Continuous Queries over Data Streams

Shivnath Babu and Jennifer Widom
Stanford University

Presented by Chung Leung, LAM
Overview

- Use of continuous data stream
- Survey & New architecture
- Continuous Queries over Data Stream
- The STREAM (STandford stREam datA Management) project
The Survey

- [TGNO92] - Continuous queries
- [JMS95] - Data streams
- [SPAM91] - Triggers
- [GM95] - Materialized views
- [HHW97], [HH99] - Online-processing
- [MRL99], [GK01] - Summarization
A Concrete Example

- An ISP that collects packet trace from two links
- Incoming packets from the link - data stream (unbounded-append only database)
- Collect packet trace - continuous query over data stream
- Conventional DBMS technology is inadequate
With Load As

(Select sadd, daddr, sum(length) as traffic
From PT_b
Group By sadd, daddr)

Select sadd, daddr,, traffic
From Load As L_1
Where (Select count(*)
From Load as L_2
Where L_2.traffic < L_1.traffic) >
(Select 0.95Xcount(*) From Load)

Order By traffic
Data Stream VS Traditional Stored Data Sets

- A single, continuous stream of tuples
- A single continuous query \(Q \)
- Data stream as unbounded append-only database \(D \)
• Many possible ways to handle Q with ramifications
• E.g. Q is a selection or a group-by query
• Different ways to address such issues
• Suggested to have a new architecture
Architecture

Stream 1
Stream 2
\cdots
Stream n

Q

Stream
Store
Scratch

Throw
• New tuple \(a \) remain in answer A “forever” because of new tuple \(t \) from stream

 - Send the new tuple \(a \) to the **Stream**

• New tuple \(t \) cause update or delete of **Store**

 - Answer tuples moved from Store to Stream

• When \(t \) is not needed now or later

 - \(t \) is sent to **Throw**
Query Processing Scenarios

- Scenario
 - Always store and make available the current answer to Q

- In terms of the architecture
 - Stream is empty
 - Store always contains A
 - Scratch contains data to keep Store up-to-date
Triggers & Materialized Views

- Triggers
 - Stream and Store may remain empty
 - Scratch store data for monitor complex events or evaluate conditions

- Materialized Views
 - Base data stored in Scratch
 - The view is maintained in Store
 - Updates to the base data represented as data streams
Basic Problems

• Online-processing
 - New tuples arrived in data stream must be “consumed” immediately
 - Some of them may need to be ignored

• Storage constraints
 - Store and/or Scratch may be unbounded size
 - Performance requirements reside in limited amount of main memory
New Techniques

• Summarization
 - Sampling, histograms, wavelets

• Online data structures
 - Data structure designed specifically to handle continuous data flow (e.g. [FW98])

• Adaptivity
 - Long-running query need to consider more parameters (e.g. amount of available memory, stream data flow rate)
 - Adaptive query processing techniques
Data Stream Management System

• Build a complete DSMS
• With similar functionalities and performance with tradition DBMS
• Build from scratch
• Complete prototype - STREAM
 - A flexible interface
 - A processor
 - A client API
Summary

• Focused on continuous queries over data stream
• Survey on previous related work
• Proposed a new architecture
• Discussed related issues and research problems
• Introduce the STREAM project
Questions?