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Abstract
In this paper, we present Flask, a new programming language
for sensor networks that is focused on providing an easy-to-use
dataflow programming model. In Flask, programmers build ap-
plications by composing chains of operators into a dataflow graph
that may reside on individual nodes or span multiple nodes in
the network. To compose dataflow graphs across sensor nodes,
Flask supports a lean, general-purpose communication abstrac-
tion, called Flows, that provides publish/subscribe semantics over
efficient routing trees. At the heart of Flask is a programmatic
wiring language, based on the functional language OCaml [13].
Flask’s wiring language allows dataflow graphs to be synthesized
programmatically. The Flask wiring program is interpreted at
compile time to generate a sensor node program in NesC, which
is then compiled to a binary.

Our design of Flask makes three main contributions. First,
Flask allows the programmer to specify distributed dataflow ap-
plications in a high-level language while retaining the efficiency
of compiled binaries and full access to TinyOS components. Sec-
ond, Flask provides a unified framework for distributing dataflow
applications across the network, allowing programmers to focus
on application logic rather than details of routing code. Finally,
Flask’s programmatic wiring language enables rich composition
of dataflow operators, making it possible to develop higher-level
programming models or languages directly in Flask.

In this paper, we describe the design and implementation of
the Flask language, its runtime system, the Flows communication
interface, and a compiler that produces NesC code. We evaluate
Flask through two motivating applications: a distributed detector
of seismic activity (e.g., for studying earthquakes), and an imple-
mentation of the TinyDB query language built using Flask, show-
ing that using Flask considerably reduces code complexity and
memory size while achieving high runtime efficiency.

1 Introduction
Sensor network application design is extremely challeng-
ing due to the limited resources of sensor nodes, commu-
nication and node failures, and the need for complex in-
network processing to reduce energy and radio bandwidth
usage. As a result, application developers typically invest
much time writing code to manage low-level details of sen-
sor node operation, rather than focusing on application-
specific logic. Part of the problem is that sensor node pro-
gramming is already so complex that the developer can-
not afford the extra effort required to build more general,
reusable subsystems.

In this paper we present Flask, a new programming lan-
guage for sensor network devices, that combines the power
of low-level languages such as NesC [5] with a concise,
high-level abstraction for constructing distributed dataflow

graphs in a sensor network. In Flask, programmers build
applications by composing chains of event handlers into
a dataflow graph that may reside on individual nodes or
span multiple nodes in the network. This style of dataflow
programming greatly simplifies application design by pre-
senting a unified model for sensor data acquisition, timers
and interrupts, local computation, and communication. To
compose dataflow graphs across sensor nodes, Flask sup-
ports a lean, general-purpose communication abstraction,
called Flows, that provides publish/subscribe semantics
over efficient routing trees.

At the heart of Flask is a programmatic wiring language,
based on the functional language OCaml [13]. Flask’s
wiring language allows dataflow graphs to be synthesized
programmatically, rather than using static “wiring dia-
grams” such as NesC configurations. The wiring program
is interpreted at compile time to generate the resulting sen-
sor node program in NesC, which is then compiled to a
binary. Flask integrates well with NesC, permitting exist-
ing TinyOS components to be weaved into Flask dataflow
graphs seamlessly. This approach makes it possible to write
complex applications in a few lines of code while retaining
the efficiency of NesC and TinyOS.

Flask makes three main contributions to the field of sen-
sor network programming. First, Flask allows the pro-
grammer to specify distributed dataflow applications in a
high-level language while retaining the efficiency of com-
piled binaries and full access to TinyOS components. Sec-
ond, Flask provides a unified framework for distributing
dataflow applications across the network, allowing pro-
grammers to focus on application logic rather than de-
tails of routing code. Finally, Flask’s programmatic wiring
language enables rich composition of dataflow operators,
making it possible to develop higher-level programming
models or languages directly in Flask.

In this paper, we describe the design and implementa-
tion of the Flask language, its runtime system, the Flows
communication interface, and a compiler that produces
NesC code. We evaluate Flask through two motivating ap-
plications: a distributed detector of seismic activity (e.g.,
for studying earthquakes), and an implementation of the
TinyDB query language built using Flask. We demonstrate



that Flask makes it easy to write complex sensor network
applications in a few lines of code while producing efficient
node-level programs. We compare the Flask implementa-
tion of TinyDB to the original NesC version [18] and a ver-
sion implemented on top of the Maté virtual machine [15],
and we show that using Flask considerably reduces code
complexity while achieving high runtime efficiency.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe Flask’s relationship to existing program-
ming tools and the specific goals of our work. Section 3
presents Flask in detail through several small code exam-
ples. In Section 4 we present two complete applications
implemented in Flask — a seismic event detection system,
and an implementation of TinyDB. We evaluate Flask in
Section 5 by comparing it to existing systems and show-
ing it reduces code complexity and increases expressivity
without sacrificing efficiency. Our evaluation includes pro-
grams running both in simulation and on a 75-node sensor
network testbed. We describe future work and conclude in
Section 6.

2 Background
Several recent projects have focused attention on the chal-
lenges of sensor network programming [14, 18, 23, 26, 7,
6]. Developing sophisticated sensor network applications
is hampered by the inherent limitations of resource-limited
sensor nodes, unreliable radio links, sensor node failures,
and the need to carefully control radio bandwidth and en-
ergy usage. As a result, sensor node programs are noto-
riously difficult to debug, especially when the program-
mer is faced with subtle concurrency, timing, or memory-
management problems.

Two broad approaches to these problems have emerged
in the literature. The first is the development of libraries
and middleware environments that provide higher-level ab-
stractions for sensor node programming. The second is a
range of so-called macroprogramming environments that
allow an application designer to program the network as
a whole, rather than individual sensor nodes. We discuss
each of these in turn below.

Flask is targeted as a hybrid approach that simplifies
the task of programming individual nodes using dataflow
graphs, but provides facilities for composing these graphs
across the network. As such, Flask is not a macropro-
gramming environment per se, but provides functionality
that can be used to develop either node-level or network-
level programs. Flask can also be used to build higher-
level macroprogramming environments, as we show in
Section 4.2 when describing a Flask implementation of
TinyDB.

2.1 Node-level programming abstractions
The most popular programming language for resource-
limited sensor nodes, such as the Berkeley motes, is
NesC [5], used to implement the TinyOS operating sys-
tem [9]. NesC provides a sophisticated component-based

programming model in which individual components ex-
port one or more interfaces and multiple components are
linked together at compile time using a configuration. A
configuration describes a set of static bindings between a
component that uses an interface and a component that pro-
vides that interface. NesC configurations can be nested,
providing a form of encapsulation.

NesC supports the TinyOS concurrency model, which
is based on the concepts of tasks and events. A task is
a function that runs to completion and may not block or
be preempted by another task, while an event represents
a low-level signal (e.g., hardware interrupt) that may pre-
empt another event or task. The most significant limitation
of the TinyOS concurrency model is the absence of threads,
requiring the use of asynchronous (“split-phase”) calls for
potentially long-running operations such as sampling sen-
sors or transmitting radio messages.

While NesC and TinyOS have had much success as the
de facto programming environment for mote-class sensor
networks, they are very low level and as such demand a
great deal of expertise to build applications. A number
of recent projects have proposed node-level abstractions to
simplify program development. Directed diffusion [11, 8]
is a framework for distributed event detection, filtering, and
aggregation. Hoods [26] and abstract regions [23] provide
a set of abstractions for communication within local neigh-
borhoods of the network. GHT [22] and DIMENSIONS [4]
are examples of distributed data storage primitives.

While these systems provide a range of primitives for
building sensor network applications, they do not offer a
language-based approach. More closely related to our ef-
forts is Maté [15, 16], a virtual machine designed to permit
dynamic reprogramming of sensor nodes over the air. Maté
provides a simplified concurrency model based on threads
and code capsules that can be installed at runtime. Maté al-
lows application-specific code to be represented as opcodes
in the VM instruction set, making it possible to customize
the VM’s functionality at compile time. Maté can also
be used as target for higher-level language compilers, and
the authors describe two simple scripting languages and a
TinyDB implementation based on Maté.

The chief disadvantage of the Maté approach is that pro-
grams must be interpreted at runtime, incurring high com-
putational costs and memory overheads. For example, [15]
reports an average computational cost of 400 CPU cycles
for interpreting each VM bytecode. As a result, the signif-
icant compile-time optimizations performed by NesC are
unavailable to Maté applications. In addition, the system
designer must still decide in advance which features to
build into the VM, providing only limited flexibility after
initial VM deployment.

2.2 Macroprogramming environments
An alternative to node-local programming is macropro-
gramming [23], which attempts to abstract away the de-
tails of individual sensor nodes in favor of programming



the network as a whole. The most prominent macropro-
gramming system is TinyDB [18], which allows users to
express a declarative query for data of interest. The query is
then realized as a series of sampling, filtering, radio trans-
mission, and aggregation operations within the network.
Cougar [29] and IrisNet [19] provide similar query inter-
faces to sensor network data.

Other macroprogramming environments include Envi-
roSuite [17], Semantic Streams [25], Kairos [7], Regi-
ment [20], and Abstract Task Graphs [1]. These systems
provide a range of programming models at different lev-
els of abstraction. For example, EnviroSuite [17] is tar-
geted at tracking applications, while Semantic Streams [25]
provides a logic-based language for composing distributed
data-processing services.

The implementation complexity of these systems is con-
siderable, involving significant runtime code as well as
compiler logic to transform global programs into node-
level binaries. A core goal of Flask is to support the de-
velopment of macroprogramming languages and toolkits
by raising the level of abstraction enough to simplify their
design, while retaining the efficiency of a compiled, op-
timized node binary. In Section 4.2 we describe an im-
plementation of TinyDB in Flask that directly generates a
NesC binary from a TinyDB query without requiring the
full complexity of a query interpreter on every node.

2.3 Flask Goals
Our design of Flask is motivated by several goals:

• Simplified sensor node programming using a
dataflow abstraction: Rather than requiring applica-
tion developers to deal with low-level details of sens-
ing, communication, and concurrency, Flask adopts a
simplified dataflow programming model. Data gen-
erated by received radio messages, sensors, or timers
flows through the application where it is processed,
filtered, stored, or transmitted.

• Programmatic composition: An important aspect
of simplifying program design is giving developers
enough power to rapidly build up sophisticated com-
positions of software modules. In Flask, this is
achieved using a programmatic, rather than static,
wiring language, offering a great deal of flexibility for
building new abstractions.

• Unified communication API: Much of the complex-
ity of sensor network programming derives from the
low-level nature of radio communication. Flask pro-
vides a simple, high-level communication interface
that addresses both local broadcast and multihop rout-
ing.

• Maintain high runtime efficiency: On resource-
limited sensor nodes we must be mindful of CPU and
memory overheads when implementing higher-level

programming models. A core goal of Flask is to per-
mit compilation directly to an optimized node binary,
and support direct integration with existing sensor net-
work operating systems, such as TinyOS.

3 Flask Design
In this section we describe the design of the Flask language
and runtime system. Flask’s basic programming model is
that of a dataflow graph, in which values generated by ex-
ternal sources (sensors, timer interrupts, or radio messages)
are passed through a series of operators that process and
filter the data. A dataflow graph is generated by a wiring
program in the Flask language that describes, programmat-
ically, how dataflow operators are composed. Flask’s run-
time system dictates how dataflow graphs are executed on
individual sensor nodes.

We begin by describing Flask’s data, concurrency, and
communication models as embodied in the runtime sys-
tem, and then describe the wiring language in detail. In
this section, we draw on an example application that de-
tects and characterizes seismic waves, which can be used
in a system for monitoring structures such as buildings or
bridges [28, 2, 21], or monitoring earthquakes and volcanic
eruptions [24].

An example of a Flask dataflow graph is shown in Fig-
ure 1. This is a simple program that attempts to detect the
onset of an earthquake or other interesting seismic event
using a simple “ratio of two low-pass filters” approach on
a seismometer signal. The program samples the seismic
sensor every 10 ms and passes the resulting data through
two exponentially-weighted moving average (EWMA) fil-
ters with different gain settings. If the ratio of these filters
exceeds a threshold, this indicates that the seismic signal is
significantly larger than the background noise, and a “de-
tected” message is transmitted to the base station.

3.1 Flask runtime model
A Flask program consists of a set of dataflow operators
composed into a directed, acyclic dataflow graph. We use
the term value to mean a single typed data item that is
passed as input or produced as output by a dataflow op-
erator. The type of a value may be a primitive type as int
or float, or may be a tuple consisting of multiple prim-
itive values. A wire connects the output of one operator
to the input of another operator. Operators can have mul-
tiple distinct inputs, but only one output. However, output
wires may be freely split (i.e., fan-in and fan-out for each
operator may be greater than one).

Execution and concurrency model
Flask supports a simple execution and concurrency model
that is intended to avoid the high overheads of supporting
multiple blocking threads at runtime, and avoid common
bugs that arise when operators share state. In Flask, an
operator “fires” each time a new value appears on any of its
input wires. The operator runs to completion, processing
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Figure 1: Conceptual depiction of a Flask dataflow graph. This figure shows the dataflow graph for a Flask program
implementing a basic seismic event detection algorithm.

all of its inputs, and (optionally) producing an output value.
An operator may not block during execution.

As in TinyOS [9], long-running, asynchronous opera-
tions in Flask make use of “split-phase” semantics. That
is, rather than an operator blocking until some condition is
met, an operator may asynchronously post an output that
will be passed as input to a “continuation” operator. An ex-
ample is acquiring data from a sensor. A sampling operator
would invoke a “get data” routine that requests the ADC
hardware to acquire a sample. When the data is ready, the
hardware interrupt routine posts the sample data as input to
the next operator in the dataflow graph, thereby continuing
execution. We call such a connection between two opera-
tors a posting wire.

The semantics of execution in Flask are defined as fol-
lows. Execution is initiated by the arrival of data from
an external source, such as a timer interrupt, or an input
value arriving on a posting wire. Operators are executed
as a depth-first traversal of the dataflow graph, with each
operator processing its inputs and optionally producing an
output. The ordering of different branches in the depth-first
traversal is not defined. Traversal of a given branch termi-
nates when it reaches an operator that does not produce an
output (e.g., an event “sink”) or a posting wire.

The set of operators visited by such a traversal consti-
tutes an atomic subgraph of the whole-program dataflow
graph. An atomic subgraph runs to completion and cannot
be preempted during execution. In this sense, the Flask exe-
cution model is akin to a TinyOS task, although preemption
(e.g., by interrupts) is disallowed. Flask ensures that data
arriving from an interrupt context is injected into the ap-
propriate atomic subgraph via a posting wire; so interrupt
handlers are not exposed directly to Flask programmers.

Example

Figure 2 shows the dataflow graph from Figure 1 with the
atomic subgraphs elaborated. Each shaded region is guar-
anteed to run to completion without preemption. Posting
wires are shown as dotted arrows connecting the sample
seismometer and get sample operator, since this is a split-
phase operation.

The Flask concurrency model is intended to simplify
sensor node programming by avoiding common concur-
rency bugs. However, not all race conditions are pre-
vented, since dataflow operators in Flask may access shared
(global) state. However, operators that only access private
internal state cannot be involved in a data race. Likewise,

if two operators share state and both exist only in the same
atomic subgraph, no data races between them can occur. It
is important to keep in mind that an operator may exist in
more than one atomic subgraph.

3.2 Communication model: Flows
Flask supports a communication model called Flows per-
mitting dataflow graphs to be distributed across the sensor
network. Flows provide a flexible publish/subscribe com-
munication API that give the programmer a unified inter-
face for communication using a wide range of topologies:
point-to-point, multipoint-to-point, point-to-multipoint, or
multipoint-to-multipoint.

A flow is identified by a 16-bit flow ID. A node may
send data to a given flow by invoking the publish operation
with the flow ID as an argument, and subsequently send-
ing values to the flow. Likewise, a node may subscribe to
a flow, allowing it to receive values. Flows provide best-
effort communication semantics in keeping with many ex-
isting sensor network protocols [27, 11]. Flows abstract
away the details of route discovery and maintenance, link-
level ARQ, and buffering. From the perspective of a Flask
program, a flow is abstracted as a pair of operators: one
that produces values when messages arrive on the flow, and
another permitting data to be sent to the flow. Publishing
or subscribing to a flow is accomplished by wiring the ap-
propriate operator into the program’s dataflow graph.

Flows are intended to simplify distributed data-flow pro-
gramming, and as such are not meant to provide the most
efficient routing protocol for all cases. However, our imple-
mentation of Flows (described in Section 3.5) is relatively
efficient and captures a wide range of potential use cases
well. A program that wishes to implement its own routing
protocol can fall back to using a limited form of flows that
uses only single-hop radio communication. Moreover, the
Flows API can be readily backed by alternative protocol
implementations.

3.3 Flask wiring language
We turn now to the Flask wiring language, which provides
a mechanism for constructing Flask dataflow graphs. Flask
is unique in that it uses a programmatic wiring language in
which the dataflow graph is described by a program, rather
than by a static representation such as that used by NesC
configurations. The Flask wiring program is executed at
compile time, generating the resulting runtime binary.

There are many advantages to using a programmatic
(rather than diagrammatic) wiring language. Flask allows
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Figure 2: Dataflow graph with atomic subgraphs labeled. This figure shows an updated dataflow graph for a program implementing
a basic seismic event detection algorithm. The posting wire between the sample request and sample acquisition is shown along with the
atomic subgraphs.

dataflow graphs to be constructed algorithmically, making
it easy to build up complex structures in a few lines of
code, without resorting to macro expansion or “configura-
tion templates” as found in Hoods [26] and recent versions
of NesC. For example, a code “template” can be written
as a Flask program fragment that is parametrized by a type
descriptor. The template can be instantiated in a Flask ap-
plication by invoking the program fragment as part of the
wiring program.

The Flask wiring language is based on Objective
Caml [13], a functional programming language in the ML
family. As we will show, using a functional language al-
lows us to concisely define new first-class operators. It is
important to keep in mind that a Flask wiring program only
runs at compile time and is used to generate a runtime pro-
gram, in NesC; the use of OCaml does not imply that Flask
requires runtime support on the sensor node for garbage
collection or other features of OCaml.

Streams and stream combinators
A Flask wiring program is based on the concept of streams
and stream combinators. A stream is an abstract source
of typed values and represents a dataflow subgraph with a
single output “wire.” An example of a stream in Flask is
the stream of clock ticks generated by the Flask expression
clock 10. This expression creates a stream that gener-
ates a void value every 10 ms. The resulting void values
can be tied to the inputs of other dataflow operators to ini-
tiate computation.

A stream combinator is a Flask expression that gener-
ates or manipulates streams. clock 10 is an example
combinator, parametrized by the constant value 10, that
generates a clock-tick stream. Another combinator is adc,
which generates a stream of sensor readings. adc takes
two arguments: the ID of a sensor to sample, and an input
stream of void values used to trigger the sampling actions.
The Flask expression

adc "Seismometer" (clock 10)

creates a stream of seismometer samples. Figure 3 il-
lustrates this simple Flask wiring program and resulting
dataflow subgraph.

Stream combinators are extremely powerful and al-
low Flask programs to generate customized runtime code

clock 10 adc "Seismometer" sample received

Figure 3: Dataflow graph corresponding to simple Flask pro-
gram adc "Seismometer" (clock 10).

parametrized by types or constant parameters. Consider
a stream combinator ewma that generates a stream whose
output values are an exponentially-weighted moving aver-
age of the input values. The EWMA filter is parametrized
by a gain setting and an input stream. A Flask function that
generates an EWMA filter with a gain setting of 0.9 could
read:

let genfilter samples = ewma 0.9 samples

Using genfilter input stream anywhere in the
Flask program would then instantiate an EWMA filter with
the appropriate gain setting. This form of encapsulation
permits rapid construction of dataflow subgraphs through
functional composition in the wiring program.

Stream combinators can also be used to combine multi-
ple streams into a single stream; Flask’s built-in zip com-
binator is an example. zip takes n input streams as argu-
ments and generates a new output stream where each value
is a tuple, each element of which is drawn from the n in-
put streams. An output tuple is produced when at least one
new value has arrived on each input stream. In our running
example, zip is used to pair the values from the high-gain
and low-gain EWMA filters before passing them to the ra-
tio combinator, as shown in Figure 4.

let ewma_pair samples =
let high = ewma HIGH_GAIN samples in
let low = ewma LOW_GAIN samples in

zip "ewma_pair" [low; high]

Figure 4: Generating a stream of paired high-gain and low-
gain EWMA-filtered values from a stream of samples.

In the example, the first argument to zip is the name of
a C struct type that zip will create to hold the combined
values from the input streams high and low. By con-
vention, the struct produced by zip contains fields with
names item1 . . .itemN , each of which contains a value
from the corresponding input stream.

3.4 Interfacing to NesC
The runtime code for each Flask dataflow operator is im-
plemented in NesC, giving application programmers wide



latitude in terms of data processing logic and the ability
to interface to existing NesC and TinyOS components. In
fact, a Flask wiring program compiles into a NesC applica-
tion that is subsequently compiled to a sensor node binary.
Flask provides a simple mechanism for inlining NesC func-
tions, making it easy to write dataflow operators directly
within the wiring program. Flask typechecks inputs and
outputs to each operator, ensuring that the entire dataflow
graph is type safe.

let inc = smap <:cfunc<
int inc(int x)
{

return x + 1;
}
>>

Figure 5: Flask code for the inc stream combinator.

Figure 6 shows the Flask code for a simple dataflow
operator, inc, that simply increments each integer value
that it receives on its input stream. Flask uses the smap
combinator to lift an inlined NesC function into a Flask
dataflow operator; in effect we are mapping a NesC func-
tion onto a stream (hence, “smap”). The NesC code is con-
tained within <:cfunc< ... >> and is processed by
the camlp4 preprocessor [3] to parse the quoted string as
NesC syntax. The smap combinator takes two arguments,
a NesC function and an input stream. In the example, note
that we only supply the first argument (the NesC function)
to smap. The result is that inc is a curried function that
only requires a single argument, the input stream, which
can be instantiated as part of a Flask wiring program.

let ewma alpha stream =
sintegrate

<:cfunc<
void init(double* state)
{

*state = 0.0;
}
>>

<:cfunc<
bool ewma(double* state, double in,

double* out)
{

*out = *state = $float:alpha$ * in
+ (1.0 - $float:alpha$) * (*state);

return TRUE;
}
>>

stream

Figure 6: Flask code for the ewma operator.

Flask also permits the construction of stateful dataflow
operators. While the NesC code within an operator can
access global variables (as well as invoke other NesC func-
tions and interfaces), it is often useful to provide an oper-
ator with its own private state that is maintained across in-
vocations. Multiple instances of a stateful operator can be
used in a Flask program, each with its own private state. As

an example, Figure 6 shows the code for the ewma operator
introduced earlier. This version takes both a gain parame-
ter alpha and an input stream stream as arguments. The
Flask value for alpha is injected into the NesC program at
compile time, permitting the dataflow operators to be con-
structed from NesC “templates.”

The sintegrate combinator is used to construct a
stateful operator. A stateful operator must provide an
init() function that is used to initialize its internal state.
The operator’s state is passed as an additional argument to
the operator’s NesC function. Flask determines the type of
the internal state by inspecting the type of the state ar-
gument and ensures that the init function uses the same
type. The return value of the operator’s processing function
is a bool indicating whether or not the operator produced
an output value, allowing operators to optionally consume
values without producing new ones.

Programmers are not limited to creating and manipu-
lating dataflow operators when using Flask. In addition
to the structured extension mechanisms that allow NesC
code to be lifted to a dataflow operator, Flask allows the
generated module and configuration to be extended with
arbitrary NesC code. Arbitrary declarations and function
definitions can be added to the module as well as uses
and provides declarations. Through these mechanisms,
dataflow operators can call into pre-existing NesC modules
or export additional functionality not provided directly by
Flask.

While Flask’s NesC interfaces are intended to be very
general-purpose, we do not anticipate that most Flask pro-
grammers will need most of this generality. As mentioned
earlier, Flask provides a suite of built-in operators that pro-
vide commonly-used functionality such as timers, sensor
data acquisition, and radio communication (described be-
low). In this sense, Flask is a toolkit for building up higher-
level programming interfaces and does not arbitrarily limit
programmers to a single programming abstraction.

3.5 Flows
Flask provides an easy-to-use communication layer, called
Flows, allowing dataflow graphs on different sensor nodes
to be seamlessly integrated. As described in Section 3.2,
Flows provide a publish/subscribe model, and can be used
to provide a number of commonly-used communication
topologies in sensor networks, such as tree-based routing
for data aggregation, local communication within neigh-
borhoods, or simple point-to-point routing between arbi-
trary nodes.

Our prototype implementation of Flows draws on much
active research into appropriate routing protocols for sen-
sor networks [27, 11]. Our goal is not to provide the most
efficient routing protocol for all applications, but rather an
easy-to-use interface that could be backed by different im-
plementations for different domains. The basic protocol
design is similar to spanning-tree-based protocols, such as
MintRoute [27], but has been generalized to support mul-



tiple sinks, as well as a special case for local communi-
cation within one radio hop. Our prototype makes use
of the link quality indicator (LQI) metric provided by the
Chipcon CC2420 radio (used by the MicaZ and TMote
Sky mote platforms) to estimate link quality. Multihop
routes are chosen by maximizing the estimated probabil-
ity of packet delivery along the entire path, determined us-
ing an empirically-derived function that maps LQI values
to delivery ratios.

A Flask program subscribes to a flow of interest using
the recv combinator, which takes a type specifier and a
16-bit flow identifier as arguments. recv returns a stream
that emits values of the specified type when messages are
received on the requested channel. Publishing to a flow is
accomplished using the send combinator, which takes a
flow ID and a stream as arguments. Values provided by the
given stream are transmitted over the specified flow to any
subscribers. Flask typechecks the streams passed to send
and recv calls with the same flow ID.

Note that Flask requires the flow IDs supplied to send
and recv to be constant values that can be determined at
compile time. This is because a Flask wiring program al-
ways generates a static dataflow graph. There is currently
no mechanism for dynamically publishing or subscribing
to a new flow ID at runtime. We leave to future work the
exploration of runtime flow creation. Of course, a Flask ap-
plication can eschew the use of Flows altogether and imple-
ment its own routing protocol directly using the primitive
TinyOS communication facilities.

4 Flask Applications
To demonstrate the Flask programming model, in this sec-
tion we present two concrete examples of Flask applica-
tions: a seismic event detection program and an implemen-
tation of the TinyDB [18] query language.

4.1 Seismic event detection
We return to the seismic event detection program described
earlier. Appendix A shows the complete Flask code for
this program, which periodically samples seismic sensor
data, passes the data through two EWMA filters, takes the
ratio, and sends a “vote” message to the base station if a
significant event is detected. The corresponding dataflow
graph for this program is shown in Figure 1. For sake of
brevity we do not repeat the code for the EWMA operator
already shown in Figure 6.

The program is parametrized by several constants.
HIGH GAIN and LOW GAIN determine the gain settings
for the two EWMA filters. THRESH is the ratio threshold
that triggers an event report, PERIOD is the sampling pe-
riod of the sensor, and FLOW is the flow ID on which results
are sent.

Translating the dataflow diagram in Figure 1 to a Flask
wiring program is straightforward: wires become streams
and dataflow operators become stream combinators. Some
additional glue code is necessary, but the majority of the

programmer’s effort goes towards writing stream combi-
nators to implement dataflow operators. This provides two
key advantages to the Flask programmer. First, Flask’s sim-
plified concurrency model and de-emphasis of shared state
allows the programmer to concentrate on small functional
units instead of having to keep the details of large portions
of the program “in her head” at any given time. Second,
the move from program specification (a dataflow graph) to
program implementation (Flask code) is straightforward.

The Flask wiring program (Appendix A) begins with
glue code that adds the definition for a struct vote t
which must appear in the generated NesC module. The
vote combinator pairs the node’s ID with a boolean vote
and outputs a struct vote t. The rest of the im-
plementation naturally follows from the dataflow graph.
We define the ratio and thresh combinators, both of
which correspond to dataflow operators in Figure 1.

Following the combinator definitions, the main wiring
program starts on line 32 of the code. This code is only
38 lines long and essentially constructs a the dataflow graph
by chaining each combinator together. The final line of
code uses the send combinator to cause values flowing
out of the vote combinator to be transmitted to the given
flow.

Given the individual operators, building up a dataflow
graph is extremely easy. The use of currying for creating
stream combinators thresh and ewma demonstrates how
to use Flask functions as “templates” that can be instanti-
ated in a program with different parameters, and even mul-
tiple times in the same program. The lack of a complex
concurrency model also makes it straightforward to chain
operators together.

4.2 FlaskDB
As discussed earlier, Flask is a useful toolkit for building
up higher-level sensor network abstractions while provid-
ing the efficiency of compiling to NesC. In this section, we
describe FlaskDB, an implementation of the TinyDB [18]
query system in Flask. Unlike TinyDB, which uses a
runtime query processing engine, FlaskDB compiles a
TinyDB query into a static, fully-optimized sensor node bi-
nary. This implies that injecting new queries into the net-
work would require binary-level reprogramming of sensor
nodes, although several solutions to this problem have been
demonstrated [10, 12]. Our primary goal is to demonstrate
the use of Flask for constructing a complex application.

FlaskDB is implemented as a Flask wiring program,
called queryc, that compiles a TinySQL query to a NesC
application. An important aspect of queryc is that it
constructs the dataflow graph representing the query pro-
grammatically, leveraging the full power of the OCaml lan-
guage and associated tools. In particular, we make use of
ocamllex and ocamlyacc, two existing tools for build-
ing parsers in OCaml, for parsing the SQL query into an
abstract syntax tree. queryc then operates on this AST to
generate the dataflow graph.



As in TinyDB, a FlaskDB query is implemented using
a spanning tree rooted at the base station. Data aggrega-
tion is performed on a hop-by-hop basis with each node
collecting local data and that of its children in the rout-
ing tree, applying the aggregate function, and passing the
result to its parent. A Flask flow is used to construct the
routing tree; all nodes in the network publish to a single
flow to which the base station subscribes. In-network ag-
gregation is supported using an intercept combinator
on this flow, which allows each node to intercept messages
flowing up the spanning tree.

FlaskDB supports most of the features of TinyDB, in-
cluding attributes, aggregates, simple arithmetic expres-
sions, and WHERE clauses. We do not yet support trig-
gers, logging to flash, GROUP BY, or HAVING clauses,
although these would be straightforward to add. Unlike
TinyDB, each selected item in FlaskDB may be an expres-
sion containing an arbitrary number of attributes, whereas
in TinyDB only one attribute is allowed. Also, WHERE
clauses may contain both AND and OR while TinyDB re-
quires WHERE clauses to be simple conjunctions. These
features would be more difficult to implement in the NesC
version of TinyDB, but are easy to build in Flask’s compo-
sitional wiring language.

We illustrate queryc’s operation by walking through
the compilation of the query shown in Figure 7. For ease
of exposition, we describe a simplified version of queryc
here; the full version supports a number of optimizations
that produce more streamlined NesC code. A TinySQL
query is first parsed into an abstract syntax tree using a gen-
erated lexer and parser. The AST is processed by a Flask
wiring program that builds the associated dataflow graph.
Each subterm in the TinySQL expression is compiled to
a stream, and these subterm streams are then combined
to form a stream for the whole expression. Compiling an
expression therefore requires little more than a depth-first
traversal of the AST.

First, the INTERVAL clause is compiled into a stream
of clock impulses at the associated rate. Attributes (such as
sensor values, node ID, etc.) are represented internally us-
ing a hash table that maps attribute names to stream combi-
nators. Each attribute combinator takes a triggering stream
as input and returns a stream of values representing the
attribute’s value. In Figure 7, the expression get attr
"id" returns a combinator defined by the following code:

let id =
smap <:cfunc<

int id(void)
{

return TOS_LOCAL_ADDRESS;
}>>

SQL aggregates (e.g., count, min, max, etc.) require
a somewhat more involved structure, since they must main-
tain state. As in TinyDB, values contributing to an aggre-
gate may be generated internally by the sensor node, or

received from child nodes in the spanning tree. We adopt
a structure similar to TinyDB’s partial aggregates for rep-
resenting the intermediate state of an aggregate. Partial ag-
gregates have four components: a default value, an initial-
ization routine that creates a partial aggregate from local
attributes, a merge routine that merges two partial aggre-
gates, and an evaluation routine that realizes the final ag-
gregate value represented by the partial aggregate’s state.

In Figure 7, several dataflow operators collaborate to im-
plement the count aggregate. count init initializes
the aggregate from the local id attribute. count merge
takes in two partial aggregates and produces a merged par-
tial aggregate. When a local sample is triggered, the state
representing the count aggregate’s current partial aggre-
gate is duplicated. One copy is saved in case the WHERE
clause fails and the other copy is passed through the branch
of the dataflow graph that incorporates the node’s local
readings.

A WHERE clause is compiled into a stream that produces
boolean values and filters the output of the SELECT clause
based on whether the boolean value is true or false. Be-
cause nodes in the spanning tree must still route data from
their children towards the root (even if local WHERE predi-
cates do not match), queryc builds two parallel branches
of the dataflow path for each case, passing a copy of the
query state down each branch. If the WHERE clause suc-
ceeds, local data is merged with any aggregates and is sent
to the destination flow. If the WHERE clause fails, the un-
modified partial aggregate state received from children in
the spanning tree is sent.

FlaskDB consists of 984 lines of Flask wiring code, of
which 81 lines consist of NesC glue code (e.g., for ac-
cessing local node attributes and constructing partial ag-
gregates). The SQL syntax description used by the lexer
and parser generators is an additional 322 lines of code.

5 Evaluation
Our goal in evaluating Flask is to demonstrate that Flask
makes it easy to construct sophisticated sensor network ap-
plications and achieves comparable overheads (in terms of
CPU, memory, and bandwidth usage) to more conventional
approaches.

5.1 Code complexity
It is difficult to evaluate the “ease of use” of Flask using
quantitative measures. Instead, we discuss complexity in
terms of lines of code, comparing it to a breakdown of
the TinyDB and QueryVM [15] implementations. TinyDB,
QueryVM, and FlaskDB are each implemented in several
different languages, so a direct side-by-side comparison is
problematic. Still, we report lines of code for each of the
components of the three systems as a rough measure of
complexity.

Figure 8 shows the source code size breakdown for all
three systems. For QueryVM we only included operators
that had to be written specifically to support queries. For
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Figure 7: Dataflow graph for the TinySQL query SELECT COUNT(id) WHERE id > 10 PERIOD 10s.

Lines of code
TinyDB
Query parser (Java) 820
Query engine (NesC) 7670
Routing (NesC) 781
Resulting NesC app (C) 19446
QueryVM
Query parser (ML) 321
VM spec (XML) 21
Operators (NesC) 1426
Routing (NesC) 524
Resulting NesC app (C) 19778
FlaskDB
Query compiler (Flask) 1306
Glue (NesC) 78
Routing (NesC) 2943
Resulting NesC app (C) 7930

Figure 8: Lines of code for TinyDB, QueryVM, and FlaskDB
implementations. This is intended as a rough comparison of
the code complexity for each of the three implementations of the
TinyDB query model.

Flask we did not include the base library of combinators,
but only the additional code required to support query com-
pilation.

As the figure shows, writing a query compiler in Flask
requires less code than either TinyDB or QueryVM. The
amount of C code output by the NesC compiler is also sig-
nificantly smaller. The query compiler for QueryVM com-
piles to motlle, a language with a separate compiler target-
ing Maté. We did not include code from the motlle com-
piler or runtime in our line counts.

5.2 Communication overhead
The use of Flows simplifies Flask application design by
providing a ready-to-use, general-purpose communications
substrate. Our goal with Flows has never been to provide
the most efficient protocol implementation, but rather one
that can be readily plugged into a number of applications.

We compare the communication overhead of Flows with
MultiHopLQI, an updated version of the MintRoute pro-
tocol [27] for the Chipcon CC2420 radio. MultiHopLQI
forms a spanning tree rooted at a base station node. Each
node uses a scaled version of the radio’s link quality indica-
tor (LQI) metric to select a parent in the tree. We test Flows
and MultiHopLQI using a simple program that causes each
node to route a single packet to the base station once a sec-
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Figure 9: Flask and MultiHopLQI overhead comparison.
This plot shows the number of distinct data messages
reaching the base station as well as the routing overhead
as a function of time.

ond. In both cases, nodes performed hop-by-hop acknowl-
edgment and retransmission, attempting to retransmit each
packet up to 5 times. The message queue size was set to 16
and the neighbor history table size to 10.

Each experiment was executed using a testbed of
75 TMote Sky sensor nodes distributed over several floors
of an office building. Each node is connected to a USB-
Ethernet bridge (TMote Connect from Moteiv, Inc.) allow-
ing nodes to be reprogrammed and debugged over a TCP/IP
port; nodes are powered by the bridge. Because nodes are
distributed widely throughout the building, the testbed ex-
periences a wide range of radio link qualities and realistic
packet loss. Each experiment was run for 5 minutes. The
routing tree formed by the Flow is shown in Figure 10. The
maximum depth of the tree is 7 hops. A similar routing
topology was seen when using MultiHopLQI.

Figure 9 shows the the number of distinct data packets
received at the base station node, as well as the correspond-
ing protocol overhead. Protocol overhead includes link-
estimation and route-discovery packets as well as duplicate
transmissions due to packet loss. As the figure shows, both
Flows and MultiHopLQI have approximately the same de-
livery ratio. Flows have about twice the overhead of Multi-
HopLQI in this configuration, although it does suffer ad-
ditional overhead resulting from its increased generality.
Despite the additional overhead, Flows operates reason-
ably well compared to state-of-the-art routing protocols.
It is worth keeping in mind that the Flows implementa-
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Figure 10: Network topology for the sensor network testbed
used in Figure 9.
SELECT id, seqno INTERVAL 50s

(a) Simple query

SELECT COUNT(id), AVG(mag),
WEIGHTAVG(x,mag), WEIGHTAVG(y,mag)
WHERE mag > 200

(a) Complex query
Figure 12: FlaskDB queries used in Figure 11.

tion is independent of the communication API underlying
Flask, meaning a new protocol can be used without chang-
ing Flask application code.

5.3 Memory size
Flask’s ability to compile directly to NesC provides a sig-
nificant savings in binary size and runtime memory re-
quirements. Figure 11 shows a breakdown of the memory
requirements for TinyDB, QueryVM (implemented using
Maté), and two different FlaskDB queries shown in Fig-
ure 12. These sizes represent the TinyOS binary for the
MicaZ platform, compiled for the Atmega128L microcon-
troller.

The “simple” query issues a periodic report of each
node’s ID and temperature every 50 sec. The “complex”
query represents a tracking system that uses magnetome-
ters to detect the position of a vehicle moving in a sensor
field. The query reports both the number of nodes report-
ing a nearby vehicle (over the detection threshold), and the
magnetometer readings weighted by the x and y compo-
nents of the node’s location. This is a simple tracking al-
gorithm featured in several previous papers [14, 23]. Al-
though TinyDB does not support the WEIGHTAVG oper-
ator, it was straightforward to implement this feature in
Flask by building the appropriate combinators in the wiring
program.

We break the code size down by corresponding func-
tionality into three categories: TinyOS Base (core TinyOS
components), Communications (link and radio protocols),
and Application (query-specific logic). As the table shows,
the application code and memory size for FlaskDB queries
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Figure 14: Results from the FlaskDB query SELECT
count(id) INTERVAL 1s.

is about an order of magnitude less than in TinyDB and
QueryVM, which each require a large, general-purpose
query processing engine (as in TinyDB) or virtual machine
(as in QueryVM). In contrast, FlaskDB queries are com-
piled to an optimized node-level binary. The total binary
size of a FlaskDB query is only 41% of TinyDB, and 35%
of QueryVM. If it is necessary to inject new queries into
the network at runtime, over-the-air reprogramming sys-
tems such as Deluge [10] and MNP [12] can be readily
employed.

The Flows protocol implementation is somewhat more
complex than the simpler routing trees used in TinyDB and
QueryVM, leading to larger code size. In addition, Flows
(as configured in this setting) allocates a pool of 20 radio
message buffers, explaining the higher RAM requirements.
The Flows implementation can be readily tuned to reduce
this size, and the greatly reduced application memory re-
quirement for a compiled query offsets this overhead.

5.4 FlaskDB Performance
Our final evaluation of Flask demonstrates the performance
of two simple FlaskDB queries: one that reports the ID of
each node every 10 sec, and another that reports a count of
the total number of nodes in the network every 1 sec. We
have been unable to get TinyDB and QueryVM running on



TinyOS Base Communications Application Total
ROM RAM ROM RAM ROM RAM ROM RAM

TinyDB 10248 402 3258 934 46572 1293 60078 2629
QueryVM 11720 345 4300 642 54710 2652 70730 3639

FlaskDB simple 8508 430 7910 2454 4996 142 21414 3026
FlaskDB complex 8450 430 8224 2454 6466 159 23140 3043

Figure 11: MicaZ binary size (in bytes) for TinyDB, QueryVM, and FlaskDB.

our testbed; this is partly because TinyDB does not cur-
rently support the TMote Sky node platform. Rather, we
report the quality of the data obtained by these queries as
an indication that FlaskDB is working in a realistic end-to-
end setting.

Figure 13 reports the yield of a simple query that re-
quests each node to report its local ID and a unique se-
quence number once every second; yield is measured as
the fraction of expected results that arrive at the base sta-
tion. As the figure shows, the data yield is very high, av-
eraging 93.5% for those nodes that managed to report any
data back to the base station. 19 out of the 75 nodes in this
experiment did not join the routing tree and as such no data
was received from them during this run.

Figure 14 shows the result of running the SELECT
count(id) INTERVAL 1s query on the network. In
this run, only 73 nodes in the testbed were active, so the
expected result for each interval is 73. As the graph shows,
for the first 60 sec of the query, the results are somewhat
erratic, as nodes join the routing tree and the topology sta-
bilizes. Thereafter the average result reported is 71.

In a few instances there is an aliasing effect where the
query result counts too few nodes but the subsequent re-
sult counts an identical number of additional nodes. This
is simply because of the timeouts used in our implementa-
tion: in some cases, the query result fires before all chil-
dren have reported their values to their parent but these tu-
ples are counted in the next period. The “corrected count”
line in the figure filters out this phenomenon, showing that
in a very small number of cases loss of a packet in the net-
work results in the count being reported as too small. Cases
where the query result is too large can be explained by re-
sult packet being dropped in combination with the aliasing
effect just described.

6 Future Work and Conclusions
Flask combines the strengths of the high-level functional
language OCaml and NesC. Using Flask, a programmer
can construct reusable, parametrized stream combinators
for manipulating data, free of low-level implementation de-
tails while still escaping to NesC when access to such de-
tail is necessary. Because the Flask wiring language is run
only at compile time, one can still maintain tight bounds on
node resource usage, and the resulting compiled programs
are efficient. Programs are expressed concisely in terms of
streams and stream combinators, and the high-level, log-
ical flow of data through a system embodied in dataflow

diagrams maps directly to Flask code. Flask generates pro-
grams that run efficiently on real hardware.

We view Flask as a firm foundation for future tools that
continue to ease the burden placed on sensor network pro-
grammers. Some of the approaches we wish to explore in
future work are described in summary below.

• Core ML object language: Flask makes extensive
use of NesC. This can be awkward, particularly be-
cause NesC lacks ML-style tuples which leads to a
proliferation of struct declarations. We have be-
gun writing a prototype that allows a cut-down sub-
set of ML to be used to parametrize combinators in-
stead of NesC. Strict bounds on resource usage are
maintained by disallowing closures, refs, lists, and any
other language features, such as garbage collection,
that would require extra runtime overhead. This lan-
guage fits much more naturally with the rest of Flask
and reduces the amount of code that must be written
when creating combinators.

• Graphical language for distributed operator
graphs: Although Flask focuses on programming
individual nodes in a sensor network, its use of
Flows to provide a unified interface for data streams
transmitted over the radio and node-local data streams
leads naturally to moving from node-local dataflow
graphs to network-wide distributed dataflow graphs
where the placement of dataflow operators in the
network is automatically generated by the compiler.
We plan to investigate writing a compiler in Flask
for a graphical language that directly represents these
distributed dataflow graphs.

• Macroprogramming: FlaskDB and the distributed
dataflow graph language just described are both ex-
amples of macroprogramming. Our experience im-
plementing FlaskDB leads us to believe that Flask is
an excellent general substrate on which to build other
macroprogramming tools. However, it is unclear how
general the abstractions we have developed for Flask
really are and if they provide a natural foundation for a
wide-range of macroprogramming systems. Our work
in exploring this wide-open space is ongoing.
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A Appendix: The full seismic event detection
program

1 let _ = add_decl <:cdecl<
2 struct vote_t {
3 typename uint16_t id;
4 bool vote;
5 };
6 >>
7

8 let vote =
9 smap <:cfunc<

10 bool vote(bool v)
11 {
12 struct vote_t result =
13 {TOS_LOCAL_ADDRESS, v};
14

15 return result;
16 }
17

18 let ratio =
19 smap <:cfunc<
20 float f(struct pair p)
21 {
22 return p.item2 / p.item1;
23 }
24

25 let thresh t =
26 smap <:cfunc<
27 bool f(float x)
28 {
29 return x > $float:t$;
30 }
31

32 let clk = clock PERIOD in
33 let mag = adc "Seismometer" clk in
34 let high = ewma HIGH_ALPHA mag in
35 let low = ewma LOW_ALPHA mag in
36 let r = ratio (F.zip "pair" low; high) in
37 let t = thresh THRESH r in
38 send (vote t) FLOW


