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The problem

Building and debugging distributed software is extremely difficult.

The developer spends time on:

@ orchestrating concurrent computation and communication across
machines
@ minimize the delays

@ handle failures

instead of

@ being creative
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The solution
The solution

A broad range of distributed software can be recast in a data-parallel
programming model.
Solution:
@ adopt a data-centric approach to system design
@ switch to declarative programming languages
Advantages:

raised level of abstraction for programmers
improved code simplicity

better speed of development

ease of software evolution

program correctness
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BOOM Analytics

BOOM = Berkeley Orders Of Magnitude

BOOM Analytics = reimplementation of HDFS and Hadoop MapReduce in
Overlog

Why Hadoop?
@ It shows the distributed power of a cluster.

@ Significant distributed features are missing => It can be extended.
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Background Overlog

Overlog

@ declarative language (logic of computation, not the control flow)
@ based on Datalog

o defined over relational tables

e query language that makes no changes to the stored tables

o rules:

rhead({col — list)) b ry({col — list)),. .., r({col — list))

@ extends Datalog

@ can specify location of data

e primary keys and aggregation

o defines a model for processing and generating changes to tables
@ relational tables may be partitioned across a set of machines
@ implementations: P2, JOL (Java-based Overlog)
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HDFS

files system metadata stored at a centralized NameNode
file data distributed across DataNodes

DataNodes send heartbeat messages to the NameNode

°
o
@ by default, data chunks of 64MB replicated three times
o
@ clients only contact the NameNode
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BOOM-FS

@ represent file system metadata as a collection of relations

Name Description Relevant attributes
file Files fileid, parentfileid, name, isDir
fgpath Fully-qualified pathnames path, fileid
fchunk Chunks per file chunkid, fileid
datanode DataNode heartbeats nodeAddr, lastHeartbeatTime
hb_chunk Chunk heartbeats nodeAddr, chunkid, length

@ metadata and heartbeat protocols implemented with Overlog rules

@ data protocol implemented in Java

@ 4 person-months of work

System Lines of Java | Lines of Overlog
HDFS 21,700 0
BOOM-FS 1,431 469
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The Availability Rev

Goal:
@ hot standby replication for NameNodes
Solution: Paxos algorithm
@ solves consensus in the network
@ is a collection of logical invariants
@ messages and disk writes — insertions into tables
@ invariants — rules
Results:
@ 400 lines of code
@ 6 person-weeks of development time
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The Scalability Rev

Goal:

@ scale out the NameNode across multiple partitions
Solution:

@ add a ’partition’ column to tables to split them across nodes
Results:

@ 8 hours of development time

Stefan Istrate (University of Cambridge) BOOM Analytics February 10, 2011 10/17



ol B e
The Monitoring Rev

Goal:
@ develop performance monitoring and debugging tools
Solution:
@ replicate the body of each rule and send it to a log table
@ add a relation called “die”to JOL
@ when “die”is added throw a Java exception
Results:
@ performance monitoring: 64 lines of code, less than 1 day
@ debugging: 60 lines of code, 8 person-hours
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Hadoop MapReduce

single master node (JobTracker)
many worker nodes (TaskTrackers)
job is divided in maps and reduces

map: reads an input chunk, runs a function, partition the output into
buckets

@ reduce: fetch hash buckets, sort by key, runs a function, writes to
distributed file system

@ fixed number of slots for every TaskTracker
@ heartbeat protocol between each TaskTracker and JobTracker
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BOOM Analytics MapReduce Port (BOOM-MR)

BOOM-MR
Name Description Revelant attributes
job Job definitions jobid, priority, submit_time, status, jobConf
task Task definitions jobid, taskid, type, partition, status
taskAttempt Task attempts jobid, taskid, attemptid, progress, state,

phase, tracker, input_loc, start, finish
taskTracker | TaskTracker definitions | name, hostname, state, map_count, re-
duce_count, max_map, max_reduce

@ evaluation on Hadoop’s default First-Come-First-Serve (FCFS) policy and the
LATE (Longest Approximation Time to End) policy

@ better results for LATE
Results:
@ initial version: one person-month
@ debugging and tuning: two person-months
@ 55 Overlog rules
@ 6573 lines removed from Hadoop
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erformance

Performance

* BOOM-MR/HDFS (map)
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Performance

Performance (cont.)

BOOM-MR/BOOM-FS (map) == BOOM-MR/BOOM-FS (reduce)
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Conclusions

Conclusions

Good things:
@ focus on what, not on how
@ simplified code
o faster development
@ program correctness
Bad things:
@ system load averages higher with BOOM Analytics
@ Overlog needs some other features
@ difficult and time-consuming to read the code

@ hard for programmers to switch to declarative programming
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Questions / Comments

Questions / Comments?
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