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Abstract

To use their pool of resources efficiently, distributed
stream-processing systems push query operators to nodes
within the network. Currently, these operators, ranging
from simple filters to custom business logic, are placed man-
ually at intermediate nodes along the transmission path to
meet application-specific performance goals. Determining
placement locations is challenging because network and
node conditions change over time and because streams may
interact with each other, opening venues for reuse and repo-
sitioning of operators.

This paper describes a stream-based overlay net-
work (SBON), a layer between a stream-processing system
and the physical network that manages operator placement
for stream-processing systems. Our design is based on a
cost space, an abstract representation of the network and
on-going streams, which permits decentralized, large-scale
multi-query optimization decisions. We present an evalua-
tion of the SBON approach through simulation, experiments
on PlanetLab, and an integration with Borealis, an exist-
ing stream-processing engine. Our results show that an
SBON consistently improves network utilization, provides
low stream latency, and enables dynamic optimization at
low engineering cost.

1. Introduction

Distributed stream-processing systems (DSPSs), such as
Borealis [7], Medusa [9], PIER [14], GATES [8], and Iris-
Net [13], collect, process, and aggregate data across mas-
sive numbers of real-time streams. These systems support
applications such as monitoring of financial markets, de-
tecting network intrusion, and connecting geographically-
diverse sensor networks. DSPSs move query operators
into the network, eliminating centralized processing. Push-
ing filtering, compression, and aggregation logic down-
stream can greatly reduce network traffic and increase per-
formance. Even though identifying good placement nodes
to host operators for a query is crucial, thisoperator place-
ment problemis not addressed by current DSPSs.

DSPSs face three challenges when solving the operator
placement problem. First, the placement of operators must
result ingood query performancefor the application, such
as low delay. Second, the DSPS shoulduse the network
efficiently, minimizing the global impact of all its running
queries on the network. Doing so makes the DSPS more
scalable in the number of supported queries and avoids
squandering network resources that could be used by other
applications. Especially in shared hosting environments
with a large number of streams such as PlanetLab [24],
socially-acceptable use of network links is important be-
cause resources are scarce and shared between participants.
Third, when queries submitted by different users overlap,
load and network traffic can be further reduced by finding
andreusing existing operators. Although DSPSs have the
need for decentralized, efficient operator placement and op-
erator reuse, no common infrastructure exists for optimizing
distributed data streams in a network-aware fashion.

In this paper, we describe a network abstraction called a
stream-based overlay network (SBON). Designed for large-
scale placement of query operators in DSPSs, an SBON
manages operator placement within a pool of wide-area
overlay nodes in order to make efficient use of network re-
sources. The SBON makes placement decisions based on
its on-going knowledge of stream, network and node condi-
tions and continuously optimizes placement without global
knowledge of the system. By hiding the details of network
measurement, operator placement decisions, and dynamic
adaptation, the SBON layer simplifies the development of
efficient, network-aware DSPSs.

Our SBON architecture uses a scalable, decentralized,
and adaptive optimization technique based on a multidi-
mensional metric space we call acost space. Every node
in the SBON maintains its cost space coordinate such that
the distance between two nodes represents the overhead
for routing data between them. The SBON determines the
placement of a query operator in this virtual space using a
spring relaxation algorithm, then maps its decision back to a
physical node. This algorithm minimizes the network usage
of a query, while keeping the query delay low and picking
nodes with adequate bandwidth. Existing operators are also
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Figure 1. An example of a DSPS

located through the cost space and re-used for new queries
when possible. SBON nodes dynamically re-evaluate oper-
ator placement decisions and migrate operators to new hosts
based on changing conditions.

We evaluate our SBON implementation in simulation
and with a deployment on PlanetLab. Our results show
that, in simulation, our placement optimization technique
exhibits close to optimal network usage. On PlanetLab, we
benchmark the migration and reuse capabilities, in particu-
lar, and measure the engineering effort required to integrate
it with the Borealisstream-processing system [7]. In our
experiments, we found that operator migration reduced net-
work usage by17% and that re-use reduced it by21%.

The rest of the paper is structured as follows. In the Sec-
tion 2, we give the problem background and in Section 3
we describe our architecture. In Section 4, we evaluate the
SBON implementation, and in Section 6 we conclude.

2. Distributed Stream-Processing Systems

A distributed stream-processing system streams data
from multiple producers to multiple consumers via in-
network processing operators, an example of which is
shown in Figure 1. The figure shows three query streams
that belong to two applications.S1 performs intrusion de-
tection for several networks andS2 andS3 aggregate seis-
mic data from multiple sensor network deployments. Note
that S2 andS3 share operators because the consumers are
interested in the same data.
Query Model. We use the termqueryto denote the expres-
sion that is submitted by a single user describing her infor-
mation need. Our basic model is one of multiplequeries,
each interconnecting multipleoperators. The DSPS instan-
tiates the query in the network in the form of aquery stream
of data tuples flowing through the network. Operators that
are part of a query stream are interconnected by overlayop-
erator links, each with a certain latency and a data rate.
Operator Model. Generic operators in a DSPS can be cat-
egorized into three classes:producers, consumers, andop-

erators, which act as data generators, receivers, and pro-
cessors, respectively. If an operator permanently resides at
a physical network location, it is called apinned operator.
Producers and consumers are typically pinned. In contrast,
an unpinned operator, such as a join or a select operator,
can be instantiated at an arbitrary node in the network. Ex-
amples of processing operators include an aggregation op-
erator for seismic data, a join operator for relational data,
and a face recognition operator for video surveillance.
Operator Placement Problem.In Figure 1, there are many
nodes that can host the four pictured unpinned operators.
One of the main tasks of a DSPS isoperator placement,
or the selection of the physical node that should host the
operator. The quality of a given placement is quantified by
anoperator placement metric.

2.1 Metrics for Operator Placement

In Section 1, we described three challenges when fac-
ing the operator placement problem: achieving good appli-
cation query performance, using the network efficiently to
service a query, and reusing existing operators when appro-
priate. These challenges should guide the choice of operator
placement metric.

Achieving good application-perceived query perfor-
mance, such as low delay, is a basic necessity. However,
optimizing for individual application performance alone ig-
nores the need to support a large number of streams. In
DSPSs for financial markets, network monitoring, or wide-
area sensor data collection, we expect many large concur-
rent streams to be a common use case. Individual streams
must use network resources efficiently by conserving band-
width and reusing existing operators where possible in or-
der to support the largest number of concurrent streams.
Furthermore, there is a monetary argument for minimizing
bandwidth if the owners of a DSPS pay for the bandwidth
usage of their system.

A tension exists between satisfying the application-
perceived performance needs and minimizing overall band-
width usage. At one extreme, an application-perceived de-
lay metric will greedily blast data from producers to con-
sumers, rather than favoring a lower bandwidth stream that
uses in-network operator placement. At the other extreme,
a metric that seeks to maximize the number of concurrent
streams could make room by routing an individual stream
on a circuitous path, increasing that stream’s application-
perceived delay.

In this paper, we introduce a metric for operator place-
ment, network usage, that trades off application delay
and consumed network bandwidth. This metric is sim-
ilar to what others have proposed for the evaluation of
application-level multicast where minimizing application
delay and consumed network bandwidth have been seen to
collide [10].



2.2 Current Techniques for Operator Placement

Even though all DSPSs are faced with the problem of in-
network operator placement, current placement metrics do
not satisfy the three operator placement goals listed above.

Most DSPSs, such asBorealis [7] and GATES[8], cur-
rently avoid the operator placement problem by supporting
only pre-defined operator locations with pinned operators
in the network. This leaves the burden of efficient operator
placement to the system administrator, which is infeasible
for a dynamic, large-scale system with thousands of queries.

Other DSPSs, such asMedusa[9], place operators to
improve application performance by balancing load. This
is appropriate within a single data center but leads to poor
performance on a wide-area network, in which communi-
cation latencies can dominate processing costs. In addition,
these approaches are not scalable to DSPSs with thousands
of nodes that must be considered for placement.

The location of operators and corresponding relational
tables inPIER [14], a distributed database built on top
of a DHT, is determined through hashing, leading to ef-
fectively random placement of operators in the network.
Such random distribution has good load-balancing proper-
ties but causes large query delays when operators are placed
at nodes distant from both producers and consumers.

To our knowledge, the only prior work on network-aware
operator placement in DSPSs is SAND [1, 2], which is
proposed as an extension to Boeralis. Here, operators are
placed either at the consumer side, at the producer side, or
in-network on a DHT routing path between the two end-
points, depending on the bandwidth usage of a query. Ap-
plications can also specify delay constraints on the place-
ment path in the DHT. In previous work [20], we have
shown that DHT routing paths can lead to inefficient can-
didate sets for operator placement. This is because DHT
routing tables are optimized for minimizing hop count and
not for delay or bandwidth usage. Our approach of per-
forming operator placement in a cost space is more general
than SAND because placements are not tied to DHT routing
paths.

2.3 Network Usage: A Blended Metric

We suggest a more appropriate metric for operator place-
ment,network usage, that trades off overall application de-
lay and network bandwidth consumption. The network us-
ageu(q) is the amount of data that is in-transit for queryq
at a given instant:

u(q) =
∑
l∈L

DR(l) Lat(l). (1)

whereL is the set of links used by the stream,DR(l) is the
data rate over linkl, andLat(l) is the latency. This captures
the bandwidth-delay product of the query. The network us-
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ageU for the entire DSPS is simply the sum over all queries
in the system.

From an individual application’s perspective, this metric
may appear frightening as it seemingly says little about an
individual stream’s perceived delay. However, in this pa-
per we show that negative effects on application-perceived
delay are small. Intuitively, this is true because of the way
in which thenetwork usagemetric effectively favors nodes
that are “close” to the centroid of the producers and the con-
sumers in a query.

From the network perspective, one can think of this
equation as scaling the network bandwidth by the relevant
link latencies. This interpretation captures the idea that the
longer data stays in the network, the more likely it is to tra-
verse nodes and links that could be used for other queries.
At the same time, a path that requires extra latency to reach
an in-network operator is justified if that the operator can
commensurately reduce the overall stream bandwidth.

While high latency links are obviously poor choices for
latency-sensitive applications, they are poor choices for net-
working reasons as well. High latency between two nodes
indicates that the routing path traverses a long geographi-
cal distance or passes through multiple physical links with
intermediate routers. In both cases, the monetary cost of
operating such a path is likely higher compared to shorter
ones. Also, if path congestion is causing a link’s high la-
tency, this link should be avoided for the global good.

3. Architecture

In Figure 2, we show how we extend the functionality
of a DSPS with an SBON layer. Our approach augments
existing DSPSs with efficient operator placement, while ex-
posing their full features to users. In particular, the query
optimizer of the DSPS remains unchanged and creates an
efficient query plan before passing it to the SBON layer for
placement. A network node runs two components: (1) the
DSPS handles operator instantiation, migration, and state,
and stream data transport and (2) the SBON layer monitors
local performance, manages the cost space, and informs the
DSPS when to migrate its services.

Stream instantiation and optimization take place over
several stages. First, the DSPS defines a query plan through



its internal query optimizer, taking into account estimates of
data rates and selectivity of operators, for example. Second,
it passes the query plan to the SBON layer, which performs
operator placement based on current network and node con-
ditions, binding every operator to a node. During the life-
time of a query, nodes hosting operators periodically recon-
sider local placements, potentially migrating operators.

As illustrated in Figure 2, the SBON layer interacts with
the DSPS through a simple interface: the SBON requests
the DSPS (1) toinstantiateanddestroyoperators on the lo-
cal node, (2) toconnectanddisconnectthe input and output
links of an operator to other operators and (3) tomigratean
operator to a remote node. The DSPS is responsible for tear-
ing down connections, packaging state, and instantiating the
operator on the new node during a migration operation.

In turn, the SBON layer monitors information about the
operators hosted on the local node in order to make opti-
mization decisions: (1) the SBON is aware of the number of
input and output linksthat an operator supports, (2) an op-
erator may advertise itsselectivity(i.e.,the ratio of the input
and output data rates) or the SBON may obtain this infor-
mation through runtime measurements of data rates on op-
erator links, and (3) an operator exports information about
whether it can bemigratedbetween nodes andreusedbe-
tween multiple queries.

3.1. Operator Placement Algorithm

The main challenge for an operator placement algorithm
is the potentially large number of nodes that need to be con-
sidered for placement. No entity has complete information
about current network and node conditions to make an opti-
mal decision. Unfortunately, simple heuristics that consider
only a subset of all nodes for placement [1] or perform a
localized search [5] risk never finding a good placement.

We wanted to design our operator placement algorithm
to satisfy three basic requirements. First, it must bescalable
in the number of concurrent queries, as well as the number
of network nodes where operators can be placed. This im-
plies that the algorithm must be decentralized, not depend
on global knowledge of network conditions, and have low
communication overhead. Second, the placement algorithm
should beefficientand yield “good” placements in terms
of latency and network usage. Finally, placement decisions
should beadaptiveto changing conditions, such as latency,
stream data rates, and load.

The SBON achieves efficient, decentralized in-network
operator placement and optimization through two mecha-
nisms: (1) acost space, which is a metric space that cap-
tures the cost for routing data between nodes and (2) are-
laxation placementalgorithm, which places operators us-
ing a spring relaxation technique that manages single- and
multi-query optimization.

3.1.1 Cost Space

A cost space encodes network and node measurements
from all nodes and is constructed in a decentralized fash-
ion. By projecting the placement problem into a virtual cost
space and then mapping the solution back to physical nodes,
SBON nodes can compute operator placement decisions in
a continuous mathematical space with the use of sophisti-
cated optimization techniques. In addition, any SBON node
can approximate globally optimal decisions. For example,
an SBON node in Europe making a placement decision for
a query with producers located in Japan can determine that a
good placement node may be on the US West coast without
having to probe the node directly.

A cost space is ad-dimensional metric space where the
Euclidean distance between two nodes is an estimate of
the cost of routing data between those nodes. Each SBON
node is responsible for maintaining its own coordinate. A
wide range of performance metrics can be used to define
a cost space. We examine latency and load, but other re-
source measures, such as availability, bandwidth, memory,
or processing power could have been included instead. Our
SBON implementation uses a combinedlatency/load space
with three latency dimensions and one load dimension.
Latency. The latency dimensions of a cost space form a
latency space[16], where the distance between two coordi-
nates is a reasonable prediction of the latency between the
nodes. Several instances of synthetic network coordinates
to estimate Internet latencies exist [16, 17]. The overhead
of maintaining a latency space is small because a node can
calculate its network coordinate after probing the latency
to only a small subset of nodes. That subset consists of
either well-known landmark nodes [17] or is randomly cho-
sen [11]. Since Internet latencies often violate the triangle
inequality and change dynamically over time, network coor-
dinates can only provide an estimate of true latency. How-
ever, simulation results suggest that network coordinates,
even with low dimensionality, have a small prediction error
with a median of11% [12].

Figure 3 shows a3-dimensional latency space as calcu-
lated by theVivaldi algorithm [11] with115 North Amer-
ican nodes on PlanetLab. As annotated, three geographic
clusters of nodes can be identified. Each node running Vi-
valdi keeps track of its3-dimensional coordinate and its
confidence in that coordinate. The algorithm works by each
node successively refining its coordinates through periodic
measurements to random other nodes. Each update consists
of two nodes measuring the current latency to one another,
plus an exchange of their coordinates and confidences. With
this information, nodes develop a metric space where two
nodes can approximate their true latency even if they have
never exchanged measurements directly.

The latency space dynamically adapts to changing net-
work conditions as nodes continuously refine their coordi-



 0
 20

 40
 60

 80
 100 -20

-10
 0

 10
 20

 30
 40

 50

-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60

US East

US West

US Central

latency (in ms)

latency (in
 m

s)

la
te

n
c
y
 (

in
 m

s
)

Figure 3. 3-D latency space on PlanetLab
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Figure 4. Latency samples on PlanetLab

nates. This raises the issue of stability of the latency space:
if latency measurement variance is high, the latency space
might not converge. Especially on nodes with high CPU
load, application-level latency measurements may lead to
skewed results [23]. On the other hand, a certain amount of
dynamism is desired for the latency space to adapt to chang-
ing network conditions.

As part of developing the latency space, we found a sim-
ple mechanism to create stable, adaptive coordinates. We
feed each latency observation into a moving percentile filter,
an instance of a low-pass non-linear filter. Each link main-
tains its own filter and, even though latency observations
have significant variance and their distribution is heavily
skewed, the filter captures the consistent baseline of each
link. Figure 4 shows the raw and smoothed application-
level UDP latency samples gathered between two SBON
nodes on PlanetLab over the course of23 hours together
with the CDF of all samples. The observed baseline la-
tency varies due to Internet route changes. The variance in
measurements is caused by the load on the nodes, which
averaged40 during our sampling, and congestion on the
network paths. We found the filter dampens measurement
variance on the latency space without losing sensitivity to
changes in Internet routing paths. We determined empiri-
cally that the20th percentile from a history of10 samples
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leads to a stable latency space on PlanetLab [18].
We also found empirically that the latency space con-

verges quickly. As shown in Figure 5, we observed
that it takes around30 minutes for a latency space
with 116 simultaneously-added North American PlanetLab
nodes to reach stability. The median relative prediction er-
ror for latencies was9% for these nodes. In addition, the la-
tency space can gracefully handle node churn because new
nodes can learn their coordinates after a small number of
measurements.
Load. The performance of a placed operator may be dom-
inated by the CPU load of the hosting node. Therefore, an
SBON node monitors its own load average and includes this
as another dimension in its coordinate. A scaling function
determines the weight given to load with respect to latency.
As a result, nodes with a high load will move away in the
cost space making them less likely candidates for placement
decision. If particularly load-sensitive operators were to be
run on the system, a multiplicative or non-linear additive
function could be used to further penalize nodes with high
load. For simplicity, we adopt a linear mapping in our ex-
periments.

3.1.2 Relaxation Placement

Our placement algorithm, calledRELAXATION , makes ef-
ficient operator placement decisions within the cost space.
The main idea behindRELAXATION is to partition the place-
ment problem into two phases. First, an unpinned operator
in a query isplacedusing a spring relaxation technique in
the latency dimensions of the virtual cost space, and then
the solution ismappedto the closest physical SBON node
in the cost space.

Using spring relaxation to place services in the cost
space has several advantages. First, its iterative nature al-
lows placement decisions to adapt to changing network,
node, and query conditions. Second, spring relaxation is
decentralized and does not require coordination between
nodes. Finally, it naturally supports cross-query optimiza-
tion, which considers the impact of shared placement deci-
sions.

RELAXATION models the overlay network of queries as
a collection of massless bodies (operators) connected by
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springs (operator links). Pinned operators have a fixed lo-
cation, whereas unpinned operators can move freely. The
goal is to compute the rest lengths of this system of inter-
connected springs. The average force~Fi experienced by a
springi is ~Fi = 1

2ki~si whereki is the spring constant and~si

is the extension vector. To minimize network usage in the
latency space with spring relaxation, we set the spring ex-
tension to the latency,sl = Lat(l), and the spring constant
to the data rate transfered over that link,kl = DR(l).

Optimizing placement then becomes solving for the low
energy state of the system, minimizing the sum of the po-
tential energiesEi stored in the springs:

arg min
~si

∑
i

Ei =
∑

i

~Fi~si =
∑

i

1
2
ki~si

2 (2)

Thus, spring relaxation minimizes∑
l∈L

DR(l) Lat(l)2, (3)

which includes the network usage metricu(q). The addi-
tional squared exponent in the function ensures that there is
a unique solution from a set of placements with equal net-
work usage.

We illustrate the placement of a query in latency space
in Figure 6. The thickness of each link is proportional to
its data rate and length to link latency. In (a), the location
of the unpinned operatorS has become sub-optimal due to
network dynamics and “stretches” the operator links to pro-
ducersP1 andP2. This causes the operator to migrate to a
better noden, which is shown in (b). In general, a strong
force pulling an unpinned operator in a particular direction
can either be caused by multiple operator links or a single
operator link that has a high data rate.

Spring relaxation can be implemented efficiently with a
decentralized algorithm. Each spring is relaxed indepen-
dently by moving it a small amount, potentially affecting
the extensions of other springs in the system. After a num-
ber of such relaxation iterations, the system of springs con-
verges towards a low energy state because each iteration de-
creases the total force in the system. Another advantage of
this approach is that it naturally supports placement deci-
sions when queries are interconnected with shared opera-

V IRTUAL -PLACE(S)
1 repeat
2 ~F ← ~0
3 for eachSparent in Parents(S)
4 do ~F ← ~F + (~S − ~Sparent)×DR(S, Sparent)
5 for eachSchild in Children(S)
6 do ~F ← ~F + (~S − ~Schild)×DR(Schild, S)
7 ~S ← ~S + ~F × δ
8 until ‖~F‖ < Ft

Figure 7. RELAXATION algorithm

tors. By viewing the entire query graph as a network of
springs, the placement of an operator can then potentially
affect the placements of other operators with transitively
shared operator links. In practice, placement effects will
be more localized because we factor in the operator migra-
tion cost to ensure that placement decisions do not create
oscillation in the system (see Section 3.2).

3.1.3 Algorithm

The SBON layer employs a two-step placement algo-
rithm that has a straightforward decentralized implemen-
tation. Consider an SBON with its queries. For each un-
pinned operator, the following two steps are executed: the
operator is firstplacedusingRELAXATION in the latency di-
mensions of the cost space with respect to the location of its
neighbors in the query; next, the computed cost space co-
ordinate ismappedto a physical SBON node. To make the
placement decision adaptable, the placement and mapping
steps are repeated continuously for all unpinned operators.
This does not cause a large communication overhead be-
cause each SBON node can perform placement decisions
with local knowledge after learning only the cost space co-
ordinates of its direct query neighbors. Because all nodes
are a part of the cost space, any node can perform the virtual
operator placement and physical operator mapping stages.
We now describe the two steps in more detail.
Virtual Operator Placement. Figure 7 shows the pseudo-
code used byRELAXATION to find the virtual placement for
an unpinned operator in the cost space. The VIRTUAL -
PLACE function is executed by the SBON optimizers on
every SBON node. The current cost space coordinate of
the operator is~S. Only the latency dimensions of the cost
space coordinate are considered because, ideally, the oper-
ator should be placed at a node with lowest possible load.
A new unpinned operator without a coordinate is assigned
a provisional location close to the coordinate origin at ran-
dom. The total force~F that this operator experiences is cal-
culated by iterating over its parent and child operators con-
nected through input and output operator links and retriev-
ing their current cost space coordinates over the network.
The force~F is updated with the distance in cost space be-
tween the current coordinate~S and the remote coordinates
scaled by the data rate used by the query link (lines 3–6).



The data rates of a new query are based on estimates pro-
vided by DSPS, which are refined through network mea-
surements once stream data is flowing. The movement of
the operator through latency space is dampened by a fac-
tor δ to avoid unnecessary oscillation around the optimal
location. The cost space coordinate of the operator is up-
dated iteratively (line 7) until the magnitude of the force~F
is larger than a force thresholdFt (line 8). The force thresh-
old sets the desired precision of the virtual operator place-
ment. After the operator coordinate has been computed, the
operator is mapped to a physical SBON node. We deter-
mined empirically thatδ = 0.1 andFt = 1 work well on
PlanetLab and used these values in our experiments.
Physical Operator Mapping. The second stage of the
placement algorithm maps the target cost space coordinate
to a physical node. It uses the virtual placement coordinate
(with the load dimension equal to zero) to identify a region
of the cost space and then proceeds to actually select a node
(with potentially non-zero load) within that region based on
application requirements.

The stage falls into five steps:

1. Findk nodes whose coordinates are near the target cost
space coordinate.

2. Contact this small set of nodes directly to discover
their current operators and resources.

3. Sort the list by distance to the target coordinate.

4. Walk the sorted list, returning the first node already
running the operator.

5. Failing that, return the nearest node that meets the ap-
plication’s resource criteria

Step (1) is done by ak-nearest neighbor search in the cost
space. We usedk = 10 in our experiments. This problem
has been well-studied in the literature and our prototype cur-
rently solves it centrally by performing a simple brute-force
search. Several distributed solutions have been deployed
with success and are directly applicable. The two primary
approaches have been based on space-filling curves [3, 22]
and on greedy geographic routing in a multi-dimensional
metric space [21]. We have developed initial implementa-
tions based on each of these approaches [19] and comparing
them is part of on-going work. If no nodes are found, we
expand the search parameterk.

Step (5) ensures that operators are only placed on nodes
that have sufficient resources to support the operator. Re-
sources include node resources, such as CPU, memory, and
disk space, and also network resources, such as available
network bandwidth. Due to a lack of resources operator
sometimes are placed sub-optimally in terms of our network
usage metric. However, this distributes processing load of
operators across nodes, avoiding localized hotspots.

3.2. Placement Optimization

Operators are initially placed by afull placement opti-
mizer and the placements are periodically re-evaluated by
local placement optimizers.
Full Placement Optimizer. To create a new stream, a
DSPS passes a query plan to the SBON layer on any node.
The full placement optimizerfinds an initial placement for
all unpinned operators in the new query usingRELAXATION .
The full placement optimizer runs only once and has com-
plete knowledge of the entire query plan. After receiving
physical placements for all unpinned operators from the full
placement optimizer, the SBON layer instructs the DSPS to
instantiate the new operators and create the stream.

When a new query is added that has the same structure
and operators as an existing query, network and node re-
sources can be saved by reusing operators between queries.
This is related to multi-query optimization in traditional
database systems [15]. The cost space can guide the search
for reusable operators and reduce the complexity of hav-
ing to consider all operators in the system: when the full
placement optimizer performs the physical operator map-
ping for a desired placement coordinate, it also retrieves the
currently hosted operators at nodes in thatregionof the cost
space. If it finds a reusable operator that produces the same
data as the operator to be placed, it reuses this operator and
the corresponding sub-query instead of instantiating a new
instance.
Local Placement Optimizer. The local placement opti-
mizerre-evaluate the placement decisions of locally running
operators and initiates migrations of operators when neces-
sary. It runs periodically on every SBON node and iterates
over all local unpinned operators, re-placing them in the la-
tency space. It then maps the new virtual placement coor-
dinate to a physical node only when the displacement from
the previous coordinate is larger than a cost space thresh-
old to avoid unnecessary nearest neighbor lookups. This
threshold value depends on the perceived cost of a lookup.
After mapping the coordinate to a physical node in the la-
tency/load space, the local optimizer calculates the saving in
network usage for this new placement. To prevent needless
migrations, an operator is migrated only if the saving in net-
work usage is higher than aminimum migration threshold.
This threshold depends on the cost of operator migrations
and ensures that migrations are amortized over the lifetime
of a query.

One might think that two local optimizers running on
different nodes could potentially lead to oscillations of op-
erator placements. Since all local optimizers have access
to the same cost space, however, their placement decisions
agree with each other because they are based on the same
information. In rare cases, rounding errors determine the
outcome of a placement that is exactly in the middle be-



tween physical nodes in the cost space. Then the minimum
migration threshold will ensure that an operator remains at
its current location.

Since local optimizers are running concurrently, it is im-
portant that they do not interfere with each other. Therefore,
migrations are done atomically in the SBON. When a local
optimizer decides to migrate an operator, it first notifies the
DSPS to stop the data flow through the query. While a query
is stopped, local optimizers running on other SBON nodes
do not attempt optimizations for the same query. After an
optimizer has finished running (and carried out any migra-
tions), the flow of data is restarted. An additional benefit is
that no data is lost during the migration because operators
are explicitly notified to stop or buffer data production.

4. Evaluation

We evaluated our implementation of the SBON layer in
simulation and with experiments on PlanetLab. Our results
fall into three groups: we show in simulation thatRELAX -
ATION minimizes network usage while providing low delay
to applications (4.1); we investigate how the SBON layer
migrates and reuses operators on PlanetLab (4.2); and we
link the SBON layer to a current DSPS that does not per-
form network-aware operator placement (4.3). Our experi-
ments show how DSPS can benefit from our placement op-
timization techniques with little implementation effort.

4.1. Placement Efficiency in Simulation

We first wanted to compare the performance ofRELAX -
ATION to other placement algorithms. We implemented the
algorithms in a discrete-event simulator. Using simulation
has the advantage of giving us complete control over the
network topology and the experiment, so we could ensure
that the placement algorithms were compared under identi-
cal conditions.

We examined five alternative placement approaches:OP-
TIMAL chooses the best possible placement with the lowest
network usage based on an exhaustive search over all pos-
sible placements. This requires global knowledge of the
entire network and is not feasible in practice, but it gives
a baseline for the performance of the algorithms.IP MUL-
TICAST places unpinned operators at nodes that would be
routers hosting branches of an IP multicast tree rooted at
each producer. For each query, we calculate the IP mul-
ticast tree by taking the union of all the IP unicast routes
from the producers to the consumers.PRODUCERrandomly
picks one of the nodes hosting producers for placement of
the unpinned operator.CONSUMERplaces the operator at the
node hosting the consumer. Finally,RANDOM picks a phys-
ical node for each operator at random and serves as a worst
case comparison.

We simulated1550 nodes in a transit-stub topology gen-

Table 1. Increase in network usage and delay
Algorithm Network Usage Penalty Delay Penalty
OPTIMAL 0% 13%
RELAXATION 15% 24%
IP MULTICAST 27% 0%
PRODUCER 43% 75%
CONSUMER 60% 0%
RANDOM 81% 76%

erated by the Georgia Tech topology generator [25]. The
topology has10 transit domains with5 nodes, each con-
nected to150 stub domains with10 nodes on average. Rout-
ing tables for the topology were calculated using the routing
policy weights assigned by the topology generator to reflect
Internet routing policy. The network diameter of the topol-
ogy was878 ms. Producers and consumers were randomly
distributed across the network. Only a single producer op-
erator was hosted at any physical node. A query consisted
of four producers, an intermediary join and select operator,
and a consumer. We refer to the join and select as a single
aggregatoroperator. For simplicyt, all producers sent data
at a rate of2 KB/s and the aggregator had a selectivity of
8:1. We placed the aggregators on routers in the transit-stub
topology; in a real deployment, they would be part of low-
latency networks connected to the routers. The placement
of operators in transit domains reflects that some nodes in a
large-scale DSPS might be hosted at Internet exchanges.
Network Usage.We show the average increase in network
usage after placing1000 queries in Table 1, whereOPTI-
MAL minimizes network usage.RELAXATION performs well,
which is expected because network usage is the metric that
it optimizes for in its cost space.IP MULTICAST is less effi-
cient because it minimizes routing hops and not necessarily
routing latency. Therefore,RELAXATION manages to find
better placement nodes that are not on the direct IP routing
path from the producer to consumer.PRODUCER does bet-
ter thanCONSUMERbecause, by placing the selective opera-
tors on one of the producers, data from only three producers
needs to be sent through the network to the operator.RAN-
DOM exhibits poor network usage andCONSUMER is only
marginally better.

The distribution of network usage over all queries is
shown in Figure 8. It illustrates the clear division between
the evaluated placement algorithms. Looking at the80th
percentile,RELAXATION manages to cause only14% more
network traffic thanOPTIMAL , whereasPRODUCERresults in
48% more traffic.
Delay Penalty. We examined the delay penalty that an ap-
plication experiences due to each placement strategy. We
define delay penalty as the increase in delay when com-
pared to the IP routing delay on the longest path from any
producer to the consumer. Placing all unpinned operators
on the consumer node (as done byCONSUMER) achieves the
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Figure 8. Network usage

lowest delay penalty of0%.
Table 1 shows the average delay penalty after placing

1000 queries. As expected,CONSUMER and IP MULTICAST

have no delay penalty because they place operators only
along IP routing paths.RELAXATION and OPTIMAL intro-
duce only a small delay penalty of24% and13%, respec-
tively. PRODUCERandRANDOM perform worst because they
add a random delay overhead.

Figure 9 shows the distribution of delay penalty. A inter-
esting result is that bothOPTIMAL andRELAXATION achieve
lower delay penalties thanCONSUMER for about15% of the
queries. This is due to the fact that the routing weights
in the transit-stub topology reflect the fact that IP routes
sometimes have sub-optimal latencies.OPTIMAL and RE-
LAXATION are then able to reduce the delay by choosing dif-
ferent overlay routes with a higher hop count but lower de-
lay. Note thatPRODUCER andRANDOM have a long tail of
bad placement decisions with a large delay penalty. The re-
sults from the simulations portray that, whileRELAXATION

is optimizing for network usage, its impact on delay penalty,
an application-oriented metric, remains low.

4.2. Placement Optimization on PlanetLab

Our second set of experiments examine operator migra-
tion and reuse on PlanetLab. We first wanted to monitor
the behavior of a single pair of queries over a long duration.
We wanted to see if and to what extent migration, driven by
a changing cost space, would change a single continuous
query in detail.

We started two simple queries and monitored them for
20 hours. Both queries had the same pair of producersP1
andP2, a single operator that perfomed a select and a join,
and the same consumer. The producers produced mono-
tonically numbered tuples at a constant rate. The SQL
for the query wasSELECT * FROM P1,P2 WHERE
P1.data=P2.data AND mod(P1.data,4)=0 , ef-
fectively selecting1

4 of the tuples for forwarding.
We used130 PlanetLab nodes from diverse geographic
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locations as our experimental testbed. We used a la-
tency/load cost space, including load as a fourth dimension
with equal-weight. We measured application-perceived tu-
ple delay by having the recipient send a small reply packet
for each tuple sent. This practical measure approximates
“true” delay, given that the error in local clocks on Planet-
Lab can exceed tuple delay. The producers sent a data
packet once a second for each query.

The pair of single queries had two producers on the US
West Coast (berkeleyand ucsc) and had the consumer in
Europe (upc.es). Starting at the same time, each query ran
for 20 hours. Figure 10 shows the network usage for each
query. Each point depicts the instantaneous network us-
age of the query. Vertical bars denote operator migrations.
The results show that, after4 hours, the migrating query re-
duces its network usage by30% from migrationC onward
by placing the operator next to one of the producers. Fur-
ther migrations keep the operator near the producers, which
occur due to changes in the trans-Atlantic link and the load
on the West Coast nodes.

A more detailed look at the effect of each placement de-
cision (A, B, ...) is illustrated in Figure 11. It illustrates
the effect of the migrationsA throughF on the query. The
numbers on top of each bar graph give the network usage
normalized by the network usage of the first placement,A.
This placement is the same as for the non-migratable query
and, therefore provides a comparison point for how migra-
tion has improved network usage while also reducing delay
by a small margin. The bar graphs denote each link’s con-
tribution to total network usage over time and the length of
the lines denotes latency. In columnA, the data initially
travels from two producers (ucscandberkeley), through an
aggregator (uoregon), where it is joined and selected, and
sent across the Atlantic toupc.es. Over 20 hours, the op-
erator migrates towashington(B), thenberkeley(C), then
ucsc(D), then back toberkeley(E), and thenucsc(F ). Op-
erator migration minimizes the length of the portions of the
query before the selection, reducing network usage.



0.0

20.0

40.0

60.0

80.0

100.0

 0  5  10  15  20

N
et

w
or

k 
U

sa
ge

 (B
yt

es
)

Time (hours)

A B C D E F

With Migration
0.0

20.0

40.0

60.0

80.0

100.0

 0  5  10  15  20

N
et

w
or

k 
U

sa
ge

 (B
yt

es
)

Time (hours)

Without Migration

Figure 10. Network usage of a pair of queries, one with a migration (left) and one without (right)

ucsc berkeley(1)

uoregon

A
upc.es

B C D E F

ucsc berkeley(1)

washington

upc.es

ucscberkeley(1)

berkeley(4)

upc.es

ucsc
berkeley(1)

ucsc

upc.es

ucsc berkeley(1)

berkeley(13)

upc.es

ucsc berkeley(1)

ucsc

upc.es

1.00 1.04

0.72 0.71 0.72 0.71

La
te

nc
y

III

II I

II

I

III

N
et

w
or

k 
U

sa
ge

Figure 11. Effect of operator migration

4.2.1 Operator Migration

The third experiment examines the aggregate effect of
migrations due to changes in network and node conditions
over an extended period of time. Given that PlanetLab
was heavily loaded when we ran our experiments, we also
wanted to quantify the effect incorporating node load into
the cost space would have on network usage. Like the previ-
ous experiment, each query streamed data from two produc-
ers through an aggregator/selector, and out to a consumer.
Data rates, tuple sizes, and constituent nodes were the same
as in the previous experiment. Because of potentially high
variation between one set of〈producer,producer,consumer〉
triples and another, we created our migratable and non-
migratable queries in pairs, each with the same set of end-
points. We created24 pairs of queries, which ran for
5 hours, and recorded the network usage of each.

We show the change in the relative network usage of
each migratable query in Figure 12, compared to the query
with the same producers and consumer without migration
enabled. Values below0 indicate adecreasein network us-
age when migration is enabled. Permitting migration of-
ten leads to lower mean network usage, although in a small
number of cases the usage increases. We find that migra-
tions were effective in decreasing network usage for75%
of the query pairs. Data from the same experiment also
show that the set of queries that are permitted to migrate
use16.9% less of the total network capacity compared to
non-migratable queries. The migratable queries performed

an average of3.5 migrations each, suggesting that migra-
tions are occurring at a moderate rate. Allowing queries to
migrate also reduced aggregate query delay by10.5%.

We also ran the same experiment with a pure latency
space. The results show that including load resulted in
a modest improvement in per-query latency and aggregate
network usage with similar numbers of migrations. We have
omitted the results due to space constraints.

4.2.2 Operator Reuse

Another advantage of the SBON model is that the pro-
cessing of operators can be reused across different queries.
In this way, the SBON layer avoids transmitting multiple re-
dundant copies of the same data across the network. This is
especially important when transporting data over long-haul
trans-oceanic links, which may experience high congestion
and long latencies. The SBON automatically detects oppor-
tunities for data sharing across queries and combines op-
erators with the same inputs whenever those operators are
placed in a similar region of the cost space byRELAXATION .

To demonstrate this, we created four pairs of queries.
Each query contained a consumer on the US West Coast
requesting aggregated data from the same two producers in
Europe. In the first case, we disabled operator reuse, re-
quiring each query to instantiate its own aggregation oper-
ator. In the second case, operator reuse was enabled, and
aggregation was shared across three of the four queries (as
determined byRELAXATION ). Because the shared aggrega-
tion operator was generating only a single copy of its output
data, the query also included amulticastoperator which re-
distributed the shared data to the individual consumers. Fig-
ure 13 shows the logical topology of the two sets of queries.

As expected, the overall network usage with operator
reuse enabled (119.55 bytes) was lower than when reuse
was disabled (152.32 bytes), a savings of 21%. We expect
the savings to be greater with a larger number of queries
sharing the same data. In many stream applications, we
anticipate data and operator popularity to follow Zipf-like
distributions, as has been demonstrated for other types of
Internet traffic [6], further highlighting the importance of
operator reuse in DSPSs.
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4.3. Borealis Extension

We believe that current DSPSs can benefit from an
SBON layer to achieve network-aware operator placement.
To test this claim, we extendedBorealis [7], an existing
distributed stream processing engine, with our SBON im-
plementation. This section describes how, with few code
changes, the resulting system retains the full query func-
tionality of Borealis while achieving the network usage and
delay benefits shown in the previous experiments.

In Borealis, part of a running query, orchunkof boxes,
can be migrated to different nodes. This migration capa-
bility is used by an agoric contract-based optimizer [4] that
decides to buy or sell units of work based on internal queue
usage. Borealis can also handle manual operator reuse, in
which a single query can serve multiple consumers. This
means that Borealis can take full advantage of the adaptive
placement decisions made by the SBON.

In an attempt to obtain a useful measure of integration
effort, the Borealis extension was performed with no prior
code-level knowledge of the Borealis code base. Once the
Borealis codebase was understood, the actual code changes
were minimal and were completed and tested over the
span of several days. The integration involved fewer than
400 lines of code, mostly for communication between our
SBON layer (written in Java) and Borealis (written in C++).

Our extension is structured as follows. When a user cre-
ates a new query, Borealis creates a query plan that is passed
to the SBON layer. Since Borealis requires a fixed initial
location for operators, the initial placement result of the
SBON full query optimizer is used as the starting point for
the query passed to Borealis. This starting location is auto-
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matically sent to Borealis, which in turn starts the Borealis
data flow. From this point onwards, the SBON optimizer
sends migrate commands to the Borealis operator execution
environment via their operator interface. This interface di-
rectly invokes the migration code implemented in Borealis.

On PlanetLab, we used Borealis to deploy a set of iden-
tical queries that had two pinned producers, one consumer,
and an unpinned windowing aggregate operator. The pinned
producers were atutexas3and harvard1, and the pinned
consumer was atucdavis1.1 The producers published data
at the same rate, while the operator had a measured selectiv-
ity of 12%. One query was placed by the SBON optimizer
on one of19 PlanetLab nodes. To compare against the
efficiency of manual placement, we simultaneously added
queries that pinned their operator on each of the PlanetLab
nodes in turn, which is akin to conducting an exhaustive
search for the best placement in terms of network usage.

As can be seen in Figure 14, the query placed by the
SBON optimizer has one of the lowest network usages of
any of the placement possibilities. While there are a num-
ber of nodes that are relatively good choices,RELAXATION

favors nodes farther from the query endpoints (because of
spring pull) when there are good mid-cost space candidates.
This figure is representative of how the SBON performs a
good initial placement decision without needing to perform
the exhaustive search, and how it can help Borealis with the
initial placement.

5. Future Work

As future work, we plan to explore extensions of our
cost space approach to include other metrics, such as avail-
able bandwidth and node reliability. We also intend to an-
alyze the convergence properties of relaxation placement in
more detail with the placement of more complex queries.
Especially with bursty workloads, additional dampening of
placement decisions may be necessary.

1The Planetlab overlay involves machines placed at different univer-
sities and research institutions. The notationutexas3signifies the third
machine that is placed at University of Texas at Austin.



Another area for future investigation is the applicability
of classical database optimization techniques in the setting
of a cost space. This introduces an interesting tension be-
tween the desire to make the SBON’s placement optimizer
agnostic to operator semantics and the need to give the
SBON enough information to make good optimization de-
cisions. For example, some stream operators, such as joins,
can be decomposed, which would allow the SBON to place
them closer to producers. Appropriate interfaces between
the DSPS’s query optimizer and the SBON’s placement op-
timizer could be designed for a tighter integration.

6. Conclusions

We introduced an SBON layer as a tool for distributed
stream-processing systems to assist with the operator place-
ment problem. A DSPS generates a query plan with pinned
and unpinned operators, and the SBON manages the task
of positioning unpinned operators efficiently using its on-
going knowledge of network and node conditions. We solve
the operator placement problem with a two step approach:
(1) the placement decision is made in a virtual cost space,
and (2) the cost space coordinate is mapped to a physical
node. The cost space encodes network and node measure-
ments from all nodes in a scalable and decentralized man-
ner, enabling individual nodes to make adaptive placement
decisions with local information.

Through PlanetLab-based experimentation and simula-
tion we demonstrated that the SBON creates data streams
that minimize overall network usage, a characteristic that
is increasingly important as the number of data streams in
the network increases. We showed that SBONs do so with
a combination of intelligent placement, based on the char-
acteristics of the stream, and of operator reuse. We believe
that the relatively easy integration of our SBON layer with
an existing stream processing system demonstrates its ben-
efits. We hope this work will induce future research efforts
into large-scale query optimization for DSPSs that leverage
our approach.
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