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Abstract—This paper presents the first distributed triangle
listing algorithm with provable CPU, I/O, Memory, and Net-
work bounds. Finding all triangles (3-cliques) in a graph has
numerous applications for density and connectivity metrics,
but the majority of existing algorithms for massive graphs are
sequential, while distributed versions of algorithms do not guar-
antee their CPU, I/O, Memory, or Network requirements. Our
Parallel and Distributed Triangle Listing (PDTL) framework
focuses on efficient external-memory access in distributed en-
vironments instead of fitting subgraphs into memory. It works
by performing efficient orientation and load-balancing steps,
and replicating graphs across machines by using an extended
version of Hu et al.’s Massive Graph Triangulation algorithm.
PDTL suits a variety of computational environments, from
single-core machines to high-end clusters, and computes the
exact triangle count on graphs of over 6B edges and 1B
vertices (e.g. Yahoo graphs), outperforming and using fewer
resources than the state-of-the-art systems PowerGraph, OPT,
and PATRIC by 2× to 4×. Our approach thus highlights the
importance of I/O in a distributed environment.

Keywords-Triangle Listing, Triangle Counting, Big Data,
Massive Graphs, I/O-Efficient Algorithm, Distributed Algo-
rithm, Parallel Algorithm

I. INTRODUCTION

Graphs are important abstractions to model a range real-

world situations, but they are becoming increasingly massive

and will soon reach billions of vertices and trillions of edges,

making in-memory algorithms insufficient for computing

graph properties. One such property that has gained the

attention of the graph processing community is the number
of triangles in the graph, which can be seen as a special

case of counting cycles of given length, or finding complete

subgraphs. Finding all triangles in a graph is crucial for

metrics such as the clustering coefficient [25] and the similar

transitivity ratio [19], which can be used to find high-

density nodes, and to detect fake accounts in social networks

[26], as well as web spam and content quality [5]. Triangle

enumeration is also necessary for dense neighborhood dis-
covery [24], triangular connectivity [4], and finding the k-
trusses of graphs [23]. However, research has been limited

on either external memory considerations, or the creation of

parallel frameworks (Section II). In this paper we show that

it is possible to combine both approaches with substantial

improvements in performance. Our Parallel and Distributed

Triangle Listing (PDTL) framework (Section IV) extends

Hu et al.’s Massive Graph Triangulation (MGT) algorithm

[14] in order to work in the distributed environment by

duplicating the graph across each machine, and has provable

bounds on CPU, I/O, Memory, and Network utilization. By

further parallelizing the orientation step, and by intelligently

distributing the load across each processor, our algorithm

computes the exact triangle counts on graphs with billions

of edges or vertices 2× to 4× faster than the state-of-the-

art frameworks, using considerably fewer resources, and ex-

hibiting scalability across multiple processors and machines

(Section V). In summary, our contributions are as follows:

• We create a general framework for triangle listing and

counting for both distributed and single-machine sys-

tems. Our algorithm is the first triangle listing algorithm

that provides efficient and well-understood bounds on

CPU, I/O, Memory, and Network utilization, across

multiple environments (Theorem IV.3).

• We uncover hidden assumptions in the proofs and

implementation of the closed-source MGT algorithm.

We modify the algorithm to correspond to its imple-

mentation, and prove that our modifications do not alter

its theoretical efficiency (Section IV-A).

• We introduce further optimizations in the orientation

and distribution steps of our algorithm to reduce bot-

tlenecks without adding complexity.

• We conduct extensive experiments that show our al-

gorithm is highly scalable across multiple cores and

machines, with low memory requirements, even for

graphs with hundreds of millions of vertices, and

multiple billion edges (Section V). Over the standard

Twitter dataset [16], our algorithm is 4 times faster

than PATRIC [3], 3 times faster than OPT [15], and

2 times faster than PowerGraph [11], the state-of-the-

art frameworks in distributed and multicore triangle

counting.

II. RELATED WORK

Dementiev [9] and Menegola [18] first introduced external-
memory algorithms for triangle counting, but their algo-

rithms had high I/O overheads. The first algorithms with

reasonable performance for triangle listing were introduced

by Chu and Cheng [8], and relied on graph partitioning to

achieve an I/O complexity of O
(
|E|2
MB + T

B

)
, under certain

assumptions on the structure of the graph. However, MGT

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.46

371

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.46

370

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.46

370

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.46

370

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.46

370

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.46

370



by Hu et al. [14] exhibits the same performance without any

additional assumptions, and was superior in practice. Finally,

Pagh and Silvestri recently proposed a new algorithm for tri-

angle counting (but not listing) which has an I/O complexity

of O
(
|E|1.5√
MB

)
, and improves the given bound [20].

The first dedicated parallel triangle counting framework,

PATRIC [3], uses graph partitioning and message passing.

It is not I/O-efficient, but proposes multiple load balancing

mechanisms, which are calculated in parallel and do not pose

a bottleneck. Even so, PATRIC requires that each partition

fits in memory, and targets datacenters, with hundreds of

processors and high dedicated RAM per processor. OPT

[15] is a disk-based, single machine system that exploits

I/O and multi-core CPU parallelism, and performs favorably

compared to distributed triangle-counting frameworks.

In terms of general-purpose frameworks, there are mul-

tiple MapReduce algorithms for counting triangles, the best

of which is CTTP [21]. MapReduce algorithms produce too

much intermediate networking data, and are considerably

slow: CTTP takes 2× longer on the Twitter dataset [16]

using 40 nodes compared a single-core MGT. PowerGraph

[11] is a general-purpose vertex-oriented framework that is

the fastest for triangle counting among existing alternatives,

while PSgL [22] proposes novel methods for generic sub-

graph listing, but is 6× slower than PowerGraph.

Overall, we see that there is a divide between using

external memory and parallelizing the algorithm, but as we

show in Section V, by combining the two approaches, PDTL

is 4× faster than PATRIC, 3× faster than OPT, and 2× faster

than PowerGraph, while providing theoretical guarantees,

and not running out of memory for larger graphs.

III. PRELIMINARIES

A. Definitions

All graphs G = (V,E) on n = |V | vertices and m = |E|
edges are assumed to be undirected and simple. For every

u ∈ V , NG(u) = {v : (u, v) ∈ E} denotes the set of its

neighbors and dG(u) = |NG(u)| its degree. Note that we

may omit the qualifier G when doing so is clear. Finally, for

simplicity, we also identify V with [n] = {0, . . . , n− 1}.
Definition III.1 (Triangle). Given an undirected graph G =
(V,E), a triangle is a set of three vertices {u, v, w} ⊆ V ,
such that all of (u, v), (v, w) and (w, u) are edges in E.

Finding the set K of all such triangles is triangle listing, and

reporting on their number T = |K| is triangle counting.

Definition III.2 (Degree-Based Order, Orientation). Given
an undirected graph G = (V,E), the degree-based order ≺
on V is defined as follows: u ≺ v if and only if d(u) < d(v)
or d(u) = d(v) and u < v. We define the directed graph
G∗ = (V,E∗), called G’s orientation, by (u, v) ∈ E∗ if and
only if (u, v) ∈ E and u ≺ v.

Because ≺ is a strict total order, the orientation uniquely

associates {u, v, w} where u ≺ v ≺ w with (u, v, w):

Definition III.3 (Cone Vertex, Pivot Edge [14]). Given a
triangle (u, v, w) with u ≺ v ≺ w in G∗, we call u its cone
vertex, and (v, w) its pivot edge.

The arboricity α(G) of a graph G is the minimum number of

edge-disjoint forests needed to cover its edges and satisfies:

Theorem III.4 (Arboricity bounds [7]). The arboricity of a
graph G = (V,E) satisfies:

1) α ≤
⌈√|E|⌉

2) α = O (1) if G is planar
3)

∑
(u,v)∈E

min{d(u), d(v)} ≤ O (α |E|)

Note that the T ≤ 1
3

∑
(u,v)∈E

min{d(u), d(v)}, where T is

the number of triangles, as any edge can appear in at most

min{d(u), d(v)} triangles, so T = O (α |E|). As a result, it

is beneficial to have a runtime dependent on α(G), because

it is at most
⌈√|E|⌉, but can be O (1) for planar graphs.

Finally, we remind the reader of Aggarwal and Vitter’s I/O

complexity analysis methodology [2], which depends on the

block size B: in accessing N elements in order, the disk

performs scan(N) = Θ (N/B) I/Os, whereas random ac-

cess can require Ω (N) I/Os in the worst case. Sorting takes

sort(N) = Θ
(

N
B logM/B

N
B

)
I/Os by external mergesort,

where M is the memory size.

IV. PDTL

We assume a computational environment of N nodes, each

of which has P processors, with M bytes of memory for

each of the processors, so that for appropriate parameters, we

can model a high-end data center, with multiple processors

per machine, or even just a single computer with low

available memory. In Section IV-A we explain the baseline

single-core MGT algorithm and our modifications, while in

Section IV-B we explain our parallel and distributed PDTL

system and prove its theoretical properties.

A. Massive Graph Triangulation

Algorithm 1 presents the MGT algorithm [14] under the

small-degree assumption: that every vertex v ∈ V has

dG∗(v) ≤ cM/2 for some implementation-specific constant

c < 1.1 The idea behind MGT is that given an oriented graph

G∗, one can find all triangles by loading consecutive edges

into memory and iterating over all vertices u and their out-

edges to find all triangles with cone vertex u and pivot edge

loaded into memory. By using hash structures on the loaded

edges and N(u) this can be done in a CPU- and I/O- efficient

way. However, as we illustrate in Section IV-A1, the high-

level algorithm does not correspond to its implementation,

1We note that our code does not make such assumption, and refer the
reader to [14] for a way to remove it.
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so we modify MGT, and show in Section IV-A2 that our

modifications do not alter the algorithm’s efficiency.

Algorithm 1 MGT

Input: An oriented G∗ = (V,E∗)
Output: All triangles in G
while there are edges in E∗ to be read do

Read the next cM edges into memory

Create hash structures on the edges

for u ∈ V do
Read N(u) from disk

Construct hash structures on N(u)
Report triangles with cone u and pivot in memory

Release the structures on N(u)

1) Modifications: Although only a binary for MGT is

available at [12], during our experimentation we hypoth-

esized that the implementation of MGT does not use ex-

plicit sets, but arrays. Indeed, if the adjacency list for any

given vertex is not sorted, the given implementation misses

triangles, though the manual [13] does not make mention

of such requirements. Clearly, if any types of sets were

constructed, this need for a sorted adjacency list would not

be present. This belief was further verified by our own

implementation, where using sets and maps of any kind

made our implementation more than 10× slower.

Consequently, our implementation deviates from Algo-

rithm 1 by utilizing sorted arrays instead of sets. Specifically,

it is assumed (for compatibility with the MGT implementa-

tion [12]) that the file format for the graph is such that if

v < w then NG(v) comes before NG(w) and if additionally

v, w ∈ NG(u) then v comes before w in NG(u).
Following the notation in [14], let Emem denote the

set of edges in memory, Vmem its endpoints, V +
mem those

v ∈ Vmem that have outgoing edges in Emem, and

N+(u) = N(u) ∩ V +
mem. In other words, V +

mem = {u ∈
V |∃v ∈ V : (u, v) ∈ Emem}, and for symmetry let

V −mem = {u ∈ V |∃v ∈ V : (v, u) ∈ Emem}, with Vmem =
V +
mem ∪ V −mem. Additionally let vlow = minv∈V +

mem
v and

vhigh = maxv∈V +
mem

v.

Because the graph is sorted, we know that if v < vlow
or v > vhigh, then v 	∈ V +

mem. As a result, we can split

Emem into two arrays: edg which stores the sequence of

out-neighbors and ind that stores the degree of v and

offset into edg at location v − vlow. In other words, the

out-edges of v (provided it is in memory) are stored at

Ev =edg[ind[v − vlow]].

Moreover, because |N+(u)| ≤ |N(u)| ≤ d∗max, and

because we know d∗max from the orientation step, N(u) and

N+(u) can also be represented by static arrays of size d∗max,

called nm and nmp respectively.

As a result, the modified MGT (Algorithm 2) works as

follows on the sorted and oriented graph: it loads the next

Θ
(
|E|
M

)
edges into edg and ind as indicated above. Then,

it iterates over the entire graph vertex by vertex, and for

each vertex u, it does the following:

1) Stores N(u) into the array nm
2) Evaluates N+(u) into the array nmp by iterating over

v ∈ N(u) and checking ind for out-neighbors

3) For each v ∈ N+(u), it reports triangle (u, v, w) with

cone u and pivot w for each w ∈ N(u) ∩ Ev

Algorithm 2 Modified MGT

Input: A sorted, oriented G∗ = (V,E∗)
Output: All triangles in G
while there are edges in E∗ to be read do

Read the next c′M out-neighbors into edg and store

in ind the degrees and offsets

for u ∈ V do
Read N(u) from disk to array nm
Write N+(u) to nmp using nm and ind
for v ∈ nmp do

for w ∈ nm ∩ edg[ind[v − vlow]] do
Report (u, v, w)

Clear nm and nmp

2) Analysis: First of all, because Θ(M) edges are loaded

at each step there are h = Θ(|E|/M) iterations, and

each iteration performs
|E|
B I/Os to read over the graph.

Additionally, the cost of outputting T triangles is T
B , for

a total I/O complexity of O
(
|E|2
MB + T

B

)
.

For the CPU complexity, we note that checking whether

v ∈ V +
mem amounts to checking whether ind[v − vlow]

has a positive degree, which is a O (1) operation, so con-

struction of Emem, and V +
mem (together with clearing it)

takes Θ(|Emem|) = Θ (M) time. Construction of N(u)
and N+(u) thus also takes Θ(|N(u)|) = Θ (dG∗(u)) time.

Since each edge is examined once in a single iteration,

each iteration incurs time O (|E|) for construction of these

structures, for a total of Θ
(|E|2/M)

time.

Set intersection of two ordered sets of size m,n takes

time O (m+ n) using a naive set intersection, thus the total

complexity for the triangle operations is

h∑
i=1

∑
u∈V

∑
v∈N+

i (u)

(dG∗(u) + dG∗(v))

where N+
i (u) denotes N+(u) in the i-th iteration. First,

note that any v is in at most 2 (consecutive) N+
i (u) for any

given u. This is due to the small degree assumption, because

if the adjacency is split the first time, the second time it will

entirely fit in memory. Thus, we can reorder as follows:
h∑

i=1

∑
u∈V

∑
v∈N+

i (u)

=
∑
u∈V

h∑
i=1

∑
v∈N+

i (u)

≤ 2
∑
u∈V

∑
v∈N+(u)

Examining each term separately:

373372372372372372



∑
u∈V

∑
v∈N+(u)

dG∗(u) =
∑
u∈V

d2G∗(u)

Additionally,

∑
u∈V

∑
v∈N+(u)

dG∗(v)

=
∑
v∈V

dG∗(v) (dG(v)− dG∗(v))

=
∑
v∈V

dG(v) · dG∗(v)− ∑
v∈V

d2G∗(v)

because dG(v)−dG∗(v) represents the number of incoming

vertices to v. The sums of d2G∗(v) cancel out, so we need

to calculate
∑
v∈V

dG(v) ·dG∗(v). This is where the arboricity

becomes useful (Theorem IV.1 is adapted from — but is not

identical to — the one given in [14]):

Theorem IV.1 (Ordering).
∑
v∈V

dG(v) · dG∗(v) = O (α|E|)

Proof:∑
v∈V

dG(v) · dG∗(v) =
∑
v∈V

∑
u∈N+(v)

dG(v)

=
∑

(v,u)∈E∗
dG(v)

(by orientation) ≤ ∑
(v,u)∈E

min{d(v), d(u)}
(by Theorem III.4) = O (α|E|)

Note that the sorting of the original file takes O (sort (|E|))
I/Os and O (|E| ln |E|) CPU time [2], while the orientation

itself takes O (scan(|E|)) I/Os and O (|E|) CPU time, pro-

vided that the entire degree array can fit in memory.2 If not,

in the worst case (e.g. for the complete graph Kn), a vertex

has a neighbor in every block. As a result, for each node,

there must be O (|V |/B) I/Os, for a total of O (|V |2/B)
I/Os, just for the degree file. Because |E| = O (|V |2),

the total complexity is O (
scan

(|V |2)) I/Os and O (|E|)
CPU time. This does not make a difference in dense graphs

(except for the asymptotic constant), but it is still a point of

omission for the analysis presented in [14]. Consequently,

the overall complexity is identical to that of the baseline

MGT, and is summarized in Theorem IV.2.

Theorem IV.2 (MGT Complexity). In summary, our imple-
mentation of MGT has an I/O complexity of

O
( |E|2
MB

+
T

B

)

and CPU complexity of

O
( |E|2

M
+ α|E|

)

If the graph is not already sorted, an additional
O (sort(|E|)) I/Os and O (|E| log |E|) computations are
needed, and if |V | < M , O (

scan(|V |2)) I/Os are necessary
to orient it.

2The degrees and adjacency lists for all vertices are stored in separate
files of sizes |V | and |E| respectively (Section V-B).

B. Distributed Framework

For our distributed protocol, every machine is sent a copy of

the entire graph, and every available processor is allocated

a (contiguous) set of edges S, and is responsible for finding

all triangles in the graph which contain pivot edges in S, by

using MGT. This is significantly different from the existing

parallel triangle-counting systems, where different machines

are responsible for different subsets of the vertices.

1) Description: In our framework, a master machine

delegates responsibility to the N client machines (including

itself), and combines their results. Because the orientation

step need only occur once, it is the responsibility of the

master to apply the degree-based order to the graph in

question, before sending it over the network. The master

then sends the oriented graph to each client, together with

the indices that each processor is responsible for. Each core

processes the adjacency list between the specified indices.

The client combines the triangle counts (and possibly the

triangle lists if necessary), and sends these back to the

master, which atomically sums the results.

Our PDTL framework is oblivious to how the orientation

step is performed, and what specific (contiguous) subset

of edges is assigned to each processor. In a naive imple-

mentation, orientation is performed sequentially, and edges

are split equally to all processors. However, our master

parallelizes the orientation, and includes a load-balancing

step to equalize the time taken for triangle counting in

each of the processors. More concretely, for multicore
orientation, the master reads the entire degree array into

memory (provided |V | < PM ), and each core performs

the orientation on a contiguous set of edges, which are

then concatenated. Load balancing similarly calculates the

number of in-edges for each vertex after orientation (equal

to dG(v) − dG∗(v)), and splits the edges equally amongst

the processors so that the are still contiguous, and the sum

of these in-degrees are approximately the same among all

processors. This provides an estimate for the average size of

N+(u), and thus the number of required intersections.

Figure 1: PDTL protocol overview
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Our protocol is illustrated in Figure 1. For clarity, the

master process is duplicated, and is shown to run on a

separate machine from the clients. Boxes represent different

processes and clients, while ovals within boxes represent

threads. Lines between boxes represent network traffic, with

solid lines representing requests, and dotted lines answers.

Finally, Ci,j represents the “configuration” for processor j
on machine i: the memory allocated for that thread, together

with the section of the graph for which the processor is

responsible. Note that the master starts the triangle count-

ing operations before the network transfer has finished, so

sending the graph does not pose a big bottleneck in practice.

2) Analysis: A problem with distributed algorithms using

graph partitioning is that they assume each partition can

fit in memory. Though for smaller graphs this may be the

case, in dense graphs, such as the complete Kn, this is

no longer true. Such algorithms require Θ
(
n2

)
memory

on each of the processors, and each of the NP processors

must receive the entire graph. However, our algorithm re-

quires memory proportional to the maximum degree, and

the graph is only duplicated once per the N nodes. As a

result, PDTL has lower network traffic and is preferable

for dense graphs, and is also able to accommodate more

computational environments. More concretely, PDTL incurs

Θ(N · (P + |E|) + T ) network traffic in total, where T is

the total number of triangles in the graph (or 0 for triangle

counting), due to the communication cost per processor, and

the duplication across the N nodes.

Since the master is responsible for orienting the graph

according to the degree-based order, it incurs O (scan(|E|))
I/Os and O (|E|) CPU time, assuming there is enough

memory to hold V , as explained in Section IV-A2. This

is true even for multicore orientation, as the graph is read

once over all cores, but with an additional O (P ) term: one

for each of the cores. For load balancing, the vertex degrees

are read once, with PM = O (|E|) edges sampled, and the

results are stored for NP processors using O (scan(|V |))
I/Os and O (|V |+max(|E|, PM)) = O (|E|) CPU time.

The master is also responsible for adding the triangle counts

received (in parallel) and also concatenating the triangle

listing (sequentially), for a CPU complexity of O (N + T )
and an I/O complexity of O ((T +N)/B), as there might

be an additional block for each of the N machines.

Since each processor is responsible for a unique (con-

tiguous) section of the graph, there are no repeated com-
putations. The chunk that each processor is responsible

for has size S = |E|
NP , and each processor must make

R =
⌈

S
M

⌉
iterations over the graph.3 During these iterations,

the graph is read once for creation of the vertex structures,

and contributes O (|E|) processing time. Though it would be

impossible to calculate exactly the amount of computations

performed in each iteration for counting triangles as it de-

3For the load-balanced approach, this is only true in summation.

pends closely on the graph structure, we know by the proof

of Theorem IV.2 that over all processors, these computations

sum to O (α · |E|).4 Consequently, total computations across

all processors are O
(
NP ·

⌈
|E|

NPM

⌉
· |E|+ α · |E|

)
=

O
(
NP · |E|+ |E|2

M + α · |E|
)

as
⌈
|E|

NPM

⌉
≤ |E|

NPM + 1.

The I/O complexity is also easy to find. As above, each

processor makes R =
⌈
|E|

NPM

⌉
iterations over the graph, and

outputs a variable number of triangles t, making its I/O com-

plexity equal to O (R · scan(|E|) + scan(t)). As a result,

the total I/O over all processors is O
(
NP |E|B + |E|2

MB + T
B

)
One of the important distinctions between PDTL and frame-

works which load entire subgraphs in memory is that in

PDTL, |E| can still be larger than the total amount of

available memory NPM . Moreover, we see that when

NPM > |E|, we can reduce M to
|E|
NP without affecting

any individual processor, whereas the total amount of mem-

ory needed in frameworks like PATRIC and PowerGraph

can exceed |E|, due to overlapping subgraphs. Finally, it is

important to note that the limiting factor after the graphs

have been sent to all machines is the processor responsible

for the highest number of triangles, so increasing the total

number of processors is usually preferable, even with the

same amount of total memory, as we also identify in Section

V. Our findings are summarized in Theorem IV.3:

Theorem IV.3 (PDTL Complexity). Letting T represent the
number of triangles in the case of triangle listing and 0 in
the case of triangle counting, and assuming |E|

NP > d∗max,
PDTL incurs across all cores a total of:

• Θ(NP +N |E|+ T ) Network traffic

• O
(
NP |E|+ |E|2

M + α|E|
)

CPU computations

• O
(
NP |E|B + |E|2

MB + T
B

)
I/Os

V. EVALUATION

Due to the wide range of environments in which PDTL

can run, our extensive experiments cover single-core, lim-

ited memory machines to multi-machine, multi-core, large

memory clusters. We discuss our setup and methodology

in Section V-A, and introduce our datasets in Section V-B.

We discuss the pre-processing and orientation operations

in Section V-C, and compare them to those of competing

algorithms. In Section V-D we discuss the core properties

of our PDTL algorithm, in both the local and distributed

environments, including the effects of load balancing. In

Section V-E, we compare our algorithm against MGT, OPT,

and PowerGraph extensively, and show that PDTL demon-

strates superior performance.

4If S is smaller than the maximum degree, the complexity changes to
O (NP · α · |E|) as a single vertex can be split across NP machines.
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A. Setup and Methodology

To illustrate the breadth of environments in which PDTL

supports triangle counting, we conducted experiments in

multiple different clusters and machine configurations:

• Amazon EC2: We used 4 Amazon EC2 c3.8xlarge
instances, each of which contained 32 vCPU units,

60GB of memory, and were connected using a 10

Gigabit Ethernet network. For the PowerGraph mea-

surements, we rented 4 Amazon EC2 r3.8xlarge
that are similar to c3.8xlarge instances, but have

244GB of memory in order to satisfy PowerGraph’s

memory requirements.

• Local Cluster: More distributed experiments were con-

ducted in a local 4-node Linux cluster machine running

8 Virtual Xen nodes, each with 4 cores of an Intel Xeon

E5607, 40GB of memory and a Samsung 840 SSD.

• Local Multicore: Additional multicore experiments

were conducted in a local machine running Linux with

2 AMD Opteron 6344 CPUs for a total of 24 cores,

256GB of memory, and a Samsung 840 SSD.

• Local Multicore Windows: Since we only had access

to an OPT [15] Windows binary, we used a Windows

box, with performance similar to the above, having 2

Intel Xeon E5-2420 CPUs with support for 24 concur-

rent threads, 128GB memory, and a Samsung 840 SSD.

Our code was compiled with G++, using the -O3 opti-

mization option, and explicitly cleared disk caches before

each experiment was run. Though our code fully supports

triangle listing, our experiments only measured counting

time, to allow comparison with alternatives. To account for

random variation and general fluctuations, we repeated each

experiment 3 times, and present the averages here. Full

results can be found in our technical report [10].

B. Datasets

Table I lists the real and synthetic graphs used for our

experiments. Our synthetic RMAT graphs are scale-free

graphs produced by the RMAT generator [6], such that

RMAT-n contains 2n vertices and 2n+4 edges. Our triangle

counts for real graphs have been verified to be correct by

comparing to SNAP [17] and the results in OPT [15].

Our PDTL framework assumes that graphs are in binary,

bi-directional format, with degrees of vertices and their out-

edges in separate files. Moreover, we assume that edges are

sorted by source and destination, partly for compatibility

with the original MGT binary [12]. Since all efficient graph

storage techniques operate on binary data, and all counting

algorithms require efficient access to neighbors of a vertex,

we exclude any time to convert a graph to this format from

our discussion.5 However, because the degree-based ordering

is non-standard, we consider the orientation cost separately,

5Note that OPT [15] requires that the input be sorted by vertex degree
which is not included in the measurements, so this is a fair starting point.

and include it in our measurements. Similarly, we include

copying costs from the master to the clients, to illustrate

that our algorithm runs faster, even with graph duplication.

Though other architectures such as NFS or HDFS were

considered, we store a graph copy locally, since each graph

is read at least once per processor. As seen in Table II, the

average copying time is up to 10× less than total time.

C. Preprocessing

Table III presents the time orientation took in our Local

Multicore machine with 24 cores, compared to Power-

Graph’s setup time and OPT’s database creation, whose

pre-processing steps are much slower. Figure 2 shows a

5.2× speed-up of multicore orientation over the single-core

solution, and shows that our SSD is capped at 500MB/s.

Graphs d∗max PDTL PowerGraph OPT
LiveJ1 687 1.4 - 106.8
Orkut 535 3.6 25.7 43.6

Twitter 4,102 32.8 233.2 437.6
Yahoo 1,540 235.6 - -

RMAT-26 2,964 29.3 213.0 910.3

Table III: Preprocessing time (s): PDTL (Orientation),

PowerGraph (Setup), OPT (Database Creation)
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Figure 2: PDTL in Local Multicore: Orientation

D. PDTL Properties

In this section we examine the properties exhibited by PDTL

without comparing it to other systems.

1) Local: We tested weak scaling of PDTL in the Local

Multicore machine, by increasing the number of cores, but

keeping the total amount of memory constant at 128GB,

as shown in Figure 3. Specifically, using 2 cores halves

calculation times, and this effect persists at a decreasing rate.

Synthetic graphs exhibit better speedups due to their scale-

free nature, as does the Twitter graph. However, due to its

structure, the Yahoo graph only exhibits a 5× speedup at 24

cores, compared to a 13× speedup for the other graphs.

2) Distributed: We also ran distributed experiments in

Amazon EC2, with 1GB of memory/core, as shown in Figure

4. We observe the following:

• The Twitter graph shows good scalability, while the

Yahoo graph, being sparser and having a low average
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Graph Nodes Edges Triangles Size AvDeg STD MaxDeg Source
soc-LiveJournal1 4.8M 68.0M 285,730,264 365MB 17.8 52 20,334 [17]

com-Orkut 3.1M 117.2M 627,584,181 917MB 76.0 155 33,313 [17]
Twitter 61.6M 1.5B 34,824,916,864 9.4GB 57.7 402 2,997,487 [16]
Yahoo 1.4B 6.6B 85,782,928,684 59GB 17.9 279 7,637,656 [1]

RMAT-26 67.1M 1.1B 51,559,452,522 8.4GB 61.2 632 430,269 [6]
RMAT-27 134.2M 2.1B 114,007,006,286 17GB 63.6 601 676,199 [6]
RMAT-28 268.4M 4.3B 251,913,686,661 34GB 66.0 660 1,062,289 [6]
RMAT-29 536.9M 8.6B 556,443,109,053 68GB 69.0 782 1,665,635 [6]

Table I: Graphs used for the experiments

Graph 1 node 2 nodes 3 nodes 4 nodes
Total time Total time Avg copy time Total time Avg copy time Total time Avg copy time

Twitter 164.2 127.4 13.5 116.0 16.2 109.0 19.1
Yahoo 397.9 364.9 106.0 338.6 112.4 433.8 186.4

RMAT-26 370.4 209.7 14.7 166.8 16.7 151.3 19.0
RMAT-27 841.1 479.5 27.9 373.1 27.9 306.6 33.3
RMAT-28 1876.8 1077.4 52.1 814.4 57.2 672.1 68.3
RMAT-29 4644.5 2531.0 106.6 1860.3 138.4 1565.0 154.6

Table II: PDTL in EC2: Total time and average copy time per remote node (s)
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Figure 3: PDTL in Local Multicore: Total Time
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Figure 4: PDTL in EC2: Total Time

degree, does not benefit from more than 16 cores. Con-

sequently, the structure of each graph heavily affects

processing time, as also indicated by our analysis.

• RMAT graphs are much denser and more computation-

ally intensive. This results in good scalability even up

to 128 cores (4 nodes), as copy overhead is negligible.

• Comparing total computation time (Table II) and ori-

entation time (Table III) further illustrates the unusual

behavior of the Yahoo graph. Specifically, even though

orientation only represents a small proportion of overall

runtime for Twitter and RMAT, it comes close to 50%

for the Yahoo graph on 3 nodes.

• Table II also details the copy times (averaged over the

number of non-master nodes) for each of our graphs.

As expected, this number scales with increasing graph

size (recall Yahoo is larger than RMAT-28, but smaller

than RMAT-29), and with increasing number of nodes

(due to more limited network bandwidth). The Yahoo

graph also presents an anomaly in the copying of the

graph which results in higher than expected increase in

copy time for 4 nodes due to improper I/O balancing

of the master node (Section V-D4): since the Yahoo

graph results in heavy I/O due to its structure, it causes

an initial I/O bottleneck when the master is performing

its computations while also copying the graph.

3) Memory: To identify the effect of limited memory, we

ran experiments in our Local Cluster varying the number of

nodes, and the total amount of memory available per node

(fixing P = 4 cores/node). As can be seen in Figure 5, the

effect of limiting memory is negligible, and as a matter of

fact more memory can lead to slightly higher costs due to

array initialization overhead, as indicated in Section IV-B2.

Tw
itt
er
Ya
ho
o

RM
AT
26

RM
AT
27

RM
AT
28

RM
AT
29

0

2000

4000

6000

8000

10000

12000

S
e
c
o
n
d
s

4 nodes (16 cores)

32 GB RAM

8 GB RAM

Tw
itt
er

Ya
ho
o

RM
AT
26

RM
AT
27

RM
AT
28

RM
AT
29

0

1000

2000

3000

4000

5000

6000

S
e
c
o
n
d
s

8 nodes (32 cores)

32 GB RAM

8 GB RAM

Figure 5: PDTL in Local Cluster: Memory vs. Calc Time

4) I/O and CPU: Despite the fact that PDTL is an

external-memory algorithm, in our Amazon EC2 experi-

ments we discovered that it is not I/O-bound. Specifically,

measuring the total I/O for different numbers of cores and

nodes on the Yahoo and Twitter graphs, we found that

it represents a small percentage of the computation time

(Figure 6). As explained in Section IV-B2, the absolute time

spent on I/O operations increases as the number of cores

increases, and is tied to the concrete graph structure, as

indicated by the difference between Twitter and Yahoo.

Figures 7 and 8 show the per node I/O and CPU breakdown

for Twitter and Yahoo respectively. For the Twitter graph,

our load-balancing mechanism works fairly well, and there is
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Figure 6: PDTL in EC2: Total CPU and I/O breakdown for

various number of cores and nodes

no correlation between the CPU and the I/O operation times.

However, the Yahoo graph is heavily skewed, and higher

I/Os appear at the nodes with highest computation times,

further illustrating the point that the concrete graph structure

heavily influences the overall runtime of our algorithm.
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Figure 7: PDTL in EC2: Twitter CPU and I/O breakdown
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Figure 8: PDTL in EC2: Yahoo CPU and I/O breakdown

5) Load Balancing: We compared in our Local Multicore

machine the naive approach of allocating the same number

of edges for each core to our load balancing solution. Figure

9 contains our findings for 16 and 24 cores, and clearly

illustrates up to a 3× improvement on the calculation time,

even for the Yahoo graph. Table IV details the total I/O and

CPU computations for all processors within each node in

Amazon EC2. As can be seen, our load-balancing mecha-

nism leaves room for improvement, since the discrepancies

between nodes increase as more nodes are added: even

though there is only a 1% difference for 2 Twitter nodes, the

difference increases to 13% for 4 nodes, while for Yahoo,

the number increases from 87% to 130%.

E. PDTL Comparisons

In this section we examine our PDTL algorithm in the

context of competing frameworks.

1) MGT: To compare PDTL against single-core MGT,

we conducted experiments in Amazon EC2 nodes, looking

at just the calculation times. Figure 10 shows that using

just 2 processors halves the processing time for all real
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Figure 9: PDTL in Local Multicore: Load Balancing

graphs, and using 32 cores provides a 16× speedup for the

Twitter graph. Figure 11 similarly shows that the speedup

for calculations of distributed, multicore PDTL over MGT

reaches up to 55× with 4 nodes. This effect is especially

pronounced for scale-free RMAT graphs, whereas speedups

reach 30× for Twitter, but only 4× for Yahoo. It should be

noted that the comparison here is against our implementation

of MGT, because the provided MGT binary [12] misreported

triangle counts for some of the larger graphs.6 As a result, we

cannot directly compare our implementation to the baseline

one, but for completeness we note that for small graphs the

performance was similar to the given binary.
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Figure 11: PDTL in EC2: Speedup over MGT

2) OPT: We compared our multi-core algorithm to OPT

[15] in our two Local Multicore machines. We measured

setup time (orientation for PDTL and database creation for

OPT) and calculation time separately, and report our results

when using 24 cores in Table V. With the exception of the

LiveJournal dataset, our calculation time is always (and up

6MGT reported 627, 506, 739 triangles for Orkut and 559, 420, 538
triangles for Twitter, compared to 627, 584, 181 and 34.8B respectively.
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Graph 2 nodes 3 nodes 4 nodes

CPU: Twitter 2599.9 2643.0 2016.7 1920.4 2132.1 1741.0 1613.1 1663.5 1848.8
Yahoo 5177.7 2817.8 5296.2 3545.4 2412.4 5352.0 3765.8 2698.7 2317.0

RMAT-26 5173.9 4115.3 3863.1 3181.3 2758.7 3237.1 2674.3 2414.3 2099.3

I/O: Twitter 53.5 23.7 54.4 22.4 23.0 53.5 13.3 17.8 17.3
Yahoo 580.8 28.3 422.4 32.6 24.7 293.1 48.1 24.9 22.4

RMAT-26 155.2 29.2 143.5 22.1 20.9 85.2 19.6 18.4 15.3

Table IV: PDTL in EC2: Per node total CPU and I/O breakdown (s)

to 2×) faster than OPT’s calculations, and our setup time

is up to 75× faster. When looking at the total time, PDTL

is up to 3.5× faster for large graphs (and 7.8× faster for

LiveJournal). As can be seen in Figure 12, these effects

remain for any number of cores, though they are even more

pronounced for fewer ones. We should note that the OPT

binary we received occasionally gave inconsistent triangle

counts and could not run with M = 128GB, hence the

memory discrepancy in our testing.

Graph PDTL OPT
Orientation Calc Database Calc

LiveJ1 1.4 12.4 106.8 3.3
Orkut 3.6 11.4 43.6 11.7

Twitter 32.8 262.9 235.2 437.6
Yahoo 235.6 357.9 - -

RMAT-26 29.3 520.4 910.3 1011.2

Table V: Local Multicore: PDTL and OPT Performance (s)
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Figure 12: Local Multicore: PDTL (128GB) and OPT

(100GB) on RMAT-26

3) PowerGraph: We also compared our distributed

framework to PowerGraph [11] in Local Cluster and Ama-

zon EC2. For a fair comparison, we consider two measures:

the total runtime of both programs (including orientation in

PDTL’s case), and the pure calculation time (including load-

balancing costs for PDTL). For PowerGraph, the calculation

time is the reported time of the triangle counting algorithm.

For PDTL, the overall calculation time corresponds to the

maximum individual calculation time between the different

nodes. This is because the nodes start calculating as soon as

they receive the files and, thus, the calculation time of the

“struggler” node determines entirely the overall calculation

time. The value total−calc thus represents the setup time for

PowerGraph, while it represents a combination of network

costs and workload imbalance for PDTL.

Figure 13 shows that although calculation times are

similar (with PDTL presenting an advantage as the graphs

become bigger), with setup times, PDTL is more than

2× faster. Table VI illustrates this point more clearly, and

also highlights that for larger graphs, PowerGraph runs

out of memory. This is especially noteworthy, given that

PowerGraph experiments were run on nodes with 244GB

of memory each, for a total of 976GB, while our PDTL

experiments were run using only 1GB/core (with much

lower requirements) for a total of 128GB of memory. This

validates our analysis in Section IV-B2, illustrating that

partitioning-based approaches do not work for large graphs,

and that external-memory algorithms like PDTL are needed.
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Figure 13: EC2 (4N): PDTL and PG breakdowns

Graph PDTL PowerGraph
Calc Total Calc Total

Orkut 6.9 11.7 4.9 30.6
Twitter 88.5 141.8 97.3 330.5
Yahoo 323.9 669.4 OOM OOM

RMAT-26 138.6 180.6 176.7 389.7
RMAT-27 302.1 366.7 389.5 810.5
RMAT-28 672.1 790.9 OOM OOM
RMAT-29 1533.5s 1821.2 OOM OOM

Table VI: PDTL and PowerGraph in EC2 (s). OOM repre-

sents an out-of-memory exception
4) Other Frameworks: Although we could not obtain a

copy of the PATRIC binary, the original paper [3] indicates

that PATRIC counts the triangles in the Twitter graph in

564s using 200 cores, and 4GB of memory/core. In another

recent experiment [15], PATRIC was run in a cluster of 31

nodes with 12 threads per node (372 threads total) and 2GB

of memory/core for a time of 608s. In either case, PDTL

is 4× faster using only 96 cores and 1GB of memory/core,

and is still faster even when the number of cores is reduced

to 8, again highlighting our fast performance under low

memory requirements. Finally, it is worth briefly mentioning

that MapReduce-based algorithms such as CTTP [21] are

not competitive, spending 5520s calculating Twitter triangles

using 40 nodes with 4GB of memory/node.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our Parallel and Distributed

Triangle Listing (PDTL) framework, the first distributed

triangle listing and counting algorithm that focuses on

external-memory I/O efficiency, but also provides theoretical

CPU and Network guarantees. Our framework works well

in a variety of computational environments, and is based

on the recent MGT algorithm [14]. Key to our engineering

approach is the combination of both a distributed setting and

external memory. This gives us a high amount of parallelism

whilst freeing us from the usual distributed constraint of

fitting entire subgraphs in memory. Our resulting imple-

mentation is scalable and performs especially well in low-

memory scenarios. As graphs become larger, the requirement

of fitting even parts of a graph in memory will no longer

be viable, as we also verified experimentally: our algorithm

was able to accommodate for massive graphs containing

over 8 billion edges with little memory, while competing

partitioning-based frameworks ran out of memory even using

almost 1TB of RAM.

More generally, our extensive experiments demonstrate

that PDTL is highly scalable across multiple cores and

machines, with low memory requirements, even for graphs

with hundreds of millions of vertices, and billions of edges.

Over the Twitter data set [16], our algorithm is faster than all

of the state-of-the-art algorithms in distributed and parallel

triangle counting: PDTL is 4× faster than PATRIC [3], 3×
faster than OPT [15], and 2× faster than PowerGraph [11].

Future work could focus investigation on different types of

disks and file systems (for instance distributed file systems,

or lazy evaluation), as a means of removing any copying

bottlenecks that may exist. Such research could be informed

by PowerGraph’s general-framework, which fares better

compared to triangle-specific systems. Even though its high

memory requirements influence the results, it would be

interesting to more formally investigate this. Additionally,

more detailed investigations could try different techniques

of load balancing, and provide a better understanding of the

optimal number of machines and cores for any given graphs.

As we identified in our experiments, scale-free graphs scale

extremely well, even up to 8 machines, while the real-world

Yahoo graph [1] exhibits a slowdown at even 4 nodes.

Overall, our framework provides a starting point towards

many directions, including dynamic or approximate triangle

counting, but more importantly for investigating other graph

algorithms and processing systems which can benefit from

our disk-based approach for large datasets.
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