

Data Centric Networking (R202)

paper An Evaluation of Scalable Application-level Multicast Built Using Peer-to-peer Overlays

authors: M. Castro et. al.

MPhil in ACS

reviewer/presenter: S. Trajanovski (st508)

Motivation

Overview of p2p multicast classification

- Lack of IP multicast deployment
- Difference in used overlay
 - Tree building
 - Flooding
- Difference in routing methods
 - Generalized hypercube routing (Pastry)
 - Cartesian hyper space (CAN)
- Paper structure..

Different routing methods (CAN)

- Topology organization
 - d dimensional cube
 - Each node owns "its space"
- Node's addition
 - Selected region is split into 2 parts
- Tunable parameters
 - Node dimension, multiple node/zone
 - Net. Aware routing, uniform partitioning etc.

Different routing methods (CAN)

2-D CAN topology & node addition

Data Centric Networking (R202) student: Stojan Trajanovski (st508) 4

5

Different routing methods (Pastry)

- Pastry namespace (128-bits)
 - nodeld & (message, dest_key)
 - Next node -> closest to the dest_key
- Routing principle
 - 128/b levels and 2^b entries each
 - Next node sharing max. bits with destination
 - At least b bits "closer to destination"

Different routing methods (Pastry)

Routing table

Overlay based application level multicast

Flooding

- Main concept: broadcasting
- Groups: smaller subsets
- CAN flooding: "naive" & CAN Multicast
- Pastry flooding: level tagging and forwarding
- Tree based (Scribe approach)
 - Firstly target group roots
 - Decentralized approach is scalable

Different overlays approaches

Evaluation

Experimental setup

- Experimental environment
 - measured -> number of packets
 - 5 network topologies
 - 1st experimental set: one multicast group
 - 2nd experimental set: multiple multicast groups
 - Experimental phases
 - groups subscription
 - message is multicast to each group

Evaluation

Experimental setup

- Experimental criteria
- Relative (ratio app. level/IP multicast values)
 - Relative delay penalty
 - RMD (maximum ratio), RAD (average ratio)
 - Link stress
 - Number of packets over the link
 - Node stress
 - Routing table size (#nodes) & messages received
 - Message duplication

CAN Results

- Parameters
 - Number of dimensions (d); nodes per zone (z)
 - policy: (distance, ratio, NDR), uniform part. (on/off)

Pastry Results

Parameters

- b #number of "matched" dest. bits (b={1,2,3,4})
- TART & TOP

More results

Link Stress

Configuration	d=10	d=9	d=12	d=10	d=8
	z=1	z=2	z=3	z=5	z=10
State size	18	29	38	59	111
Joining ph	ase				
Max	91615	149341	197977	309212	416361
Average	154	183	219	281	431
Flooding pl					
Max	1958	1595	1333	985	631
Average	3.49	3.27	2.93	2.73	2.69

Configuration	d=10	d=9	d=12	d=10	d=8
	z=1	z=2	z=3	z=5	z=10
State size	18	29	38	59	111
Max	323	220	198	184	225
Average	1.69	1.49	1.42	1.37	1.36

flooding in CAN

CAN tree-based

	with T	ART	without TART		
	RAND	TOP	RAND	TOP	
Max	6801.4	65.4	2119.0	61.0	
Average	4.3	1.4	4.6	1.4	

Pastry flooding for b=4

Comparative Results for multiple multicast groups (CDF functions)

RMD with distributed members

localized and distributed members

UNIVERSITY CAMBRIDGE

Related Work

- Tapestry and Chord
 - Similar approaches
- Bayeux and Overcast
 - Different concepts
 - Prospective future work
- Non scalable
 - End System Multicast, RONs, ISIS
- IP Multicast

Summary

- First head2head p2p analysis (4 comb.)
 - Flooding & tree building
 - Hypercube & Cartesian metric space
- Tree-based is <u>better</u> than flooding
- Multicast trees-build
 - Pastry better than CAN
- Flooding overlay costs more..
- Related work (further considerations)
 - Overcast, Bayeux, IP Multicast

•Questions??

• Discussion..

