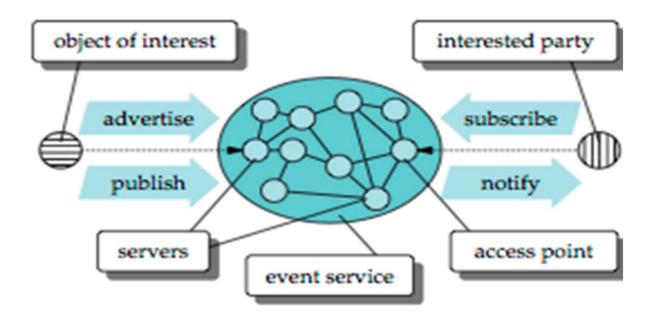
Data Centric Networking (R202)

Scalability and Expressiveness of Event Notification Services

Routing in Content-Based Networks


Todor Minchev 27 January 2011

Event-notification systems

- Collection of loosely-coupled autonomous components
- Components interact by emitting notifications
- System performs actions in response to events
- Provides middleware infrastructure for component interaction

SIENA

- Network of distributed servers
- Access points provide pub/sub interface
- Objects of interest (providers)
- Interested parties (consumers)
- SIENA matches subscribers with providers
- Best effort service
- Possible race conditions

Scalability & Expressiveness

- Number of subscribers & publishers
- Number of notifications & subscriptions
- Power of the model
- Expressiveness affects the routing and forwarding algorithms
- Trade off between expressiveness & scalability

The SIENA data model

- Advertise in addition to pub/sub interface functions
- Unsubscribe and unadvertise
- Untyped notifications

```
 \begin{array}{ll} string & class = finance/exchanges/stock \\ time & date = Mar~4~11:43:37~MST~1998 \\ string & exchange = NYSE \\ string & symbol = DIS \\ float & prior = 105.25 \\ float & change = -4 \\ float & earn = 2.04 \\ \end{array}
```

Notification Selection

• Event filters – single notification matcher

```
\left| \begin{array}{ll} string & class>* finance/exchanges/\\ string & exchange = NYSE\\ string & symbol = DIS\\ float & change < 0 \end{array} \right|
```

• Patterns – multiple notifications matcher

```
\left| \begin{array}{ll} string & what>* finance/exchanges/\\ string & symbol & = MSFT\\ float & change & > 0 \end{array} \right|
```

•

```
string \quad what > * finance/exchanges/ \\ string \ symbol = NSCP \\ float \quad change > 0
```

Pattern considerations – latency & timestamps

Covering Relations

Subscription filter—multiple constraints interpreted as a conjunction

```
f \sqsubset_S^N n \Leftrightarrow \forall \phi \in f : \exists \alpha \in n : \phi \sqsubset \alpha
             subscription
                                       notification
                                        string what = alarm
                                \sqsubseteq_S^N
 |string| what = alarm
                                                date = 02:40:03
                                        time
                                        string what = alarm
 string what = alarm
                                \not\sqsubset_S^N
 integer level > 3
                                                 date = 02:40:03
                                        time
 string what = alarm
                                        string what = alarm
                               \not\sqsubset_S^N
 integer level > 3
                                        integer\ level = 10
 integer\ level < 7
 string what = alarm
                                        string \quad what = alarm
                                \sqsubseteq_S^N
 integer level > 3
                                        integer\ level = 5
 integer\ level < 7
```

Covering Relations

Advertisements

$$a \sqsubset_A^N n \Leftrightarrow \forall \alpha_n \in n : \exists \phi_a \in a : \phi_a \sqsubset \alpha_n$$

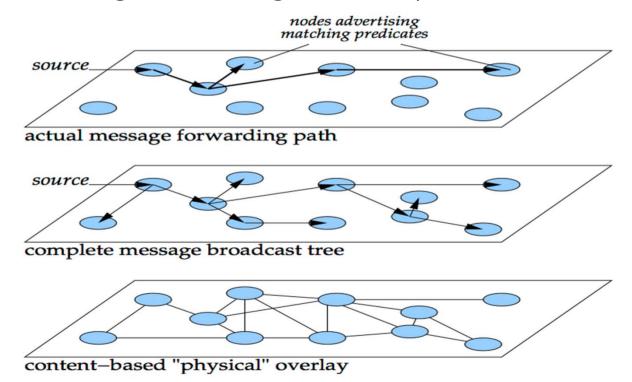
```
advertisement
                                  notification
string what = alarm
                           \sqsubseteq_A^N
string what = login
                                  string\ what = alarm
string user
string what = alarm
                                  string\ what = alarm
                           \not\sqsubset_A^N
string what = login
                                  time
                                          date = 02:40:03
string user
string what = alarm
                                  string\ what = login
                           \sqsubseteq_A^N
string what = login
                                  string user = carzanig
string user
                any
string\ what = alarm
                                  string what = logout
                           \not\sqsubset_A^N
string\ what = login
                                  string user = carzanig
string user
                any
```

SIENA Architecture

Interconnection topology

- Hierarchical client/server topology
- Acyclic peer-to-peer
- General peer-to-peer

Routing algorithm


- Downstream replication
- Upstream evaluation
- Subscription forwarding
- Advertisement forwarding

Routing in a Content Based Network

- No explicit destination addresses
- Content matched against predicates
- Propagate predicates and topological information
- The objective is loop-free and minimal forwarding paths

Network Architecture

- Overlay point-to-point
- Routing synthesizing distribution paths
- Forwarding determining the next hop destinations

Combined Broadcast and Content-Based (CBCB) protocol

Router runs two protocols

- Broadcast routing protocol
- Content-based routing protocol
 - Processes predicates defined by nodes
 - Based on "push-pull" mechanism
 - Set of typed attributes(messages) exchanged by routers
 - Nodes implement interface functions send_message(m) and set_predicate(p)

Broadcast Layer

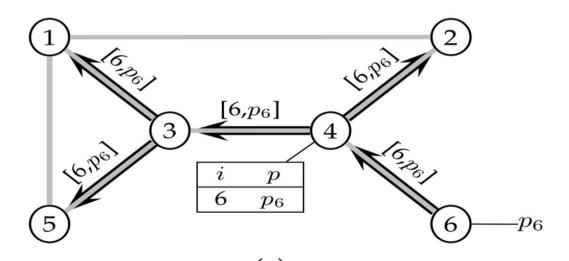
- Delivers messages from any node to any other node
- Propagates routing information
- Broadcast function B(s,i) called for each node
 set of output interfaces
- Can be implemented as minimal spanning tree or shortest-path tree

Content-based layer

- Delivers messages only to interested parties
- Content-based address of a node is defined as predicate
- p(m) & selects(p)
- Covering relation between content-based addresses (p2 is covered by p1)

$$\forall m: p_2(m) \Rightarrow p_1(m)$$

$$p_2 \prec p_1$$


Content-Based Routing Protocol

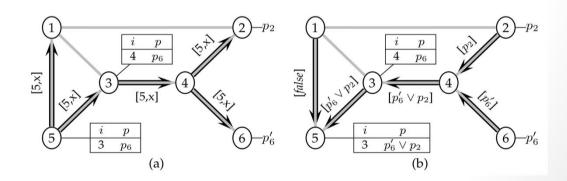
- Two mechanisms for propagation of routing information
 - Push receiver advertisements(RA)
 - Pull sender requests(SR) and update replies(UR)
- RAs issued periodically when the p₀ changes
- Push routing information from receiver to potential senders

issuer
predicate

Receiver Advertisements Propagation

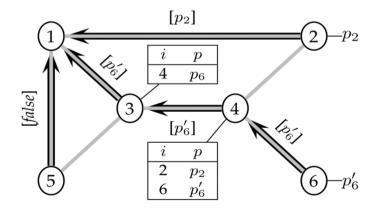
- Content-based RA ingress filtering
- Broadcast RA propagation B(r,i) to compute the outgoing interfaces
- Routing table update (routing table inflation)

Sender Requests Propagation


- Pull content-based addresses from all receivers
- SRs result in Update Replies (URs)
- Balances routing table inflation
- Compensates for lost RAs

issuer request number timeout

Update Replies


- Sent upstream only in reply to SRs
- Leaf nodes send UR immediately
- Non-leaf node adds their p_0 to URs
- SR issuer updates its routing table for incoming interface with UR

SR issuer
SR number
predicate
•••

SR/UR Optimization

- N routers -> each SR generates 2N packets
- Limit the use of SRs to selected interfaces
- Cache and reuse URs
- Message counter linked with an outgoing interface

Discussion

- How secure is SIENA in its current form?
- Can SIENA be used to prevent the distribution of copyrighted material by forcing publishers and subscribers to use special attributes in their notifications?
- How scalable is the system? Can it support hundreds, thousands or millions of nodes?
- Can a quality-of-service (QoS) mechanism be implemented into the proposed routing protocol?
- Are there too many/few control messages exchanged between nodes?
- Do you think that this routing protocol will scale well in a network with millions of hosts?