reduce_outputs = apply(reducer, reduce_inputs);
return reduce_outputs;

ce”;

13

2/13/2011

Reliable execution on CIEL

Any participant in the computation can falil

Client fault tolerance

— Trivial due to whole-program execution
Worker fault tolerance

— Re-execute tasks as necessary
Master fault tolerance

Task and reference naming

» Task (re-)execution must be deterministic

 In dynamic graph, how to choose names?
— Deterministic function (SHA-1) of task inputs

« Lazy evaluation + deterministic naming
— Task result memoization

14

Master fault tolerance

 Trivial version
— Persistently store the root task for each job

e Better version

| Hot :‘E
:_ Standby

- =
Persistent
Log

Worker Worker Worker

Implementation

* Implemented in ~8500 lines of Python
— Plus executor code in Java, C, C#, ...

» Client/server based on JSON-RPC/HTTP

e http://github.com/mrry/ciel

2/13/2011

15

Applications
» Text-processing Linear algebra
— Grep — Conjugate gradient
— Word count Bioinformatics
» Clustering — Smith-Waterman
— k-means e Finance
* Link analysis — Options pricing
— PageRank
Grep

®m Hadoop
u CIEL

20
Workers

2/13/2011

16

100%
90%
80%

c
o 70%
S 60%
S 50%
0
@ 0% ®m Hadoop
z 0 u CIEL
e 30%
20%
10%
0%
10 20 50 100
Workers
450
400
= 350
2
S 300
3
s 250
5 200 ®m Hadoop
= 150 uCIEL
5
Q 100
50 122 2.1 9.3 07
0 i &
Map Reduce Other
Stage

2/13/2011

17

Binomial options pricing

Simulated time

Wl!l 5

Data flow

€

Binomial options pricing

1200 -
— ~+=100000
21000 ‘
s \ -%-200000
(&)
800
) \ -+400000
(0]
£ 600
=
2 400
5
(8]
()
>
L

7~ f 4.4x
faster J =

0 20 40 60 80 100 120
Tasks

2/13/2011

18

Short-term future work

* More first-class languages on CIEL
— Scala, Haskell, Java, Ocaml, ...

* More platforms
— Many-core and more exotic (e.g. Intel SCC)

» Hybrid multicore/distributed scheduling
— Worker-local scheduler for lightweight tasks
— Multi-scale concurrency interface

Longer-term vision

 Rumors of SMP’s demise
— Non-CC architectures (Beehive, SCC)
— ...or virtual machines in the cloud
— ...or both of the above

« How will we write applications in future?
— Skywriting = shell scripting

2/13/2011

19

2/13/2011

Conclusions

« Adding control-flow extends the class of
programs that run on execution engines

« Skywriting lets you program in a simple
imperative programming model

» CIEL achieves flexibility with competitive
performance

http://www.cl.cam.ac.uk/netos/ciel/

20

