
Quaestor: Query Web Caching for
Database-as-a-Service Providers

Felix Gessert
∗

Baqend

fg@baqend.com

Michael Schaarschmidt
∗

University of Cambridge

michael.schaarschmidt@
cl.cam.ac.uk

Wolfram Wingerath
University of Hamburg

wingerath@informatik.uni-
hamburg.de

Erik Witt
Baqend

ew@baqend.com

Eiko Yoneki
University of Cambridge

eiko.yoneki@cl.cam.ac.uk

Norbert Ritter
University of Hamburg

ritter@informatik.uni-
hamburg.de

ABSTRACT
Today, web performance is primarily governed by round-trip laten-
cies between end devices and cloud services. To improve perfor-
mance, services need to minimize the delay of accessing data. In
this paper, we propose a novel approach to low latency that relies
on existing content delivery and web caching infrastructure. The
main idea is to enable application-independent caching of query
results and records with tunable consistency guarantees, in partic-
ular bounded staleness. QUAESTOR (Query Store) employs two
key concepts to incorporate both expiration-based and invalidation-
based web caches: (1) an Expiring Bloom Filter data structure to
indicate potentially stale data, and (2) statistically derived cache
expiration times to maximize cache hit rates. Through a distributed
query invalidation pipeline, changes to cached query results are de-
tected in real-time. The proposed caching algorithms offer a new
means for data-centric cloud services to trade latency against stale-
ness bounds, e.g. in a database-as-a-service. QUAESTOR is the core
technology of the backend-as-a-service platform Baqend, a cloud
service for low-latency websites. We provide empirical evidence
for QUAESTOR’s scalability and performance through both simu-
lation and experiments. The results indicate that for read-heavy
workloads, up to tenfold speed-ups can be achieved through QUAE-
STOR’s caching.

1. INTRODUCTION
In the web and online industry, page load times strongly affect

user satisfaction and central business metrics such as revenue, time-
on-site, conversion and bounce rates. Various studies by large web
and e-commerce companies have quantified this effect. For in-
stance, Amazon has found that 100 ms of additional latency de-
crease revenue by 1%. Google measured that 500 ms of additional
page load time decrease traffic by 20% [30].

∗These authors contributed equally.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

Slow page load times have three sources. When a website is
requested, the first source of loading time is the backend. It con-
sists of application servers and database systems and assembles the
website. The latency of individual OLTP queries and the process-
ing time for rendering HTML slow down the delivery of the site.

The frontend, i.e. the website displayed and executed in the
browser, is the second source of delay. Parsing of HTML, CSS,
and JavaScript as well as the execution of JavaScript that can block
other parts of the rendering pipeline contribute to the overall wait-
ing time.

As of 2017, loading an average website requires more than 100
HTTP requests [2] that need to be transferred over the network.
This requires numerous round-trips that are subject to physical net-
work latency. This third source of delay typically has the most
significant impact on page load time in practice [30].

Frankfurt California Sydney Tokyo
EC2 region

0

2

4

6

8

10

M
e
a
n
 f

ir
st

 l
o
a
d
 l
a
te

n
cy

 (
s)

Baqend

Kinvey

Firebase

Azure

Parse

Figure 1: Page load time comparison for different Backend-as-a-
Service providers.

Network bandwidth, client resources, computing power and
database technology have improved significantly in recent years.
Nonetheless, latency is still bound by physical network round-trip
times and can hence only be solved by bringing data closer to
clients. Baqend develops a cloud platform based on this idea, to
help programmers build fast websites with a novel approach to web
caching. The central idea is to leverage all available web caches
to not only cache immutable data but also cache database records
and volatile files. This is made possible through a Database-as-a-

1670

Service (DBaaS) API that detects changes to objects and files and
triggers invalidations [28]. The practical effects are illustrated in
Figure 1 using the example of a simple news website loaded from
different geographical locations with a cold browser cache and a
warm CDN cache. The comparison between our approach and a
number of popular, commercial DBaaS providers (Firebase, Parse,
Kinvey, Azure Mobile Services) is open-source and can be vali-
dated in a web browser1. The implementations only use simple
key-based access (CRUD) to render a data-driven website in the
client. The work presented in this paper extends these results to
caching complete query results.

Today, to the best of our knowledge, no other DBaaS sys-
tem is capable of exploiting the expiration-based HTTP caching
model and its globally distributed content-delivery infrastructure.
In this paper, we extend the idea of DBaaS web caching from
simple key-based access [28] to query results. QUAESTOR
(Query Store) is a comprehensive DBaaS system for automatic
query result caching that Baqend employs for data storage in its
high-performance Backend-as-a-Service. QUAESTOR completely
relies on standard web caching to provide low-latency data ac-
cess with rich consistency guarantees. We specifically discuss and
implement QUAESTOR for aggregate-oriented NoSQL databases
that Baqend is based on (MongoDB and Redis). The approach,
however, is applicable to any system serving dynamic data over a
REST/HTTP-based interface.
Motivation. To minimize the effects of backed and frontend la-
tency, web applications are experiencing a sustained shift towards
client-centric, ”serverless” architectures. Web applications now
commonly consume persistence and business logic through REST
APIs of database/backend-as-a-service (DBaaS) systems. While
this widely adopted single-page application model improves us-
ability and developer productivity, web performance now is gov-
erned almost exclusively by request latency [30]. Caching is a
well-studied technique for minimizing distance and latency be-
tween clients and data. The problem addressed in this paper is
maintaining consistency while caching dynamic database queries
and records. The key idea we exploit is the involvement of the
client in a cache coherence protocol for bounded staleness by pro-
viding precise staleness information in a summary data structure.

The expiration-based web caching model gained little attention
for data management in the past, as its static expirations (time-to-
live) were considered irreconcilable with query results that change
unpredictably. In this paper, we propose a solution to this ap-
parent contradiction by showing that cache coherence can trans-
parently be maintained by clients. To this end, we introduce the
Expiring Bloom Filter data structure that captures potentially stale
query results and records. By piggybacking the filter at load time,
clients can determine which query results and records can safely be
fetched from caches or trigger a revalidation if needed. At the same
time, the DBaaS pro-actively purges stale results from invalidation-
based caches (e.g. content-delivery networks and reverse-proxy
caches). This is achieved by a streaming invalidation system that
detects changes to cached query results in real-time.
Example. As an example, consider a social blogging application.
To retrieve posts on a particular topic, the client queries the DBaaS:

SELECT * FROM posts

WHERE tags CONTAINS ’example’

This (pseudocode) query is posed as an HTTP GET request.
The web’s infrastructure consisting of caches, load balancers,
routers, firewalls and other middleboxes handles the query simi-
lar to any other request issued by web sites. In particular, any
1http://benchmark.baqend.com/

expiration-based caches (browser caches and ISP caches) as well as
invalidation-based caches (content-delivery networks (CDNs) and
reverse-proxy caches) are allowed to answer the query from their
local cache, if the DBaaS previously provided a time-to-live (TTL)
indicating cacheability for a defined time span.
Challenges. In order to make this caching scheme applicable,
QUAESTOR solves three problems:

1. Invalidation detection. Does a given update operation
change the result set of cached queries?

2. Cache Coherence. How can caches be kept consistent when
they cannot be invalidated by the DBaaS?

3. Cacheability. Which queries and records are cacheable and
what is their optimal TTL?

Client (Browser)

Expiration-
based Caches

Invalidation-
based Caches

DBaaS (Backend)

Files, Records,
Query Results

Cache Hits

Q

1

Invali-
dations

Q

2

Cached Query Q

First Post
Lorem ipsum dolor sit amet,
consetetur sadipscing elitr, sed
diam nonumy eirmod tempor
invidunt ut labore et dolore
magna aliquyam erat, sed diam
voluptua. At vero eos et accusam
et justo duo dolores

Tagged: example , other

 Second Post
Lorem ipsum dolor sit amet,
consetetur sadipscing elitr, sed
diam nonumy eirmod tempor
invidunt ut labore et dolore
magna aliquyam erat, sed diam
voluptua. At vero eos et accusam
et justo duo dolores

Tagged: example

 1

 2

Invalidation
Detection

Cache
Coherence

Expiration (TTL)

Result Cacheable?
(Read-Heavy)

3Cacheability

Figure 2: The three central challenges of query web caching.

These challenges are illustrated in Figure 2. For every data-
base operation, the DBaaS has to determine whether it invalidates
any cached queries or records (1). This is enabled by InvaliDB, a
scalable subsystem for detecting invalidations of cached query re-
sults in real-time. In the above example, an invalidation would be
triggered if a blog post contained in the query result is changed
or a previously non-matching post adds a tag that matches the
query predicate. Cache coherence (2) of expiration-based caches
is based on an Expiring Bloom Filter (EBF), which declares any
potentially stale content. Clients check the EBF before each query
to decide whether cached results are permittable or a revalidation
should instead be performed in order to proactively update any stale
caches. Through different refresh strategies, the EBF guarantees
∆-atomicity [29] as a consistency guarantee with clients freely be-
ing able to choose the staleness bound ∆. The cache hit rates are
maximized by statistically deriving expiration estimates (TTL Esti-
mator) and deciding which query results are worth caching (3).
Contributions. The proposed model is a good match for com-
mon web workloads that are mostly read-heavy with many clients
accessing the same data before it is updated [32]. To the best
of our knowledge, QUAESTOR is the first approach that provides
fresh query results served over the web caching infrastructure and
can thus improve performance and scalability of database services

1671

without requiring additional server infrastructure. QUAESTOR’s
achieved consistency guarantees are similar to those of Pileus [49],
but we employ widespread web caches instead of custom replica-
tion sites and extend the purely object-based approach to queries.

The contributions of this paper are threefold:

• We propose a comprehensive, service-independent approach
for caching dynamic query results and records with rich de-
fault consistency guarantees (bounded staleness, monotonic
reads and writes, read-your-writes).

• We introduce a scalable middleware infrastructure for main-
taining cache coherence through a query matching pipeline
and Expiring Bloom Filters.

• We provide empirical evidence that for web-typical, read-
heavy workloads, tremendous latency improvements can be
achieved with arbitrarily bounded staleness.

This paper is structured as follows. Section 2 gives some back-
ground on the challenges of caching. Sections 3, 4, and 5 present
the key techniques used to make query caching feasible on web
caches: a cache coherence mechanism, a query invalidation system
and a model for dynamic TTL estimation. In Section 6, an in-depth
evaluation of QUAESTOR is given. Section 7 summarizes related
work, and Section 8 concludes.

2. BACKGROUND
The two primary causes for page load times are the physical net-

work latency required to transfer assets and dynamic (Ajax) con-
tent of the web application and the processing overhead imposed
by fetching data from databases [30]. Caching has previously been
used to address both problems separately. Database caching [5,
37, 11] can reduce query latency at the server side, which however
only constitutes a small part of the overall end-to-end latency. Web
caching is frequently employed to cache immutable files [32, 24,
12, 33, 52, 23] and is hence only applicable to a small subset of
data and explicitly excludes all dynamic data modern applications
are composed of. We seek to address the issues of both approaches
by combining them. As the most general form in which data can
be served to end devices are views and queries, QUAESTOR’s goal
is to cache them while giving consistency guarantees.
Web Caching. To use web caching for data management, the lim-
ited capabilities and guarantees of the HTTP web caching model
have to be respected. Its two primary mechanisms are revalida-
tion and expiration [30]. For any resource, the server assigns an
explicit time-to-live (TTL). Every cache is allowed to store the re-
source for the defined TTL and then expires it. Clients and caches
can revalidate (presumably) stale resources and thus bypass cached
copies to have the origin server confirm freshness based on a ver-
sion (Etag) or modification date (Last-Modified). In addition to
this, invalidation-based caches support dedicated TTLs specific to
invalidation-based caches and asynchronous invalidations from the
server that purge stale content [42].
Challenge. Traditional web caching does not give any guarantees
on freshness when expiration-based caches, e.g. browsers, are in-
volved. Furthermore, web caches cannot execute any application-
specific logic, instead, they only serve non-expired resources by
their unique URL. For cache coherence, expiration-based caches
can only be updated through client-triggered revalidations. Hence
a mechanism is required that timely and efficiently enables clients
to revalidate stale content. Though many DBaaS systems are ac-
cessed through HTTP-based REST APIs, to the best of our knowl-
edge, none of them employs web caching.

Geo-Replication. QUAESTOR is orthogonal to geo-replication
which can also decrease query latency. Many geo-replicated sys-
tems, however, either sacrifice consistency guarantees [17, 22, 19]
or induce high write latencies of typically two to three wide-area
round-trips [9, 44, 35, 38, 21, 45]. Furthermore, in contrast to
related systems such as Pileus [49], QUAESTOR does not require
special replication infrastructure, but instead leverages unmodified
and readily available web caches. In the best case, queries are an-
swered by standard browser caches of end devices, while requests
to geo-replicated database systems require at least the round-trip to
the nearest replica site.
Application model. A database-as-a-service targeted at serv-
ing queries and data directly to end users is often referred to
as a backend-as-a-service. Baqend and QUAESTOR adopt this
model in order to achieve latency reductions in an application-
independent fashion. In contrast to traditional 3-tier-applications,
we assume JavaScript-based web or mobile applications access-
ing data through QUAESTOR’s REST API to load the applica-
tion (e.g. JavaScript, HTML, images) and dynamic data (queries
and records). QUAESTOR therefore provides DBaaS functionality
such as query processing, authorization, and schema management.
It is agnostic of its underlying database system and directly an-
swers HTTP requests from browsers for CRUD (create, read, up-
date, delete) operations, queries, and file downloads to make them
cacheable as described in the following sections.

In summary, we identify the following problem: In order to
empower the simplistic web caching model to cache queries and
records, cache coherence has to be implemented using both client-
side revalidations and server-side invalidations. In the following
sections, we present how QUAESTOR achieves this for the context
of a document-oriented database service. We assume records to be
rich nested documents that are contained in tables as well as queries
that express any boolean expression over predicates on documents
within a single table. As a concrete representative, we employ the
popular MongoDB query language [40].

3. CACHE COHERENCE
To illustrate the value of a cache coherence mechanism, consider

an intuitive straw-man solution for query caching.
Static TTL: The server assigns a constant, application-defined
TTL to each query, so that any web cache may serve the query and
staleness is bounded by the TTL. This does not require any query
invalidation logic in the client or server, as the regular expiration-
based semantics of HTTP web caching are used. The problem of
this naive solution is that either many stale reads will occur when
the TTL is too high, or cache hit ratios will suffer when the TTL
is too low. The first step to improving this scheme is adapting
the purely static TTLs to the actual frequency of changes for each
query. However, even for a stochastic TTL estimation (described
in Section 3.3), stale reads occur for each deviation from the esti-
mate. To address this, clients require a lightweight representation
of stale queries that can be updated frequently. This allows individ-
ual staleness bounds for each client without reducing cacheability
of queries.

3.1 Expiring Bloom Filters
The purpose of the Expiring Bloom Filter (EBF) is to answer

the question whether a given query or record is potentially stale.
This information allows clients to “correct” the TTL of objects and
queries that change before their TTL expires by periodically re-
freshing the EBF. The EBF exploits the idea that false positives are
safe in the sense that they only cause an unnecessary revalidation –
i.e. increased latency – but do not affect consistency. By allowing

1672

SDK (Data API)

Read or
Query

1 0 0 1 1 0 1 1

Hash1(), , Hashk()

Is stale?

Expiring Bloom Filter
(loaded on connect & every Δ s)

Revalidate if stale

Get

 - Data Layer

After-image of update u

 Distribution Layer (Publish/Subscribe, Active Queries,

Capacity Management, Query Result States)

TTL Estimator
Cache Lifetime

Prediction

Expiring Bloom
Filter

Stale Data

Database
CRUD & Queries
handled by DB

(Middleware to enhance underlying database systems
with query & record caching)

Purge

QUAESTOR Database ServiceClient (browser/mobile device) Internet

1

2

 InvaliDB - Streaming Layer

(which cached queries does u
invalidate?)

(Browser Cache,
Forward & ISP

Proxies)

(CDNs, Reverse
Proxies)

Invalidation-
based Caches

Expiration-
based Caches

3 4

Figure 3: QUAESTOR: client-server architecture and components.

occasional false positives with probability f , the EBF achieves a
very small size that is provably space-optimal within a constant fac-
tor (1.44) and allows O(1) lookups [13]. It can therefore efficiently
be transferred from the server to the client and is much smaller than
the actual set of stale queries and records for most applications.
Even if the set of actual small queries is small and therefore could
be represented as a list, the EBF does not impose considerable over-
head as it will be sparse and therefore well-compressible through
HTTP with Gzip [13]. The presented scheme is an extension our
previous Cache Sketch [28] work to arbitrary query results, records,
and files.
Overview of Request Flow. Figure 3 gives a high-level overview
of QUAESTOR’s architecture and the role of the Expiring Bloom
Filter. From the perspective of a client performing a query, the
request flow is as follows:

1. Upon connection, the client gets a piggybacked EBF (a flat
Bloom filter) containing freshness information.

2. Before issuing a query, the EBF is queried by the SDK to
decide between a normal cached load and a revalidation.

3. The caches either serve their cached copy or forward the
query upstream.

4. For cache misses and revalidations, the server returns the
query result using an appropriate TTL, while registering the
query in InvaliDB to detect future query invalidations. If
the query result later changes before the TTL is expired,
the query is added to the EBF and purged from invalidation-
based caches.

Expiring Bloom Filter Structure. A query or read is performed
by querying the Bloom filter bt that was generated at time t. The
key (i.e. the normalized query string or record id) is hashed using k
independent uniformly distributed hash functions that map from the
key domain to [1,m], where m is the bit array size of bt . If all bits
h1(key), . . . ,hk(key) equal 1, the record is contained and considered
stale. Theorem 1 derives the guarantees of the EBF using the time-
based consistency property ∆-atomicity [29]. ∆-atomic semantics
assert that every update becomes visible during the first ∆ time units
after the acknowledgement of its write.

Definition 1 Let bt1 be the Expiring Bloom Filter generated at time
t1. It contains the query string q of every result(q) that became

stale before it expired in all caches. Formally, this is every q for
which holds that ∃r(q, t2,T T L),w(x, tw) : tr +T T L > t1 > tw > tr
where r(x, t2,T T L) is a query of q at time t2 with a T T L and
w(x, tw) is a write happening at tw on a record x so that resulttr (q) is
invalidated (see notification events add, change, remove in Section
3.2).

Theorem 1 A query q performed at time t2 using bt1 satisfies ∆-
atomicity with ∆ = t2− t1, i.e. it is guaranteed to see only query
results that are at most ∆ time units stale.

PROOF. Consider a query issued at time t2 using bt1 and return-
ing result(q) that was stale for ∆ > t2 − t1. This implies that q
must have been invalidated at a time tw < t as otherwise t2− tw < ∆

(∆-atomicity not violated). Hence, there must have been an ear-
lier query r(q, tr,T T L) with tr +T T L > t2 so that result(q) is still
cached. However, by the construction of bt1 , the query is contained
in bt1 until tr +T T L and hence stale for at most ∆ = t2− t1 (proof
by contradiction).

The EBF hence is a Bloom filter that contains all stale query for
one point in time, i.e. queries that became invalid while still being
stored in some cache. Theorem 1 also subsumes record caching, if
q is substituted by the record id and result(q) by the record. In
the following, we will refer to queries and imply that the same
holds true for records. Freshness Policies. The achieved fresh-
ness is reflected by the age of the Expiring Bloom Filter. The basic
way of utilizing the EBF is to fetch it at page load to use it for
the initial resources of the application, e.g. stylesheets and im-
ages (cached initialization). To maintain bounded staleness, the
EBF is refreshed in configurable intervals. This is achieved in a
non-disruptive fashion by promoting the first query after ∆ seconds
to a revalidation that additionally piggybacks an up-to-date EBF.
Clients can therefore precisely control the desired level of consis-
tency. This polling approach for the EBF resembles Pileus’ [49]
method, where clients poll timestamps from all replication sites
to determine which replica can satisfy the demanded consistency
level. However, the EBF is much more scalable as the freshness in-
formation is already aggregated and does not have to be assembled
by clients from different caches or replicas.

3.2 Consistency
Consistency Guarantees. The consistency levels provided by
QUAESTOR are summarized in Figure 4. The central consistency
level enabled by the EBF is ∆-atomicity with the application and

1673

clients being able to choose ∆. Several additional session consis-
tency guarantees are achieved. Monotonic writes, i.e. a global order
of all writes from one client session, are assumed to be given by the
database (e.g. MongoDB) and are not impeded by the EBF. Read-
your-writes consistency is obtained by having the client cache its
own writes within a session: after a write, the client is able to read
her writes from the local cache. Monotonic read consistency guar-
antees that a client will only see monotonically increasing versions
of data within a session. QUAESTOR achieves this by having clients
cache the most recently seen versions and comparing any subse-
quent reads to the highest seen version. If a read returns an older
version (e.g. from a different cache), the client resorts to the cached
version if it is not contained in the EBF or triggers a revalidation
otherwise.

If QUAESTOR exposes an eventually consistent data store, its in-
consistency window ∆DB lowers the ∆-atomicity guarantee. The
same holds true if invalidations are performed asynchronously.
However, as the probability that this violates consistency is low
[8], it is a very common choice to accept (∆+∆DB +∆Invalidation)-
atomicity. By choosing a lower ∆, users can easily compensate both
effects. In practice, adjusting ∆ to ∆−∆Invalidation allows revalida-
tion requests to be answered by invalidation-based caches instead
of the origin servers. This optimization significantly offloads the
backend.
Opt-in Consistency Guarantees. By allowing additional cache
misses, causal consistency and even strong consistency are possi-
ble as an opt-in by the client. With causal consistency, any causally
related operations are observed in the same order by all clients
[7]. With caching, causal consistency can be violated if of two
causally dependent writes one is observed in the latest version and
the other is served by a cache. Using the EBF, any causal depen-
dency younger than the EBF is observed by each client, as the EBF
acts a staleness barrier for the moment in time it was generated.
However, if a read is newer than the EBF, causal consistency might
be violated on a subsequent second read. Therefore the client has
two options to maintain causal consistency after a read newer than
the EBF. 1) The EBF can be refreshed to reflect recent updates. 2)
Every read happening before the next EBF refresh is turned into a
revalidation. For strong consistency within a client session every
read within that session is performed as a revalidation.

The strongest semantics QUAESTOR can provide are ACID
transactions. These optimistic transactions exploit the fact that
caching reduces transaction durations and can thereby achieve low
abort rates with a variant of backwards-oriented optimistic concur-
rency control [27]. We omit details for space reasons, but the key
idea is to collect read sets of transactions in the client and vali-
date them at commit time to detect both violations serializability
and stale reads. The scheme is similar to externally consistent op-
timistic transactions in F1 and Spanner [21, 44] but can leverage
caching and the EBF to decrease transaction duration for clients
connected via wide-area networks.

Additionally, clients can directly subscribe to websocket-based
query result change streams that are otherwise only used for the
construction of the EBF. Through this synchronization scheme, the
application can define its critical data set through queries and keep
it up-to-date in real-time. For applications with a well-defined
scope of queries this approach is preferable, while complex web
applications will profit from using the EBF due to lower latency for
the initial page load and lower resource usage in the backend.

3.3 Usage and implementation
Server-side EBF Maintenance. Besides the Bloom filter, the
server-side EBF also tracks a separate mapping of queries to their

Consistency Level How

Δ-atomicity (staleness
never exceeds Δ seconds)

Controlled by age (i.e. refresh
interval) of EBF

Montonic Writes Guaranteed by database

Read-Your-Writes and
Montonic Reads

Cache written data and most
recent read-versions in client

Causal Consistency Given if read timestamp is
older than EBF, else revalidate

Strong Consistency
(Linearizability)

Explicit revalidation (cache
miss at all levels)

A
lw
ay
s

O
p
t-
in

Monotonic Writes

Monotonic Reads

Figure 4: Consistency Levels provided by QUAESTOR: ∆-
atomicity, Monotonic Writes, Read-Your-Writes, Monotonic Reads
are given by default, Causal Consistency and Strong Consistency
can be chosen per operation (with a performance penalty).

respective TTLs. In this way, only non-expired queries are added
to the Bloom filter upon invalidation. After their TTL is expired,
queries are removed from the Bloom filter. As a normal Bloom fil-
ter does not allow removals, the EBF is maintained as a Counting
Bloom filter [13] which allows discarding queries once they are no
longer stale. As it is inefficient to generate the non-counting Bloom
filter for each request, the server-side EBF efficiently updates the
flat Bloom filter (i.e. all non-zero counters) upon changes.
Client-side EBF Usage. Clients receive a flat, immutable copy of
the EBF, i.e. a normal Bloom filter. As the server has no knowledge
of data in individual caches, it is not client-specific. A stale query
is contained in the EBF until the highest TTL that the server previ-
ously issued for that query has expired. While contained, the query
always causes a cache miss. QUAESTOR’s client SDK abstracts
from this by transparently performing the EBF lookup for each
query executing the freshness policy in the background. As dis-
crepancies between actual and estimated TTLs can cause extended
periods for which queries are contained in the EBF and considered
stale, clients perform a differential whitelisting: every query and
record that has been revalidated since the last EBF update is added
to a whitelist and considered fresh until the next EBF renewal.

The false positive rate f depends on the Bloom filter size m in
bits. When the size matches the initial congestion window of TCP
with m ≈ 10 · 1460byte = 14.6KB it is always transferred in one
round-trip. With these parameters, the Bloom filter has a false pos-
itive rate of 6% when containing 20,000 distinct stale queries.
Scalability. The EBF is able to scale both reads and writes. Read
scalability is achieved by replicating the complete EBF and bal-
ancing loads of the Bloom filter over the replicas. Write scalability
is reached through per-table partitioning: each table has its own
EBF instance. This horizontally distributes Bloom filter modifica-
tions and expiration tracking. At read time, the aggregated EBF
is constructed by a union over the EBF partitions through a bit-
wise OR-operation over the Bloom filter bit vectors. Alternatively,
clients can also exploit the table-specific EBFs to decrease the total
false positive rate at the expense of loading more individual EBFs.
We omit detailed evaluation results for brevity, but the Redis-based
implementation of the Expiring Bloom Filter provides sufficient
performance to sustain a throughput of >150 K queries or inval-
idations per second for each Redis instance.
Implementation. The EBF is in the critical request path: cachable
queries and reads lead to an EBF write for the respective record and

1674

any thereby invalidated query result. To scale to high throughputs,
we implemented two EBF variants available as open-source2. The
in-memory implementation targets single-server setups while the
distributed implementation is capable of sharing the state of the
EBF across machines. In the distributed case, all DBaaS servers
communicate with the in-memory key-value store Redis [3], which
holds the counting Bloom Filter and the tracked expirations.

In summary, QUAESTOR maintains an Expiring Bloom Fil-
ter (EBF) of potentially stale queries and records so that expira-
tion-based caches can be leveraged while guaranteeing tunable ∆-
atomicity. To maintain the EBF, changes to query results have to
be detected and added in real-time, as described in the following
section.

4. INVALIDATIONS AND EXPIRATIONS

4.1 Invalidation Detection
To provide server-side query invalidations, QUAESTOR registers

all cached queries in InvaliDB which in turn notifies QUAESTOR as
soon as a query result becomes stale. While we use SQL for the
sake of clarity in our illustrations, InvaliDB supports MongoDB’s
query language.

The invalidation pipeline (InvaliDB) matches change operations
to cached queries. For each cached query, it determines whether an
update changes the result set. The invalidator then outputs a set of
queries with stale cached query results to QUAESTOR, which sends
out invalidations to reverse proxy caches and CDNs. This check
is performed by re-evaluating queries on after-images of the rel-
evant database partition in a distributed stream processing system
(Apache Storm) co-located with QUAESTOR. The throughput of
the invalidation pipeline is the limiting constraint of query caching
and determines how many queries can be cached at the same time.
Through a capacity management model only queries that are suffi-
ciently cachable are admitted and prioritized based on the costs of
maintaining them.
Notification Events. InvaliDB continuously matches record after-
images provided with each incoming write operation (insert, up-
date, delete) against all registered queries. QUAESTOR can sub-
scribe to an arbitrary combination of the following events, each of
which triggers a notification: add (an object enters a result set) ,
remove (an object leaves a result set), change (an object already
contained in a result set is updated without altering its query). To il-
lustrate these different events, consider the query in Figure 5 which
selects blog posts tagged with the keyword example. First, a new
blog post is created which is yet untagged and therefore not con-
tained in the result set (box). When an update operation adds the
example tag to the blog post, it enters the result set which triggers
an add notification. Later, another tag is added which does not af-
fect the matching condition and therefore only changes the object’s
state, thus entailing a change notification. When the example tag
is finally removed from the blog post, the matching condition does
not hold anymore and the object leaves the result set, causing a
remove notification to be sent.

With respect to query invalidation, only two combinations of
event notifications are useful: When the cached query result con-
tains the IDs of the matching objects (id-list), an invalidation is only
required on result set membership changes (add/remove). Caching
full data objects (object-list) on the other hand also requires an in-
validation as soon as any object in the result set changes its state
(add/remove/change).

2https://github.com/Baqend/Orestes-Bloomfilter

SELECT * FROM posts WHERE tags CONTAINS 'example'

+'example' +'music' -'example'

add change remove

tags:
{'example'}

tags:
{'music'}

tags:
{'example', 'music'}

Figure 5: Notifications as an object gets updated.

Workload Distribution. InvaliDB relies on three tasks to pro-
vide scalable real-time notifications: query ingestion (registration
of new queries), changestream ingestion (distribution of record
after-images) and matching (invalidation detection), each of which
is distributed over the nodes in a cluster using the Apache Storm
real-time computation framework [1]. The matching workload is
distributed by hash-partitioning both the stream of incoming data
objects and the set of active queries orthogonally to one another,
so that every instance of the matching task is responsible for only
a subset of all queries (query partitioning) and only a fraction of
their result sets (datastream partitioning). The ingestion workload,
in contrast, is not partitioned, but scattered across task instances.
Every instance of the query and changestream ingestion tasks trans-
actionally pulls newly arrived data items (query activations/deac-
tivations or update operations, respectively) from the source and
forwards them according to the partitioning scheme.

Query
Part. 2

Query
Part. 3

Query
Part. 1

O
b

je
ct

P

ar
t.

 1
O

b
je

ct

P
ar

t.
 3

O
b

je
ct

P

ar
t.

 2

Invalidations

addchange remove %

Is Match?

Was Match? Was Match?

For Each Query:

SELECT * FROM posts WHERE tags CONTAINS 'example'

ta
gs

:
{'

e
xa

m
p

le
',

'm
u

si
c'

}

Figure 6: InvaliDB workload distribution: Every node is only as-
signed a subset of all queries and a fraction of all incoming updates.

Figure 6 illustrates workload distribution in a 9-node cluster with
three object partitions (lightly shaded rows) and three query parti-
tions (strongly shaded columns). Please note that we omit the par-
allelism of the data ingestion tasks here in favour of simplicity and
only make the distribution of the matching task explicit.
When a query is received by one instance of the query ingestion

1675

task, it is forwarded to all matching task instances in its respec-
tive query partition (e.g. query partition 2). Since InvaliDB has
to be aware of the result sets of all newly added queries in order
to maintain their correct state, every new query is initially evalu-
ated on QUAESTOR and then sent to InvaliDB together with the
initial result set. To rule out the possibility of missing updates in
the timeframe between the initial query evaluation (on QUAESTOR)
and the successful query activation (on all responsible InvaliDB
nodes), all recently received objects are replayed for a query when
it is installed. When an update operation is registered by one of the
changestream ingestion task instances, this operation and its corre-
sponding after-image are forwarded to all matching task instances
in the respective object partition (e.g. object partition 3). In the
example, the one that is responsible for query partition 2 and object
partition 3 detects a new match for the example query and therefore
sends out an add notification. To prevent ingestion and matching
task instances from competing for resources, we do not colocate
them on the same nodes.
Scalability. Since InvaliDB partitions both the change stream and
the set of all active queries, single-node performance does not limit
overall system performance: As long as every query can be han-
dled by a single node, changestream partitioning is not required
and the load can be spread across the cluster by simply assigning
every node a fair share of all active queries. However, additional
changestream partitioning allows distributing responsibility for a
single query over several machines and guarantees low latency even
when the resources required for handling individual queries exceed
single-node capacity. Thus, overall performance is neither bounded
by update throughput nor by the number of active queries nor by
query selectivity or result set size and scales linearly with the num-
ber of cluster nodes (see Section 6.3).
Managing Query State. Simple static matching conditions such as
WHERE tags CONTAINS ’example’ are stateless, meaning that
no additional information is required to determine whether a given
after-image satisfies them. As a consequence, the only state re-
quired for providing add, remove or change notifications to state-
less queries is the former matching status on a per-record basis.
This state can be partitioned by record id and thus can be easily
distributed, just like the computation itself.

With additional ORDER BY, LIMIT or OFFSET clauses, however,
a formerly stateless query becomes stateful in the sense that the
matching status of a given record becomes dependent on the match-
ing status of other objects. For sorted queries, InvaliDB is conse-
quently required to keep the result ordered and maintain additional
information such as the entirety of all items in the offset. To cap-
ture result permutations, changeIndex events are emitted that rep-
resent positional changes within the result. Our current implemen-
tation maintains order-related state in a separate processing layer
partitioned by query.
Implementation. All components of InvaliDB are written in Java
and executed on Apache Storm. The query engine is pluggable and
supports any stateless predicates. Communication between QUAE-
STOR and InvaliDB is handled through Redis message queues.
Scope. InvaliDB does not yet support joins and aggregations.
Since QUAESTOR is designed for aggregate-oriented, denormal-
ized NoSQL databases, the capability to pose predicates on nested
documents is sufficient to reflect 1:1 and 1:n relationships. Aggre-
gations with groupings are ongoing work and therefore currently
uncached.

In summary, InvaliDB provides a scalable stream processing sys-
tem for detecting query invalidations. Its central trade-off lies in the
partitioning of both queries and changes, which renders joins infea-
sible but enables linear scalability and low latency.

4.2 Statistical TTL Estimation
The TTL Estimator provides stochastic estimations of cache ex-

piration times for query results and cached records. Our mechanism
is based on the insight that any cached record should ideally expire
right before its next update occurs, thus achieving maximum cache
hit rates while avoiding unnecessary invalidations. The discrepancy
between the actual and the estimated TTL directly determines the
amount of data considered stale and hence affects the false positive
rate of the EBF. High cache hit rates and an effective EBF size thus
require reliable TTL estimates.

We use a dual strategy for estimating expirations for query re-
sults and records. Initially, TTLs are estimated through the stochas-
tic process of incoming updates. Poisson processes count the oc-
currences of events in a time interval t characterized by an arrival
rate λ and are an established model for web workloads [50]. For a
Poisson process, the inter-arrival times of events have an exponen-
tial cumulative distribution function (CDF), i.e. each of the iden-
tically and independently distributed random variables Xi has the
cumulative density F(x;λ) = 1− e(−λx) f or x≥ 0 and mean 1/λ .
For each database record, QUAESTOR can estimate (through sam-
pling) the rate of incoming writes λw in some time window t.

The result set Q of a query of cardinality n can then be re-
garded as a set of independent exponentially distributed random
variables Xi, . . . ,Xn with different write-rates λw1, . . . ,λwn. Es-
timating the TTL for the next change of the result set requires
a distribution that models the minimum time to the next write,
i.e. min{X1, . . . ,Xn}, which is again exponentially distributed with
λmin = λw1 + . . .+λwn. The quantile function then provides esti-
mates that have a probability p of seeing a write before expiration:

F−1(p,λmin) =
−ln(1− p)

λmin
. (1)

By varying the quantile, higher/lower TTLs and thus cache hit rates
can be traded off against more or fewer invalidations. Alternatively,
the TTL can be estimated using the expected time until the next
write. This results in always using the observed mean TTL, but in
turn does not allow fine-grained adjustments.

For individual records, we always use an estimate based on the
approximated write-rates. For queries, the Poisson estimate based
on the write-rates on the keys of the result set is only used as an
initial estimate. If a query result is invalidated, the actual TTL of
the result was the difference between the invalidation time stamp
and the previous read time stamp. We can hence update our old
estimate according to an exponentially weighted moving average
(EWMA) closer towards the true TTL:

T T Lquery = α×T T Lold +(1−α)×T T Lactual . (2)

The current TTL estimate for a query is kept in a shared partitioned
data structure called the active list, which is accessed by all QUAE-
STOR nodes. The key idea of the TTL estimation model is to make
an educated guess about the initial TTL which should then move
towards the “true” TTL with some lag after invalidations. TTL
estimation is used for queries and records in both expiration- and
invalidation-based caches. Note that this does not require clock
synchronization, as only relative time spans are used.
Representing Query Results. A cached query can either be served
as a list of record URLs (id-list) or as a full result set (object-
list). Id-lists are more space-efficient and yield higher per-record
cache hit rates but require more round-trips to assemble the result
– the decision which representation to use cannot be made by the
cache. QUAESTOR employs a cost-based decision model in order to

1676

4. Query q1 is invalidated by an update and added to the Bloom filter .

2. A query q2 (contained in the Bloom filter) revalidates the caches.

b={q2}
(q2, t3),(q1, t2)

Client

Expiration
Cache

Invalidation
Cache ServerEBF EBF

b={q2}
(q2, t2),(q1, t1)

b={q2}

(q2,t2) (q1,t1)b=

TTL
Estimator InvaliDB

q2 b

b={q2}

Revalidate q2

object-list, TTL

Estimate

TTL

New q2

(q2,t3) (q1,t1),(q2,t3)

Update obj q1

Match on q1

Invalidate q1

(q2,t3)

obj After Image

Continue

Matching

b={q2,q1}
 (q2, t3),(q1, t1)

q1 b
Cached query q1

(q1,t1),(q2,t3)

1. The client connects to the server and retrieves a Bloom filter b.

3. A second query q1 (not in the Bloom filter) is served from the cache.

Figure 7: End-to-end example of query caching.

weigh fewer invalidations against fewer round-trips when choosing
object-lists or id-lists (omitted due to space constraints).

5. END-TO-END EXAMPLE
Figure 7 gives an end-to-end example of the steps involved in

serving cachable queries. In the depicted setting, the client begins
by fetching the EBF containing a stale query (q2) still cached in the
client (1). Therefore when loading the query, the client triggers a
revalidation that refreshes the client cache and causes a miss at the
invalidation-based cache. Using the active list, the server passes the
query to InvaliDB for future change detection, while estimating the
TTL and deciding between an id-list and object-list representation
(2). Before returning the result, the query is reported to the EBF,
so that every subsequent invalidation within the newly estimated
TTL makes the cached query stale. The returned result is cached
in both caches using the new expiration. When the client performs
a query that is not stale (q1), the cache can serve the result (3).
A change operation to a record contained in that query result is
forwarded to the database and the respective after-image passed to
InvaliDB (4). InvaliDB detects the change to the query and reports
the invalidation to the EBF. As the query still has a non-expired
TTL, the EBF adds the stale query and triggers an invalidation to
prevent stale reads of the old query result.

6. EVALUATION
In this section, we demonstrate that QUAESTOR’s scalability is

only limited by the write throughput of the underlying database
system. We evaluate QUAESTOR with regard to latency, through-
put and staleness (and hence the effectiveness of the TTL estima-
tor) compared to a baseline of just using a CDN, only using a client

cache and no caching at all. We further demonstrate the linear scal-
ability of InvaliDB and the high throughput of the Expiring Bloom
Filter.

6.1 Experimental setup
Setup. Our experimental design is based on the YCSB benchmark
[20]. YCSB defines a set of common workloads to evaluate the
performance of cloud databases. We implemented a YCSB-style
framework that extends the widely-used original benchmark in two
aspects: a multi-threading model for massive connection paral-
lelism and a multi-client model to scale the client tier [25]. As a
baseline to our experiments, we used the Orestes DBaaS [27] with
uncached communication, which we deem representative (aside
from static latency overhead) for state-of-the-art database services
that do not use web caching. The Orestes architecture also provides
the foundation for Baqend’s cloud services.

We evaluated QUAESTOR on the following EC2 setup: Mon-
goDB was configured in a cluster setting with 3 m3.xlarge (4 vC-
PUs, 15 GB RAM, 2x40 GB SSDs) instances with 2 shard servers
and 1 configuration server. Documents were sharded through their
hashed primary key. The Expiring Bloom Filter as well as the
Redis-backed active list were hosted on one m3.xlarge instance,
respectively. Further, we used 3 Quaestor servers and a varying
number of workload-generating client instances (all m3.xlarge).
To demonstrate the full impact of geographic round trip latency,
QUAESTOR, MongoDB and InvaliDB were hosted in a virtual pri-
vate cloud in the EC2 Ireland region, with workloads being gen-
erated from the Northern California region. In the setups using a
CDN, Fastly was used (round-trip latency 4 ms). Cache misses at
CDN edge servers were forwarded to QUAESTOR nodes in a round-
robin manner.
Workloads. Workloads were specified by defining a discrete dis-
tribution of operations (reads, queries, inserts, partial updates, and
deletes). TCP connections were pre-warmed for 30 seconds on a
dummy table. Load was generated using asynchronous requests
with 300 HTTP connections per client instance. Each data point
was created under 5 minutes of load, which was sufficient to
achieve stable and reproducible results. Requests were generated
by first sampling a request type and then sampling the key/query
and table to use (using a Zipfian distribution). For the workloads
we analyzed, 10 database tables, each with 10,000 documents, were
generated for each run. Further, 100 distinct queries per table were
generated to initially return on average 10 documents.
Monte Carlo simulation. We also implemented a Monte Carlo
simulation framework of our caching model that simulates inter-
actions of concurrent clients with client and CDN caches as well
as QUAESTOR. Simulation is the most reliable method to analyze
properties like staleness as it provides globally ordered event time
stamps for each operation and does not rely on error-prone clock
synchronization. Further, the simulation enables detailed analysis
optimization of various workload parameters such as latency distri-
butions, TTL estimation models and capacity configurations.

6.2 Quaestor
To demonstrate the effectiveness of QUAESTOR, we vary typical

workload parameters such as incoming connections, the number of
queries and documents, and update rates. We study QUAESTOR’s
scalability and performance under high throughput and extend the
analysis to more clients and measured staleness using simulation.
We do not compare QUAESTOR to geo-replicated systems (e.g.
Pileus) as our main point is to show that commodity web caching
highly improves latency with very little staleness and no additional

1677

300 600 1200 1800 2400 3000
Connections

0

25k

50k

75k

100k

125k

150k

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Quaestor EBF only CDN only Uncached

(a) Throughput comparison.

300 600 1200 1800 2400 3000
Connections

0

50

100

150

200

M
e
a
n
 l
a
te

n
cy

 (
m

s)

Quaestor EBF only CDN only Uncached

(b) Latency comparison for read operations.

300 600 1200 1800 2400 3000
Connections

0

50

100

150

200

M
e
a
n
 l
a
te

n
cy

 (
m

s)

Quaestor EBF only CDN only Uncached

(c) Latency comparison for queries.

1000 2000 4000 6000 8000 10000
Query count

0

10

20

30

M
e
a
n
 l
a
te

n
cy

 (
m

s)

Queries Reads

(d) Mean request latency for reads and queries.

1000 2000 4000 6000 8000 10000
Query count

0.2

0.4

0.6

0.8

1.0

C
a
ch

e
 h

it
 r

a
te

Client/Qrs. Client/Reads CDN/Qrs CDN/Reads

(e) Cache hit rates at client and CDN.

Client Cache Hits (capped)

CDN Cache Hits

Cache Misses

(f) Query latency histogram.
Figure 8: Cloud-based evaluation of QUAESTOR.

servers. Geo-replication schemes tuned towards one specific geo-
graphical setup will likely still outperform QUAESTOR.
Read-heavy workload. We begin evaluating QUAESTOR on
a read-heavy workload with 99% queries and reads (equally
weighted) and 1% writes. Figure 8a demonstrates QUAESTOR’s
throughput scalability against a baseline without dynamic caching,
a CDN with InvaliDB, and the EBF-based client cache only. At
maximum load (3000 asynchronous connections delivered by 10
client instances), QUAESTOR achieves an 11-fold speed-up versus
an uncached baseline, a 5-fold improvement over the EBF-based
client cache (EBF only) and a 69.5% improvement over a CDN
with InvaliDB. Using a CDN with InvaliDB yields superior perfor-
mance to only using client caches since clients rely on the CDN to
fill up their caches quickly. Client-side Bloom filters were refreshed
every second to ensure minimal staleness. Figure 8f illustrates the
latency distribution where most queries are client cache hits with
no latency, CDN hits induce an average latency of 4 ms and cache
misses 150 ms. Note that linear scalability is not possible since an
increasing number of clients increases the number of updates and
thus reduces cacheability.

Mean round-trip latency between client instances and QUAE-
STOR was 145 ms with a variance of 1 ms between runs (error
bars omitted due to scale). Figures 8b and 8c show read and query
latency for the same setup. For 3000 connections, QUAESTOR
achieved a mean query latency of 3.2 ms and a mean read latency
of 17.5 ms. As there are 100× more records than queries, cache
hit rates for queries are higher and latencies lower. Note that the
latency of the client-cache only (EBF only) variant increases due
to more overhead at the database. In contrast, CDN latency for
queries improves initially and remains constant afterwards because
separate clients access the same CDN edge.
Varying query count. Scalability with regard to query count is
governed by the provided InvaliDB configuration (which scales
linearly, as shown in Section 6.3). We demonstrate the effect of
increasing query counts with regard to average request latency and
cache hit rates for the same InvaliDB configuration used in the read-
heavy workload (8 InvaliDB matching nodes). Figure 8d shows

how both read and query request latencies are affected by increas-
ing query count. Read latency improves because a larger portion
of keys is part of a cached query result. All records in a result
are inserted into the cache as individual entries, thus causing read
cache hits by side effect. This improves read latency from initially
20 ms to a mean read latency of 15 ms. Query latency increases
with query count due to decreasing cache hit rates at the client, as
shown in Figure 8e. Cache hit rates at the CDN are comparably
stable since the concurrent client instances cause sufficient cache
hits by side effect for each other. Ultimately, QUAESTOR’s perfor-
mance for increasing query counts depends more on the popularity
of individual queries and the update rate than on the total number
of queries.
Varying write rates. Read-dominant workloads naturally lend
themselves to caching since they allow higher consistency, longer
TTLs, fewer invalidations and less database load. With increasing
update rates, throughout is limited by the database. We demon-
strate how cache hit rates degrade by increasing update rates (keep-
ing equal read and query rates) in Figure 9. Only 1200 connec-
tions were used to avoid being limited by the write throughput of
the MongoDB cluster. Client cache hit rates for both records and
queries decrease predictably with increasing update rate. Figure
9 shows how staleness (EBF refresh interval) can be used to mit-
igate performance degradation in write-heavy scenarios. Notably,
the refresh interval has only little impact on cache hit rate degrada-
tion. There is no linear correlation between increasing refresh rate
and lower latency on higher write rates. This is because increas-
ing write rates also leads to lower TTLs. Hence, increasing EBF
refresh rates above a certain threshold only leads to more staleness
without improved client performance.
Varying document count. Finally, we investigate QUAESTOR’s
performance for varying document counts. Table 1 compares la-
tencies for different database sizes, which was achieved by chang-
ing the number of database collections. Each collection contains
10,000 documents and is accessed by 100 distinct queries. We in-
creased experiment durations to 600 s and changed the Zipf con-
stant to 0.99 to account for the fact that with increasing document

1678

0.00 0.05 0.10 0.15 0.20
Update rate

0.2

0.4

0.6

0.8

1.0
Q

u
e
ry

 c
a
ch

e
 h

it
 r

a
te

100k obj./1k queries/1 s
100k obj./1k queries/10 s
100k obj./1k queries/100 s
100k obj./10k queries/1 s

Figure 9: Client cache hit rates for queries
with varying update rates for different EBF
refresh intervals.

1 10 20 30 40 50
Bloom filter refresh interval (s)

0.0

0.1

0.2

0.3

0.4

0.5

S
ta

le
n
e
ss

 r
a
te

10 clients/queries
10 client/reads
100 clients/queries
100 clients/reads

Figure 10: Stale read and query rates for
10/100 clients and different refresh inter-
vals.

0 100 200 300 400 500 600
TTL (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Quaestor TTLs

True TTLs

Figure 11: CDF of Quaestor’s TTL estima-
tion scheme vs. true CDF.

and query counts, caches take significantly longer to fill up. Results
show that for very small databases and distributions with high Zipf
constants, reads and writes concentrate on the same few objects and
thus limit cache hit rates. For increasing database sizes, caches take
longer to fill up and TTLs have to be adjusted upwards, thus limit-
ing performance during experiments. In the following section, we
analyze client-side staleness through Monte Carlo simulation.

Table 1: Performance overview for increasing document counts for
a request distribution with Zipfian constant 0.99.

Documents Queries Queries Reads

10,000 100 13.8 ms 70 ms
100,000 1000 5.5 ms 40.2 ms
1 million 10,000 11.9 ms 27.2 ms
10 million 100,000 34.8 ms 133 ms

EBF-Bounded Staleness. The EC2-based evaluation showed
QUAESTOR under maximum load, using relatively few client in-
stances with many parallel connections. To analyze staleness , we
use a more typical configuration of many clients (100) with fewer
HTTP connections per client (6, as is in most browsers) in the sim-
ulation. The simulation detects staleness (i.e. any violations of
linearizability [29]) in the client caches and the CDN. Client-side
staleness is bounded by the EBF refresh interval. Upon every EBF
renewal, clients revalidate stale cache entries identified by the filter.
CDN staleness is primarily governed by invalidation latency. In our
experiments, CDN staleness was constantly below 0.1%.

Figure 10 illustrates the relationship between Bloom filter re-
fresh rate and client staleness. Staleness initially increases fast be-
tween 1 s and 10 s refresh rate, but is limited by two factors for
higher refresh rates. First, every time a client begins an update op-
eration it invalidates the corresponding record from its own cache.
Second, client staleness rates are limited by cache hit rates, which
were up to 60% for records and up to 95% for queries in the bench-
mark, thus explaining the difference between record and query stal-
eness.
TTL estimation. We also used the simulator to compare our TTL
estimation scheme against the true TTL for every query, which we
define as the time period a query could have been cached until in-
validation. Figure 11 shows the cumulative distribution functions
(CDFs) for estimated and true TTLs for a 1% write rate for 10 min-
utes. While we omit a detailed analysis of per-query errors due to
space constraints, the CDF comparison shows the expected result
of having a similar distribution for the majority of TTLs and larger
errors on the unpredictable long tail of the access distribution.
Production results. Baqend currently hosts a range of produc-
tion applications and has delivered performance improvements to

numerous websites. As an example we report the results of the e-
commerce company Thinks. While being featured in a TV show
with 3.5 Mio. viewers, the shop had to provide low latency to po-
tential customers. By relying on QUAESTOR to cache all static data
(e.g. files) and dynamic query results (e.g. articles with stock coun-
ters) the website achieved sub-second loads while being requested
by 50,000 concurrent users (>20,000 HTTP requests per second).
The business effect was measurable: the shop achieved a conver-
sion rate of 7.8%, which is roughly 3 times above the industry av-
erage [16]. Usually, such a request volume requires massive scale
in the backend. However, since the CDN cache hit rate was 98%,
the load could be handled by 2 DBaaS servers and 2 MongoDB
shards.

6.3 InvaliDB
Setup. To demonstrate the scalability of our real-time matching ap-
proach, we measured sustainable matching throughput and match
latency for differently sized InvaliDB deployments on Amazon
EC2. Our test setup comprised one client machine, one QUAE-
STOR server, one Redis server and an InvaliDB cluster. As a base-
line, we evaluated our InvaliDB deployment with only a single node
for query matching and then doubled both the number of active
queries and the number of matching nodes with every subsequent
experiment series. Every deployment had a single node dedicated
to query and change stream ingestion. The Redis server hosting
the message queues for communication between InvaliDB and the
QUAESTOR server as well as all InvaliDB nodes were c3.large

instances with 2 VCPUs (Xeon E5-2680 v2, Ivy Bridge) and 3.75
GB RAM each.
Workload. For every InvaliDB configuration, we performed a se-
ries of experiments, each of which consisted of two phases: In the

1 2 4 8 16
Matching Nodes

2.5M

5M

10M

20M

40M

80M

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

99th Percentile Latency 25 ms

99th Percentile Latency 20 ms

99th Percentile Latency 15 ms

Figure 12: InvaliDB throughput for varying cluster sizes satisfying
the given latency bounds.

1679

preparation phase, any still-active queries from earlier experiments
were removed and queries for the upcoming one were activated.
In the subsequent 2-minute measurement phase, the client machine
performed 1,000 insert operations per second against the QUAE-
STOR server and measured notification latency as the difference
between the timestamp of notification arrival and of the point in
time directly before sending the corresponding insert statement.

We chose the same constant update throughput of 1,000 inserts
per second for all experiment series, but varied the number of ac-
tive queries relatively to the number of matching nodes in each In-
valiDB cluster, so that all clusters were exposed to the same relative
load. We started each experiment series with 500 active queries per
node and increased their number by the same amount until the sys-
tem was saturated and incoming operations started queueing up.
Thus, the cluster with only 1 matching node started with 500 active
queries, whereas the 16-node cluster started with 8,000.
Evaluation. To demonstrate the efficiency and scalability of In-
valiDB, we measured notification latency under increasing load for
5 InvaliDB clusters employing between 1 and 16 matching nodes.
All clusters achieved 99th percentile latencies below 20 ms up to
3 mio. and below 30 ms up to 4 mio. ops/s per node, while huge
latency spikes marked system capacity at roughly 5 mio. ops/s per
node. Peak latencies never exceeded 100 ms under load of 3 mio.
ops/s per node or less. The line plot in Figure 12 illustrates that
matching throughput scales linearly with the number of matching
nodes even under tight latency bounds.

7. RELATED WORK
Web caching. In contrast to server-side caching solutions (e.g.
Memcache, Oracle Result Cache, Data Grids) we aim to provide
low end-to-end latency by exploiting existing HTTP caching in-
frastructures. In earlier work [28, 27], we have proposed a compre-
hensive scheme for leveraging HTTP caching for single database
records. We extended this foundation by considering the more re-
alistic setting of a full DBaaS API that includes arbitrary queries
and non-stationary workloads. In related work, web caches are ei-
ther treated as a storage tier for immutable content or as means of
content distribution for media that do not require freshness guar-
antees [32, 24]. Candan et al. [14] first explored automated
invalidation-based web caching with the CachePortal system that
detects changes of HTML pages by analyzing corresponding SQL
queries. Breslau et al. were the first to systematically analyze how
Zipf-distributed access patterns ideally lend themselves for limited
storage capacities of web caches [12, 33, 52]. This insight is related
to our proposed capacity management scheme: even if only a small
subset of “hot” queries can be actively matched against update op-
erations, this is sufficient to achieve high cache hit rates. Another
example for the use of Bloom filters in caching is Orestes [28], that
employs them for staleness checks on cached database records.
Query Caching. Scalable query caching has previously been tack-
led from different angles. Garrod et al. have proposed Ferdinand, a
proxy-based caching architecture forming a distributed hash table
[26]. Their consistency management is based on a publish/sub-
scribe invalidation architecture where query templates are mapped
to multicast groups. DBCache, DBProxy and MTCache [5, 37,
11] also rely on dedicated database proxies to generate distributed
query plans that can efficiently combine cached data with the orig-
inal database. These systems need built-in tools of the database
system for consistency management and are less motivated by la-
tency reduction than by reducing query processing in the database.
Blanco et al. investigated query caching in the context of incremen-
tal search indices [10]. To achieve cache coherence, they generate
a synopsis of invalidated documents in the ingestion pipeline and

check it before returning a cached search query. Unlike our evolv-
ing EBF, the synopses are immutable, created in batch and only
used to predict likely invalidations at server-side caches.
Expiration-Based Caching. In the literature, the idea of using a
TTL-based model has previously been explored in the context of
file and search result caching. Fixed TTL schemes that neither vary
in time nor between requested objects/queries lead to a high level
of staleness [53]. A popular and widely used TTL estimation strat-
egy is the Alex protocol [31] that originates from the Alex FTP
cache [15]. It calculates the TTL as a percentage of the time since
the last modification, capped by an upper TTL bound. This is sim-
ilar to QUAESTOR’s TTL update strategy for queries but has the
downside of neither converging to the actual TTL nor being able
to give estimates for new queries. Alici et al. proposed an adap-
tive TTL computation scheme for web-search results [4]. In their
model, expired queries are compared with their latest cached ver-
sion. If the result has changed, the TTL is reset to a minimum TTL,
otherwise, the TTL is augmented by an increment function that can
either be static or trained from logs. Though the model is adaptive,
it requires offline learning, does not incorporate invalidations and
assumes a central cache co-located with the search index.

QUAESTOR separates itself from previous work on query
caching in multiple aspects. First, it uses existing HTTP infras-
tructure and does not require custom caching servers. Employ-
ing stochastic models, this work provides a record-level analysis
of query results to provide much more fine-grained TTL estimates.
Furthermore, the cost-based optimization and flexibility of the EBF
yield a tunable trade-off between query latency, consistency, and
server load by adapting to the workload at runtime.
Geo-replication. Another common approach for latency reduc-
tion is geo-replication, which can be combined with QUAESTOR’s
caching. Instead of storing data on geographically distributed web
caches, the database system itself is distributed over multiple geo-
graphical replica sites [9, 44, 35, 38, 21, 45, 17, 22, 19, 43]. Web
caching as employed in QUAESTOR can be viewed as a form of
asynchronous, on-demand geo-replication. Our work is inspired by
Pileus [49] that also achieves low latency, single round-trip writes
and bounded staleness. In contrast to Pileus, QUAESTOR 1) sup-
ports queries 2) relies on web caches instead of custom replicas 3)
scales to an arbitrary number of caches, as staleness information is
consolidated in one EBF instead of being polled from each replica.
Latency-consistency trade-off. Consistency in replicated storage
systems has been studied in both theory [29, 51] and practice [8,
39]. Similar to asynchronously replicated systems [22, 19, 36],
QUAESTOR trades consistency against performance by invalidat-
ing asynchronously and allowing stale reads. We studied the strict
staleness bounds imposed by the EBF through a Monte Carlo sim-
ulation that is similar to PBS proposed by Bailis et al. [8].
Web performance. A key finding of performance in modern web
applications is that perceived speed and page load times are a result
of physical network latency [30]. The HTTP/1.1 protocol that cur-
rently forms the basis of the web and REST APIs suffers from in-
efficiencies that have partly been addressed by HTTP 2 [34]. Once
adopted by caches, CDNs and end devices, its push model will al-
low to simplify the query result representation in QUAESTOR to
always favor id-lists without any performance downsides. As op-
erations are furthermore multiplexed through a single connection,
any refreshes of the EBF can be performed without causing head-
of-line blocking for queries and CRUD requests.
Continuous Query Maintenance. Even though the integration of
stored and streaming data has been studied for decades in the con-
text of relational databases [48, 6], their inadequacy to handle real-
time data has been widely accepted [46, 47]. Materialized view

1680

maintenance [18] and query notifications [41], in particular, are
designed for domains where updates are infrequent. InvaliDB, in
contrast, scales with write throughput and the number of currently
maintained queries through a shared-nothing architecture.

In summary, QUAESTOR is inspired by the idea of geo-
replication and fundamentally based on techniques from related
work, such as Bloom filters for compact digests, expiration-based
caching for passive replication as well as continuous queries for
cache invalidations. We believe, that QUAESTOR adds a useful de-
sign choice for low-latency, data-centric cloud services.

8. CONCLUSION
In this paper, we investigated the applicability of web caching

for mutable query results. The contribution of this paper is a novel
caching approach for dynamic data to improve loading times in
web applications. We rely on three pivotal ideas to make this pos-
sible: (1) the Expiring Bloom Filter as a compact client represen-
tation for stale data, (2) a scalable real-time invalidation scheme
that matches updates to cached query results, and (3) an online
TTL estimator. As a result, QUAESTOR offers a middleware for
query caching with client-defined staleness bounds as well as sev-
eral client-centric consistency guarantees. The presented approach
is the central technology of the cloud service Baqend that uses it
to provide significant load time improvements for websites. Eval-
uation results demonstrate QUAESTOR’s effectiveness in reducing
latency by up to an order of magnitude while strictly limiting stal-
eness.

Acknowledgements
This work was generously supported by the EPSRC (grant refer-
ences EP/M508007/1, EP/P004024), Cambridge University GCRF,
and a Computer Laboratory Premium Scholarship (Sansom schol-
arship).

9. REFERENCES
[1] Apache Storm. http://storm.apache.org/. Accessed: 2016-07-14.
[2] HTTP Archive. http://httparchive.org/trends.php. Accessed:

2016-07-14.
[3] Redis. http://redis.io/. Accessed: 2016-07-14.
[4] S. Alici et al. Adaptive time-to-live strategies for query result caching in web

search engines. In Advances in Information Retrieval. Springer, 2012.
[5] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A dynamic data

cache for web applications. In ICDE, pages 821–831, 2003.
[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues

in data stream systems. In PODS, 2002.
[7] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on causal

consistency. In SIGMOD, pages 761–772. ACM, 2013.
[8] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Stoica.

Probabilistically bounded staleness for practical partial quorums. VLDB, 2012.
[9] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson, J.-M.

Lon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing Scalable,
Highly Available Storage for Interactive Services. In CIDR, volume 11, pages
223–234, 2011.

[10] R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel, L. Telloli, and H. Zaragoza.
Caching search engine results over incremental indices. In SIGIR, 2010.

[11] C. Bornhövd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Adaptive
database caching with DBCache. IEEE Data Engineering Bulletin, 2004.

[12] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and
zipf-like distributions: evidence and implications. In INFOCOM, volume 1,
pages 126–134 vol.1, Mar 1999.

[13] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A
survey. Internet Math., 1(4):485–509, 2003.

[14] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal. Enabling
dynamic content caching for database-driven web sites. In SIGMOD, 2001.

[15] V. Cate. Alex-a global filesystem. In Proceedings of the 1992 USENIX File
System Workshop, number 7330, pages 1–12. Citeseer, 1992.

[16] D. Chaffey. Ecommerce conversion rates. smartinsights.com, 2017. accessed:
2017-05-15.

[17] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
et al. Bigtable: A distributed storage system for structured data. TOCS, 2008.

[18] R. Chirkova and J. Yang. Materialized views. Foundations and Trends in
Databases, 2012.

[19] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, and P. a. o.
Bohannon. Pnuts: Yahoo!’s hosted data serving platform. VLDB, 2008.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In SoCC, 2010.

[21] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, et al.
Spanner: Google’s globally distributed database. TOCS, 2013.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, et al.
Dynamo: amazon’s highly available key-value store. In SOSP, 2007.

[23] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM TON, 8(3):281–293, 2000.

[24] M. J. Freedman. Experiences with coralcdn: A five-year operational view. In
NSDI, 2010.

[25] S. Friedrich, W. Wingerath, F. Gessert, and N. Ritter. NoSQL OLTP
Benchmarking: A Survey. In DMC, volume 232 of LNI, pages 693–704. GI,
2014.

[26] C. Garrod, A. Manjhi, A. Ailamaki, B. Maggs, T. Mowry, C. Olston, and
A. Tomasic. Scalable query result caching for web applications. VLDB, 2008.

[27] F. Gessert, F. Bucklers, and N. Ritter. Orestes: A scalable
database-as-a-service architecture for low latency. In ICDE, 2014.

[28] F. Gessert, M. Schaarschmidt, W. Wingerath, S. Friedrich, and N. Ritter. The
cache sketch: Revisiting expiration-based caching in the age of cloud data
management. In BTW, 2015.

[29] W. Golab, X. Li, and M. A. Shah. Analyzing consistency properties for fun
and profit. In PODC, pages 197–206. ACM, 2011.

[30] I. Grigorik. High performance browser networking. O’Reilly Media, 2013.
[31] J. Gwertzman and M. Seltzer. World wide web cache consistency. In ATC,

1996.
[32] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C. Li. An

analysis of facebook photo caching. In SOSP, 2013.
[33] R. T. Hurley and B. Y. Li. A performance investigation of web caching

architectures. In C3S2E, pages 205–213, 2008.
[34] IETF. Rfc 7540 - hypertext transfer protocol version 2 (http/2). 2015.
[35] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. MDCC:

Multi-data center consistency. In EuroSys, pages 113–126. ACM, 2013.
[36] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage

system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.
[37] P.-Å. Larson, J. Goldstein, and J. Zhou. Mtcache: Transparent mid-tier

database caching in sql server. In ICDE, pages 177–188. IEEE, 2004.
[38] W. Lloyd, M. J. Freedman, M. Kaminsky, et al. Don’t settle for eventual:

scalable causal consistency for wide-area storage with cops. In SOSP, 2011.
[39] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus, S. Kumar,

and W. Lloyd. Existential consistency: measuring and understanding
consistency at facebook. In E. L. Miller and S. Hand, editors, SOSP, pages
295–310. ACM, 2015.

[40] MongoDB, Inc. MongoDB. http://www.mongodb.org/.
[41] C. Murray, T. Kyte, et al. Using continuous query notification. In Oracle

Database Advanced Application Developer’s Guide, 11g Release 1 (11.1).
Oracle, 2016.

[42] M. Pathan and R. Buyya. A taxonomy of cdns. In Content Delivery Networks.
Springer Berlin Heidelberg, 2008.

[43] L. Qiao, K. Surlaker, S. Das, T. Quiggle, B. Schulman, B. Ghosh, A. Curtis,
O. Seeliger, Z. Zhang, A. Auradar, and others. On brewing fresh espresso:
LinkedIn’s distributed data serving platform. In SIGMOD, pages 1135–1146.
ACM, 2013.

[44] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, et al. F1: A distributed sql database that scales. VLDB, 2013.

[45] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for
geo-replicated systems. In SOSP, pages 385–400. ACM, 2011.

[46] M. Stonebraker and U. Çetintemel. ”one size fits all”: An idea whose time has
come and gone. In ICDE, 2005.

[47] M. Stonebraker, U. Çetintemel, and S. B. Zdonik. The 8 requirements of
real-time stream processing. SIGMOD Record, 2005.

[48] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over
append-only databases. In SIGMOD, 1992.

[49] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and
H. Abu-Libdeh. Consistency-based service level agreements for cloud storage.
In SOSP. ACM, 2013.

[50] P. Van Mieghem. Performance analysis of complex networks and systems.
Cambridge University Press, 2014.

[51] P. Viotti and M. Vukolic. Consistency in non-transactional distributed storage
systems. ACM Comput. Surv., 49(1):19:1–19:34, 2016.

[52] P. Wendell and M. J. Freedman. Going viral: Flash crowds in an open cdn. In
SIGCOMM, IMC ’11, pages 549–558, New York, NY, USA, 2011. ACM.

[53] K. J. Worrell. Invalidation in Large Scale Network Object Caches. 1994.

1681

