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ABSTRACT
This paper describes the design of S iena, an Internet-scale
event notification middleware service for distributed event-
based applications deployed over wide-area networks. S iena

is responsible for selecting the notifications that are of in-
terest to clients (as expressed in client subscriptions) and
then delivering those notifications to the clients via access
points. The key design challenge for S iena is maximizing
expressiveness in the selection mechanism without sacrific-
ing scalability of the delivery mechanism. This paper focuses
on those aspects of the design of S iena that fundamentally
impact scalability and expressiveness. In particular, we de-
scribe S iena’s data model for notifications, the covering re-
lations that formally define the semantics of the data model,
the distributed architectures we have studied for S iena’s im-
plementation, and the processing strategies we developed to
exploit the covering relations for optimizing the routing of
notifications.

1. INTRODUCTION
There is a clear trend among experienced software devel-
opers toward designing large-scale distributed systems as
assemblies of loosely-coupled autonomous components. A
common approach to achieving loose coupling is an event-
based or implicit invocation design style [7]. In an event-
based system, component interactions are modeled as asyn-
chronous occurrences of, and responses to, events. To inform
other components about the occurrences of internal events
(such as state changes), components emit notifications con-
taining information about the events. Upon receiving noti-
fications, other components can react by performing actions
that, in turn, may result in the occurrence of other events
and the generation of additional notifications.

Wide-area networks such as the Internet, with their vast

number of potential producers and consumers of notifica-
tions, create an opportunity for developing novel distributed
event-based applications in such fields as market analysis,
data mining, indexing, and security. In general, the asyn-
chrony, heterogeneity, and inherent high degree of loose cou-
pling that characterize applications for wide-area networks
suggest event interaction as a natural design abstraction for
a growing class of distributed systems. Yet to date there has
been a lack of sufficiently powerful and scalable middleware
infrastructures to support event-based interaction in a wide-
area network. We refer to such a middleware infrastructure
as an event notification service [16].

This paper describes the design of S iena,1 an Internet-scale
event notification service that is representative of the ca-
pabilities we envision for scalable event notification middle-
ware. S iena is designed to be a ubiquitous service accessible
from every site on a wide-area network. As shown in Fig-
ure 1, S iena is implemented as a distributed network of
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Figure 1: Distributed Event Notification Service.

servers that provide clients with access points offering an
extended publish/subscribe interface. The clients are of two
kinds: objects of interest, which are the generators of no-
tifications, and interested parties, which are the consumers
of notifications; of course, a client can act as both an ob-
ject of interest and an interested party. Clients use the ac-
cess points of their local servers to advertise the information
about notifications that they generate and to publish the ad-
vertised notifications. Clients also use the access points to
subscribe for individual notifications or compound patterns

1Scalable Internet Event Notification Architectures.



of notifications of interest. S iena is responsible for select-
ing the notifications that are of interest to clients and then
delivering those notifications to the clients via the access
points.

S iena is a best-effort service in that it does not attempt to
prevent race conditions induced by network latency. This
is a pragmatic concession to the realities of Internet-scale
services, but it means that clients of S iena must be resilient
to such race conditions. For instance, clients must allow for
the possibility of receiving a notification for a cancelled sub-
scription. Of course, an implementation would likely adopt
techniques such as persistent data structures, transactional
updates to the data structures, and reliable communication
protocols to enhance the robustness of this best-effort ser-
vice.

The key design challenge we face in supporting event notifi-
cation of this kind in a wide-area network is maximizing ex-
pressiveness in the selection mechanism without sacrificing
scalability of the delivery mechanism. Scalability refers not
only to the numbers of publishers and subscribers, and the
numbers of notifications and subscriptions, but also to the
need to discard many of the assumptions made for local-area
networks, such as low latency, abundant bandwidth, homo-
geneous platforms, continuous and reliable connectivity, and
centralized control. Expressiveness refers to the power of the
data model that is offered to publishers and subscribers of
notifications. Clearly the level of expressiveness influences
the algorithms used to route and deliver notifications, and
the extent to which those algorithms can be optimized. As
the power of the data model increases, so does the complex-
ity of the algorithms. Therefore, the expressiveness of the
data model ultimately influences the scalability of the im-
plementation, and hence scalability and expressiveness are
two conflicting goals that must be traded off.

While we have not fully explored the nature of this tradeoff,
we have investigated a number of carefully chosen points in
the tradeoff space. In particular, we designed a data model
for S iena that we believe is sufficiently expressive for a wide
range of applications while still allowing sufficient scalabil-
ity of the delivery mechanism. Based on this data model,
we designed distributed server architectures and associated
delivery algorithms and processing strategies, and we eval-
uated and confirmed their scalability. Our description of
S iena in this paper focuses on those aspects of the design
that fundamentally impact expressiveness and scalability.

Section 2 presents the data model of notifications in S iena.
Section 3 presents the semantics of S iena, which is described
formally in terms of covering relations over advertisements,
subscriptions and notifications. Section 4 describes the al-
ternative architectures for S iena that we have studied and
their associated processing strategies; the processing strate-
gies exploit the covering relations for purposes of optimizing
the routing of notifications. Section 5 presents an analysis
of the complexity of the algorithms, demonstrating the scal-
ability of S iena with respect to the level of expressiveness
we chose for its data model. Section 6 concludes with a dis-
cussion of related work, a brief description of a prototype
implementation of S iena, and a discussion of some of our
plans for future work.

2. DATA MODEL
As mentioned above, S iena extends the traditional pub-
lish/subscribe protocol with an additional interface function
called advertise, which is used by an object of interest to
inform the event service of the nature of the notifications
that it might publish. S iena also adds the functions unsub-
scribe and unadvertise to further inform the event service
about the future behavior of interested parties and objects
of interest, respectively. Subscriptions can be matched re-
peatedly until they are cancelled by a call to unsubscribe.
Advertisements remain in effect until they are cancelled by
a call to unadvertise.

Underlying S iena’s interface is a notification data model (or
simply data model) that drives the semantics of the service.
A notification in the model is an untyped set of typed at-
tributes. For example, the notification shown in Figure 2
represents a stock price change event. Each individual at-

string class = finance/exchanges/stock
time date = Mar 4 11:43:37 MST 1998
string exchange = NYSE
string symbol = DIS
float prior = 105.25
float change = -4
float earn = 2.04

Figure 2: Example of a Notification.

tribute has a type, a name, and a value, but the notification
as a whole is purely a structural value derived from its at-
tributes. Attribute names are simply character strings. The
attribute types belong to a predefined set of primitive types
commonly found in programming languages and database
query languages, and for which a fixed set of operators is
defined.

The justification for choosing this typing scheme is scalabil-
ity: Typed notifications, such as one finds for example in the
Java Distributed Event Specification [19] and CORBA Noti-
fication Service [14], imply a global authority for managing
and verifying the type space, something which is clearly not
feasible at an Internet scale. On the other hand, we define
a restricted set of attribute types from which to construct
(arbitrary) notifications. By having this well-defined set, we
can perform efficient routing based on the content of notifi-
cations. Content-based routing is a powerful technique for
selecting and delivering notifications that gives clients the
ability to control the precision with which notifications are
selected and gives the event service the ability to optimize
the processing tasks required for notification delivery. As
we discuss in Section 5 and Section 6, content-based rout-
ing has distinct advantages over the alternative schemes of
channel- and subject-based routing.

In the remainder of this section we discuss two mechanisms
for notification selection, namely filters and patterns, that
form the essence of S iena’s extended publish/subscribe pro-
tocol. This allows us to fully define the semantics of the in-
terface functions, which we do in Section 3 in terms of what
we call covering relations. In Section 4 we discuss the use
of the covering relations to define the processing strategies



that lead to optimized notification delivery.

An event filter, or simply a filter, selects event notifications
by specifying a set of attributes and constraints on the val-
ues of those attributes. Each attribute constraint is a tuple
specifying a type, a name, a binary predicate operator, and
a value for an attribute. The operators provided by S iena

include all the common equality and ordering relations (=,
6=, <, >, etc.) for each of its types, substring (∗), prefix
(>∗), and suffix (∗<) operators for strings, and an operator
any that matches any value.

An attribute α = (typeα, nameα, valueα) matches an at-
tribute constraint φ = (typeφ, nameφ, operatorφ, valueφ) iff
typeα = typeφ∧nameα = nameφ∧operatorφ(valueα, valueφ).
We say an attribute α satisfies or matches an attribute con-
straint φ with the notation φ < α. When α matches φ, we
also say that φ covers α. Figure 3 shows a filter that matches
price decreases for stock DIS on stock exchange NYSE.

string class >∗ finance/exchanges/
string exchange = NYSE
string symbol = DIS
float change < 0

Figure 3: Example of an Event Filter.

While a filter is matched against a single notification based
on the notification’s attribute data, a pattern is matched
against one or more notifications based on both their at-
tribute data and on the combination they form. At its most
generic, a pattern might correlate events according to any
compound relation. For example, the programmer of a stock
market analysis tool might be interested in receiving price
change notifications for the stock of one company only if the
price of a related stock has changed by a certain amount.
Rich languages and logics exist that allow one to express
event patterns [12].

We do not attempt to provide a complete pattern language.
Our goal is rather to study pattern operators that can be
exploited to optimize the selection of notifications within
the event service. Here, we restrict a pattern to be syntac-
tically a sequence of filters, f1 · f2 · · · fn, that is matched
by a temporally ordered sequence of notifications, each one
matching the corresponding filter. An example of a pat-
tern is shown in Figure 4, which matches an increase in the
price of stock MSFT followed by a subsequent increase in
the price of stock NSCP. In general, we observe that more

string what >∗finance/exchanges/
string symbol = MSFT
float change > 0

•

string what >∗finance/exchanges/
string symbol = NSCP
float change > 0

Figure 4: Example of an Event Pattern.

sophisticated forms of patterns can always be split into a
set of simple subscriptions and then matched externally to
S iena (i.e., at the access point of the subscriber), although
this is likely to induce extra network traffic.

Since patterns involve matching of multiple events occur-
ring potentially in different parts of a network, latency ef-
fects influence the semantics of the pattern operators. In
accordance with S iena’s best-effort semantics, notifications
are given timestamps indicating when they were published.2

This allows the service to detect and account for the effects
of latency on the matching of patterns, which means that
within certain limits the actual order of notifications can be
recognized.

3. COVERING RELATIONS
When a filter is used in a subscription, multiple constraints
for the same attribute are interpreted as a conjunction; all
such constraints must be matched. Thus, we say that a no-
tification n matches a filter f , or equivalently that f covers
n (f <

N
S n for short):

f <
N
S n ⇔ ∀φ ∈ f : ∃α ∈ n : φ < α

Notice that the notification may contain other attributes
that have no correspondents in the filter. Table 1 gives some
examples that illustrate the semantics of <

N
S . The second

subscription notification

string what = alarm <
N
S

string what = alarm
time date = 02:40:03

string what = alarm
integer level > 3

6<N
S

string what = alarm
time date = 02:40:03

string what = alarm
integer level > 3
integer level < 7

6<N
S

string what = alarm
integer level = 10

string what = alarm
integer level > 3
integer level < 7

<
N
S

string what = alarm
integer level = 5

Table 1: Examples of <
N
S .

example is not a match because the notification is missing a
value for attribute level. The third example is not a match
because the constraints specified for attribute level in the
subscription are not matched by the value for level in the
notification.

We define the semantics of advertisements with a similar
relation <

N
A . The motivation for advertisements is to in-

form the event service about which kind of notifications will
be generated by which objects of interest, so that it can

2With the advent of accurate network time protocols and
the existence of the satellite-based Global Positioning Sys-
tem (GPS), it is reasonable to assume the existence of a
global clock for creation of these timestamps, and it is hence
reasonable for all but the most time-sensitive applications to
rely on these timestamps.



best direct the propagation of subscriptions. The idea is
that, while a subscription defines the set of interesting no-
tifications for an interested party, an advertisement defines
the set of notifications potentially generated by an object
of interest. Therefore, the advertisement is relevant to the
subscription only if these two sets of notifications have a
non-empty intersection.

The relation <
N
A defines the set of notifications covered by

an advertisement:

a <
N
A n ⇔ ∀αn ∈ n : ∃φa ∈ a : φa < αn

This expression says that an advertisement covers a notifi-
cation if and only if it covers each individual attribute in
the notification. Note that this is the dual of subscriptions,
which define the minimal set of attributes that a notification
must contain. In contrast to subscriptions, when a filter is
used as an advertisement, then multiple constraints for the
same attribute are interpreted as a disjunction rather than
as a conjunction; only one of the constraints need be sat-
isfied. Table 2 shows some examples of the relation <

N
A .

The second example is not a match because the attribute

advertisement notification
string what = alarm
string what = login
string user any

<
N
A string what = alarm

string what = alarm
string what = login
string user any

6<N
A

string what = alarm
time date = 02:40:03

string what = alarm
string what = login
string user any

<
N
A

string what = login
string user = carzanig

string what = alarm
string what = login
string user any

6<N
A

string what = logout
string user = carzanig

Table 2: Examples of <
N
A .

date of the notification is not defined in the advertisement.
The fourth example is not a match because the value of at-
tribute what in the notification does not match any of the
constraints defined for what in the advertisement.

So far we have defined a number of relations that express
the semantics of subscriptions and advertisements:

• φ < α: attribute α matches attribute constraint φ;

• f <
N
S n: notification n matches filter f , where f is

interpreted as a subscription filter;

• a <
N
A n: notification n matches filter a, where a is

interpreted as an advertisement filter;

From these, other relations can be derived:

• f1 <
S
S f2: filter f1 covers filter f2, where f1 and f2 are

interpreted as subscriptions. Formally,

f1 <
S
S f2 ⇔ ∀n : f2 <

N
S n ⇒ f1 <

N
S n

which means that f1 covers a superset of the notifica-
tions covered by f2.

• a1 <
A
A a2: filter a1 covers filter a2, where a1 and a2

are interpreted as advertisements. Formally:

a1 <
A
A a2 ⇔ ∀n : a2 <

N
A n ⇒ a1 <

N
A n

which means that a1 covers a superset of the notifica-
tions covered by a2.

The relations <
S
S and <

A
A can also define the equality rela-

tion between filters with its intuitive meaning:

f = g ⇔ g < f ∧ f < g

In the next section we describe how we exploit these derived
relations in S iena’s processing strategies.

Unsubscriptions and unadvertisements cancel previous sub-
scriptions and advertisements, respectively. These opera-
tions must be performed in the context of the covering re-
lations so that the proper subscriptions and advertisements
remain in place. The details of this are complex and are
described elsewhere [2, 3].

4. ARCHITECTURES AND PROCESSING
STRATEGIES

As shown in Figure 1, the implementation of S iena com-
prises a number of interconnected servers,3 each serving
some subset of the clients of the service. In effect, S iena is
a wide-area network of pattern matchers and routers over-
laid atop some other wide-area communication facility, such
as the Internet. One reasonable allocation of such servers
might be to place a server at each administrative domain
within the low-level, wide-area communication network.

Creating a network of servers to provide a distributed service
of any sort gives rise to three critical design issues:

• Interconnection topology. In what configuration should
the servers be connected?

• Routing algorithm. What information should be com-
municated between the servers to allow the correct and
efficient delivery of messages?

• Processing strategy. Where in the network, and ac-
cording to what heuristics, should message data be
processed in order to optimize message traffic?

These three design issues have been studied extensively for
many years and in many contexts. Our challenge is to find
a solution in the particular domain of Internet-scale event
notification, leveraging previous results (both positive and
negative) wherever possible.

3Note that some authors use the term proxy or broker in-
stead of server for this concept.



A pair of interconnected servers use a server/server commu-
nication protocol that determines what kinds of information
they can exchange, and in which direction. This protocol
might make use of any one of a number of lower-level net-
work protocols, such as SMTP or HTTP, through standard
encoding and/or tunneling techniques. An interconnection
topology and a protocol together define what we refer to
as an architecture for S iena. We have studied three basic
architectures for S iena: hierarchical client/server, acyclic
peer-to-peer, and general peer-to-peer. We also have stud-
ied some hybrids of these three architectures. Because it is
not scalable, we ignore the degenerate case of a centralized
architecture having a single server.

In the hierarchical client/server architecture, the servers
form a hierarchical topology, with each server (except the
root server) behaving like a S iena client of the server one le-
vel up the hierarchy. As we have demonstrated elsewhere [3],
the main problems exhibited by the hierarchical architec-
ture are the potential overloading of servers high in the
hierarchy and the fact that each server is a single point
of failure. In the acyclic peer-to-peer architecture, servers
communicate with each other symmetrically as peers in an
acyclic undirected graph, adopting a protocol that allows
a bi-directional flow of subscriptions, advertisements, and
notifications. Removing the constraint of acyclicity from
the acyclic peer-to-peer architecture, we obtain the general
peer-to-peer architecture, which can have multiple paths of
bi-directional communication between servers. Allowing re-
dundant connections makes it more robust with respect to
failures of single servers. The drawback of having redundant
connections is that special algorithms must be implemented
to avoid cycles and to choose the best paths. These three
basic architectures can be combined to form hybrid architec-
tures, such as an acyclic peer-to-peer topology of subnets,
each subnet being a hierarchy.

Once a topology of servers is defined, they must establish
appropriate routing paths to ensure that notifications pub-
lished by an object of interest are correctly delivered to all
the interested parties that subscribed for them. In gen-
eral, we observe that notifications must “meet” subscrip-
tions somewhere in the network so that the notifications
can be selected according to the subscriptions and then dis-
patched to the subscribers. This common principle can be
realized according to a spectrum of possible routing algo-
rithms. One possibility is to maintain subscriptions at their
access point and to broadcast notifications throughout the
whole network; when a notification meets and matches a
subscription, the subscriber is immediately notified locally.
However, since we expect the number of notifications to far
exceed the number of subscriptions or advertisements, this
strategy appears to offer the least possible efficiency, and so
we consider it no further for S iena.

To devise more efficient routing algorithms, we employ prin-
ciples found in IP multicast routing protocols [6]. Similar to
these protocols, the main idea behind the routing algorithms
of S iena is to send a notification only towards event servers
that have clients that are interested in that notification, pos-
sibly using the shortest path. The same principle applies to
patterns of notifications as well. More specifically, we for-
mulate two generic principles that become requirements for

our routing algorithms:

downstream replication: A notification should be routed
in one copy as far as possible and should be replicated
only downstream, that is, as close as possible to the
parties that are interested in it.

upstream evaluation: Filters are applied and patterns
are assembled upstream, that is, as close as possible
to the sources of (patterns of) notifications.

These principles are implemented by two classes of routing
algorithms, the first of which involves broadcasting subscrip-
tions and the second of which involves broadcasting adver-
tisements:

subscription forwarding: In an implementation that
does not use advertisements, the routing paths for no-
tifications are set by subscriptions, which are prop-
agated throughout the network so as to form a tree
that connects the subscribers to all the servers in the
network. When an object publishes a notification that
matches that subscription, the notification is routed
towards the subscriber, following the reverse path put
in place by the subscription.

advertisement forwarding: In an implementation that
uses advertisements, it is safe to send a subscription
only towards those objects of interest that intend to
generate notifications relevant to that subscription.
Thus, advertisements set the paths for subscriptions,
which in turn set the paths for notifications. Ev-
ery advertisement is propagated through the network,
thereby forming a tree that reaches every server. When
a server receives a subscription, it propagates the sub-
scription in reverse, along the path to the advertiser,
thereby activating that path. Notifications are then
forwarded only through the activated paths.

In the simplest implementation of the subscription forward-
ing (advertisement forwarding) algorithms, all subscriptions
(advertisements) would be stored at all servers. However, we
can optimize their implementation by exploiting the cov-
ering relations defined in Section 3. When a subscription
reaches a server (either from a client or from another server),
the server propagates that subscription only if it defines new
selectable notifications that are not in the set of selectable
notifications defined by any previously propagated subscrip-
tion. Three benefits accrue from this approach: First, we
reduce network costs by pruning the propagation of new
subscriptions. Second, we reduce the storage requirements
for servers. Third, by reducing the number of subscriptions
held at each server, we reduce the computational resources
needed to match notifications at that server. We use a sim-
ilar strategy for propagation of advertisements.

In order to keep track of the propagation of subscriptions
(and similarly advertisements), every server maintains a par-
tially ordered set (poset) of subscriptions, where the partial
order relation is defined by the covering relations. Each
server associates with each subscription s a set of subscribers



subscribers(s) and a set of neighbor servers fwds(s) to which
s has been forwarded. fwds(s) is a subset of neighbors, the
set of all neighbors of the server in the network.

When a server receives a subscription f from a client or a
neighbor server U , it looks in its subscriptions poset PS for
either

1. a subscription f ′ that covers f and has U among its
subscribers: f ′

<
S
S f ∧ U ∈ subscribers(f ′). In this

case, the procedure that handles the subscription re-
turns with no effect; or

2. a subscription f ′ that is equal to f and does not con-
tain U in its subscribers: f ′

<
S
S f ∧ f <

S
S f ′. Here the

server adds U to subscribers(f ′); or

3. two possibly empty sets f and f , representing the
immediate predecessors and the immediate successors
of f respectively. Here the server inserts f as a
new subscription between f and f , and adds U to
subscribers(f).

In cases 2 and 3, the server also removes U from all the
subscriptions in PS that are covered by f , and then removes
from PS those subscriptions that have no other subscribers.

Next, the server forwards the subscription to some of its
neighbors. Formally, given a subscription f in PS, let
fwds(f) be defined as follows:

fwds(f) = neighbors − NST(f) −
[

f ′∈PS∧f ′<
S

S
f

fwds(f ′)

In other words, f is forwarded to all neighbors except those
not on any spanning tree rooted at an original subscriber
of f (the second term in the formula), and those to which
subscriptions f ′ covering f have been forwarded already by
this server (the last term in the formula).

The last term in the formula represents the optimization
that the server can make in the situation where more generic
subscriptions have been propagated already to some neigh-
bors.

Hence, in the process of forwarding subscriptions or adver-
tisements, S iena exploits commonalities among subscrip-
tions or advertisements. In practice, S iena prunes the prop-
agation trees by following only those paths that have not
been covered by previous requests. The derived covering
relations <

S
S and <

A
A defined in Section 3 are used to deter-

mine whether a new subscription or a new advertisement is
covered by a previous one that has already been forwarded.

Unsubscriptions and unadvertisements are handled in a sim-
ilar way to undo the effect of the affected subscriptions or
advertisements.

To match patterns, servers assemble sequences of notifica-
tions from small subsequences or from single notifications ac-
cording to the advertised paths along which notifications will
be propagated. For this reason, advertisement forwarding
algorithms are necessary to implement the upstream evalu-
ation principle for event patterns.

The interested reader is referred to our other publications [2,
3] for details on how we apply these processing strategies to
the different architectures.

5. ANALYSIS
Consider two extremes of expressiveness. In a channel-based
model of event notification, notifications are fed into what
amounts to a discrete communications pipe. Subscriptions
are made by simply identifying the pipe (i.e., channel) from
which notifications are expected to flow; the notion of “fil-
tering” then reduces to channel selection. Since the contents
of notifications are not used in routing, it is not necessary to
define any service-visible structure within notifications. The
covering relations become an equality check on the identi-
fier of the channel, thus making the routing of notifications
very efficient. However, the resulting notification selection
mechanism is simplistic, and too weak for some applications.

At the opposite extreme, the structure of notifications, the
types of attributes within notifications, and the operators
that can be applied to those attributes are all application
defined, perhaps employing the full expressive power of a
Turing-complete language. However, the operators, which
are used by the service to perform notification selection,
would then be of an arbitrary, unknown, and potentially un-
bounded complexity. Moreover, the computation of the cov-
ering relations that allow the pruning of propagation trees,
such as <

S
S, might be undecidable.

These considerations led us to a level of expressiveness
in S iena at which notification structure, attribute types,
and attribute operators approximate those of the well-
understood and widely-used database query language SQL.
In particular, S iena supports the definition of filters that
essentially implement a significant subset of the SQL select
query.

The covering relations are well behaved and predictable in
the sense that they exhibit an arguably reasonable compu-
tational complexity deriving from the expressiveness of fil-
ters: Assuming a brute-force and unoptimized algorithm,
the complexity of computing <

N
S on a given subscription

and a given notification is O(n+m), where n is the number
of attribute constraints in the subscription filter and m is
the number of attributes in the notification. The complexity
of each individual comparison is O(1) for all the predefined
types we have included in S iena. The only exception is for
the string type, but efficient comparison algorithms are well
known. The complexity of computing <

N
S reflects the com-

putation of an intersection between the attribute values in
a notification and constraints on those values appearing in
a subscription.

The complexities of computing <
S
S and <

A
A are all O(nm),

where n and m represent the number of attribute constraints
appearing in the respective subscription and/or advertise-
ment filters. This complexity represents a comparison be-
tween each attribute constraint in one filter and any corre-
sponding attribute constraints in the other filter. Checking
a covering relation between filters amounts to a universal
quantification. But given our choice of types and operators,
comparing a pair of attribute constraints can be reduced to
evaluating an appropriate predicate on the two constant val-



ues of the constraints, with a complexity O(1). For example,
to see if [x > k1] covers [x > k2] we can simply verify that
k2 ≥ k1.

We also restricted the expressiveness of patterns in S iena

in the interests of efficiency. As we discuss in Section 2,
patterns are simple sequences of filters. The computational
complexity of recognizing a pattern is O(l(n + m)), where
l is the length of the pattern. This means that it is linear
in the number of filters, whose covering relation <

N
S has

complexity O(n + m).

Our conclusion from this analysis is that the optimizations
presented in Section 4 are effective, since they derive from
the reasonable complexity of the covering relation computa-
tions. In fact, the factors n and m are, in practice, likely to
be relatively small (typically less than 10), making the com-
putations negligible compared to the network costs they are
attempting to reduce. This is all achieved with an expres-
siveness that approximates SQL.

With respect to the scalability of the service across a dis-
tributed network, we have carried out simulation studies to
determine how the architectures and processing strategies
perform over an extensive range of scenarios having different
network configurations and application behaviors. Details of
the simulation framework and specific results are available
elsewhere [2, 3].

6. CONCLUSION
In this section we briefly review related work in event noti-
fication services and discuss our prototype implementation
of S iena. A more complete discussion of these topics is pre-
sented elsewhere [2, 3].

We can compare related technologies from the perspective of
their server architecture, which affects scalability, and from
the perspective of their subscription language, which deter-
mines expressiveness. Table 3 presents such a comparison
in terms of the architectures described in Section 4 and in
terms of a classification of subscription languages shown in
Table 4.

We classify subscription languages based on their scope and
expressive power. Scope has two aspects: (1) whether a
subscription is limited to considering a single notification
(thus reducing the language to that of filters) or whether it
can consider multiple notifications (thus involving both fil-
ters and patterns); and (2) whether a subscription is limited
to considering a single, designated field in a notification or
whether it can consider multiple fields. Expressive power
is concerned with the sophistication of operators that can
be used in forming subscription predicates, ranging from a
simple equality predicate to expressions involving only pre-
defined operators to expressions involving user-defined op-
erators. As we point out in Section 5, user-defined oper-
ators suffer from the disadvantage of having arbitrary, un-
known, and potentially unbounded complexity. In fact, we
have observed that subscription languages with user-defined
predicates are rare; in Table 3 we have combined the lan-
guage classes corresponding to predefined and user-defined
predicates because only a single entry, object-oriented active
databases, makes use of user-defined predicates. Notice that

a property of the classification in Table 4 is that the classes
are inclusive: channel-based languages are a special case of
subject-based languages, which in turn are a special case of
content-based languages, and so on. Therefore, a technol-
ogy appearing in a given row of Table 3 implicitly offers the
subscription language of that row and any rows above it in
the table.

We have implemented a prototype of S iena
4 and used it

as the event service of an agent-based, wide-area software
deployment system called the Software Dock [8]. The cur-
rent implementation of S iena offers two APIs, one for C++
and the other for Java. Both interfaces support the data
model and subscription language described in Section 2.
Two event servers are also provided by the current imple-
mentation. One (written in Java) is based on the hierarchi-
cal client/server algorithm, while the other one (written in
C++) is based on the acyclic peer-to-peer architecture with
the subscription forwarding algorithm. These two types of
servers have been used together (thus forming a hybrid to-
pology) in the Software Dock.

Our future work will continue exploring the interplay of ex-
pressiveness and scalability, as well as other important issues
concerning Internet-scale event notification such as wireless
networking, application frameworks, and security. Security
is a particularly intriguing issue. While traditional secu-
rity techniques based on encryption can be employed in an
event notification service to achieve certain kinds of security,
such as authentication of publishers and integrity of notifi-
cations, the very nature of the service requires a rethinking
of basic principles of secure communication. For instance,
traditional notions of privacy do not apply because senders
(i.e., publishers) do not designate the intended recipients
(i.e, subscribers) of their messages (i.e., event notifications).
Nevertheless, privacy considerations may apply in new ways,
such as to prevent one client from having access to another
client’s subscriptions.
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Java Dist. Event Spec. [19]
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subject-based ToolTalk [9]
NNTP [10]
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content-based Elvin [17]
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Yu et al. [22]
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GEM [12]
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CORBA Notification Service [14]
object-oriented active databases [4]

S iena S iena

Table 3: A Classification of Related Technologies.
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Predefined Operators
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subject-based
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content-based
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Expressions with
User-defined Operators
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general
content-based

general
content-based with patterns

Table 4: Typical Features of Subscription Languages.
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