
StreamCloud: A Large Scale Data 
Streaming System

Gulisano, Vincenzo
Jimenez-Peris, Ricardo
Patino-Martinez, Marta

Valduriez, Patrick

Rokey Ge



Outline

The need for Data Stream Processing
Current Stream Processing Engines
Introducing StreamCloud
Scalability, transparency, portability
Evaluations
My thoughts



Data Streaming

Applications that require real time processing of 
data streams

Financial data analysis
Sensor network data
Military command & control

Store and process can't deal with the high 
volume and low latency requirements
Stream processing engines (SPEs)



Data Streaming
Data stream: infinite append-only sequence of 
tuples
Queries are defined over one or more data 
streams
Each query is a network of operators

Stateless: filter, map, union
Stateful: join, aggregate (computation over sliding 
windows of tuples)



Data Streaming

Emerging applications are pushing the limit of 
SPEs

Network monitoring, fraud detection
Distributed SPEs

Distribute queries, or operators to individual nodes
Parallel SPEs

Same queries or operators on different nodes in 
parallel



SPEs

Aurora [D.J.Abadi et al] 
Splitting the load across several nodes running the 
same operator.
Data stream go through single nodes,bottlenecks. 

Flux [M.A.Shah et al]
Exchange parallel operator, specific to SPEs

Limited evaluations
Simulated, limited scope



StreamCloud

A data stream processing system
Scalability: scale with respect to the data 
stream volume
Transparency: parallelisation of queries without 
user intervention
Portability: independent of underlying SPE



Scalability

Query cluster strategy
Full query allocated to a subcluster of nodes
Nodes execute on a subset of input
Communication across nodes, at least for each 
stateful operator



Scalability

Operator-cluster strategy
Each operator to a set of nodes
Communication between nodes of one subcluster 
to the next



Scalability

Subquery-cluster strategy
Subquery: a stateful operator followed by stateless 
operators; or the whole query if no stateful 
operator
Subquery to nodes



Scalability

Subquery-cluster strategy
Minimum number of communication steps
Minimum fan out cost

Parallelization of Staeless subqueries
Each input tuple can be processed by any node
Load balancer applies round-robin to distribute



Scalability

Parallelization of Stateful Subqueries
Join and Aggregate (group-by)

Each input stream split by LB into N substreams
hash(A)%N to distribute tuples

Cartesian Join
Each tuple is sent to M=sqrt(N) nodes
%M to distribute



Scalability



Transparency
Parallelization result should equal to non parallel 
version
Input Merger: takes timestamp ordered 
substreams from LB and generate ordered 
substream

Optimisations
Merge stateful subqueries if they share same 
aggregation method
Merge union with IM, filter with LB



Evaluation

Targets to measure the scalability
The number of processors
The window size

Methodology
Increasing input loads for different configurations
StreamCloud instances process tuples until it 
overloads
Throughput: tuples/comparisons per second
CPU usage, queue length



Evaluation setup

60 nodes with 160 cores
Multiple instances of StreamCloud per node for 
multi-core nodes
Baselines: centralised SPE on one node; two 
StreamClound instances on one node



Evaluation Plan

Scalability of each individual operator
Scalability of full queries

Comparison with query-cluster and operator 
cluster strategies

Increase system size while maintain fixed 
window size to handle increased input node
Scalability in terms of numbers of instances per 
node



Crazy charts



Crazy charts explained

Operators scale well
Subquery-cluster is 2.5 to 5 times better than 
query-cluster and operator cluster
Scale with cores too
Scalability maximised!



My thoughts ++

Subquery-cluster strategy provides better 
scalability
Load-balancer & Input-merger implemented 
with standard stream operators
Detailed evaluations over real implementation 
(albeit crazy charts)



My thoughts --

Other operators? (e.g. Bsort, ReSample)
How does it handle network imperfections? 

Delayed, missing, out-of-order data
Broken node

Independence unproven. What about other 
SPEs?
Evaluations do not contain comparison with 
other systems



Questions?

???
??
?


