Deep Reinforcement Learning in Computer Systems:

Learning from Traces

Michael Schaarschmidt, Eiko Yoneki,
firstname.lastname@cl.cam.ac.uk

Managing efficient configurations is a central chal-
lenge in computer systems. For example, database
systems expose a large variety of configuration pa-
rameters to customize every aspect of data manage-
ment from storage engine to high level request pa-
rameters. Efficient deployments require optimized re-
source management, task scheduling, and fine-tuned
configurations.

Parameters are typically determined through a
combination of manual work, software vendors, and
open source community recommendations. Recently,
auto-tuning tools such as Spearmint or OpenTuner
[2, 1] have been integrated into this process. Users
employ such tools by exposing configuration param-
eters and application performance metrics to a black
box optimizer which iteratively improves and eval-
uates configurations. A popular auto-tuning tech-
nique is Bayesian optimization, which incrementally
builds a probabilistic model of parameter perfor-
mance. These offline methods produce static config-
urations representing the best compromise between
different service demands of an application.

In contrast, in the online case, distinct workloads
are pre-identified offline and then matched to differ-
ent configurations online based on continuous moni-
toring. Designing such solutions frequently leads to
a constructive understanding of system and work-
load behaviour, and the resulting solutions tend to
be well understood. In turn, such tailor-made models
require extensive human analysis and experimenta-
tion, and may lack portability. Reinforcement learn-
ing (RL) suggests to address this problem by learning
an adaptive control policy by trial and error without
an analytical model [3]. Recent successes in com-
bining neural networks with reinforcement learning
have sparked new interested in attempting to learn
adaptive configuration policies from raw system data.
While theoretically appealing, practical deployments
of reinforcement learning solutions remain elusive due
to large training data requirements, algorithmic insta-
bility, and lack of standard tools.

RL algorithms do not require supervised training
data but need to interact with their environment to
explore the state space (initially sampling random ac-
tions), and to learn about the impact of decisions.

The theoretical ability to continuously learn from new
experiences is difficult to realize in practice if behav-
ior in new situations is unpredictable and may have
catastrophic consequences. A common strategy to
avoid exposing production systems to unpredictable
behavior is to train RL agents in simulation and de-
ploy the simulation-trained model. This approach en-
ables researchers to explore small proof-of-concept ex-
periments but also introduces the risk of making unre-
alistic assumptions and oversimplifying the problem
domain. Some research domains (e.g. networking)
have access to reliable protocol simulators but this is
not the case for many optimization problems.

This paper investigates mechanisms to close the
gap between research and practice via both software
infrastructure and algorithms. We address the is-
sue of instability and data efficiency by focusing on
systems with rich performance profiling. We further
introduce TensorForce®, a deep reinforcement learn-
ing library for applied use cases focusing on strict
separation of environment and RL model. Our key
practical insight is that log data of static configura-
tions can be leveraged to guide model creation with-
out requiring a simulator. We evaluate the end-to-
end approach for generating controllers on a proof-of-
concept case study learning compound indexing from
database profiling logs. Results show that logs of
static configurations can be used to generate a dy-
namic controller for automatic indexing.

References

[1] Ansel, Jason et al. Opentuner: An extensible
framework for program autotuning. PACT ’14,
pages 303-316, New York, NY, USA, 2014. ACM.

[2] J. Snoek, H. Larochelle, and R. P. Adams. Practi-
cal bayesian optimization of machine learning al-
gorithms. In F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, editors, NIPS. 2012.

[3] R. S. Sutton and A. G. Barto. Reinforcement
learning: An introduction, volume 1. MIT press
Cambridge, 1998.

Lhttps://github.com/reinforceio/tensorforce

5§ UNIVERSITY OF
’ CAMBRIDGE

Deep Reinforcement Learning in Computer Systems:
Learning from Traces

Michael Schaarschmidt, Eiko Yoneki
Department of Computer Science and Technology, University of Cambridge

(E-mail: firsthname.lastname@cl.cam.ac.uk)

Problem:
Controlling dynamic behavior
In computer systems:

Example: Dynamic Database Indexing

Concept:
Leverage existing trace data
to guide model creation:

Configuredby _ [~
® Complex configuration human expert [~ i L= Deploy in new application, g W | Jge static examples of
parameter space Eom—— il ——— TensoFlow |+ expert configured system,
® |ncreasing number of 'P":f;f"l’;’;gx:"s‘ 1 oty g | [compuaonaigaph || e.g. database tables
parameters _ - — : F'r';;;fsdd E ‘§ onrss configured by administrator
® Hand-crafted solutions Emit Evaluate Controller | —2 ol S -—Dgﬁt-@] * Map log entries to
A i profile on separate L ! st g | E .
ImpraCtlcal’ qﬂen leit traces traces different % & +Optimizer workload embedding to
tséallc C;]f COthlg?TEG - R representations, " j maps i presentto agent, e.g.
rougn extensive oftline = Compute log-embedding: ~ models N | e : .
analysis Map log entries to i B Query structure, unique

" Reinforcement learning
algorithms require
extensive online training
or simulations

states, rewards, actions

queries, frequency

4w Interpret as supervised
examples of actions to
take given a set of queries

A software stack for RL in systems

Various tuning packages exist for
static parameter tuning, e.g.
OpenTuner, Spearmint, BOAT

but no similar frameworks for ‘ Exiomal systemm

learning dynamic control. Ne:ed + b IN information

new software stack for emerging act i - L
research in RL in computer (action) (reward) * |dea: Use example traces from existing applications to
systems: | guide model creation via deep reinforcement learning

* Deep learning libraries like TensorForce API

TensorFlow provide low level
numerical operators, neural
network facilities but no RL

|
communicates

¥

Results and analysis

Task: Dynamic index selection in NoSQL database. Typically
performed manually/tool-assisted via profiling.

* Asindex creation can take seconds to minutes, training
times are prohibitive for learning without any prior

from demonstration

®* Pretrain from demonstrations, adapt to specific workload
at runtime

abstraction Deep RL Model 8 a = 5E?r.dexang
® Existing reinforcement L + Optimizer '] mmm Random
learning libraries focused on | £ 1| Rlwre
simulation use cases, crestes = S
games, not general purpose TonsorEIow ﬁ 10
APls gfaph P7 Fa Pg9 P10
* We propose TensorForce, an T Pretraining query id
applied RL library focusing maps Evaluate 10 query templates on workload with non-stationary
on usability. TensorForce ¥ \ popularity:
provides a set of common ‘ Device execution .

algorithms and modelling

J

Human DBA indices created statically once

* Different RL modes (online only, pretraining with online

techniques through a
adaption, pretraining with adversarial perturbations)

declarative interface

®* New benchmarks needed to learn to adapt to larger set of

https://github.com/reinforceio/tensorforce
query structures

