
L-Graph: A General Graph Analytic System
on Continuous Computation

Weixiong Rao
School of Software

Engineering
Tongji University, China

wxrao@tongji.edu.cn

Eiko Yoneki
Computer Laboratory

University of Cambridge, UK
eiko.yoneki@cl.cam.ac.uk

Lei Chen
Department of Computer
Science and Engineering
Hong Kong University of
Science and Technology
leichen@cse.ust.hk

ABSTRACT
Massive graph analytics have become an important aspect of mul-
tiple diverse applications. With the growing scale of real world
graphs, efficient execution of entire graph analytics has become
a challenging problem. Recently a number of distributed graph
processing systems (Pregel [6], PowerGraph [1], Trinity [8]) and
centralized systems (GraphChi [2] and XStream [7]) have been de-
signed. Compared with high expense of distributed systems de-
ployed on a cluster of commodity machines, the centralized sys-
tems on cheap PCs are very attractive propositions with low ex-
pense and comparable performance. By careful analysis, we fin
that (i) the graph computation abstraction in the centralized sys-
tems inherently adopted a batch model similar to the distributed
systems. The batch model could lead to suboptimal performance.
(ii) The execution model in the centralized systems advocates se-
quential operations on Solid State Disk (SSD) which are still slower
than memory-based operations.
In order to tackle the above efficiency issues in centralized sys-

tems, we firs propose a novel continuous graph computation ab-
straction. This model continuously processes edges and updates
computation results. It allows much faster convergence than the
batch model. Second, we propose to maintain vertex states in mem-
ory and advocates memory-based operations for much faster I/O
operations than sequential operations on SSD. Finally, we design an
adaptive memory layout to minimize overall I/O cost. We develop
a proof of concept prototype L-Graph and implement four example
graph analytic applications atop L-Graph. Preliminary evaluation
on real and synthetic graphs have verifie that the proposed con-
tinuous model greatly performs the widely used batch model and
L-Graph can achiever much higher efficiency than the state of arts
GraphChi [2].

1. INTRODUCTION
Graph analytics are becoming increasingly important for numer-

ous applications, ranging across the domains of bioinformatics, so-
cial networks, computer security and many others. Such domains
frequently require the analysis of an entire graph and identify in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profi or commercial advantage and that copies bear this notice and the full cita-
tion on the firs page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specifi permission
and/or a fee. Request permissions from Permissions@acm.org.
HotPlanet’15, September 7, 2015, Paris, France.
c© 2015 ACM. ISBN 978-1-4503-3534-8/15/09 ...$15.00.
DOI: http://dx.doi.org/10.1145/2798087.2808077.

teresting patterns. Unfortunately, the growing scale of real world
graphs has made efficient execution of entire graph analytics very
challenging, especially when external storage is utilized. Poor lo-
cality of access [5] leads to high I/O overhead caused by slow ran-
dom access to traditional magnetic disks.
To address this challenge, a number of distributed graph process-

ing platforms, such as Pregel [6], PowerGraph [1] and Trinity [8],
have been designed. In these distributed systems, each machine
maintains its portion of the graph into fast memory. By updat-
ing their own portion of the graph and broadcasting the changes,
the machines then work cooperatively to offer a distributed shared
memory approach.
Compared with high expense to build the above large scale dis-

tributed systems on a cluster of commodity machines, some recent
centralized systems GraphChi [2] and XStream [7] work on a sin-
gle machine. They rely on the use of external storage, e.g., Solid
State Disk (SSD), to perform the computation on a single machine.
These systems often exhibit reasonable runtime performance but at
a fraction of the expense compared to the clustered machines.
Unfortunately, we show that the centralized systems still suf-

fer from the following performance issues. (i) Suboptimal per-
formance: The key of general (distributed or centralized) graph
systems is graph computation abstraction. The gather/scatter ab-
straction and its variations have been widely used, such as syn-
chronous gather/scatter model in Pregel and asynchronous gath-
er/scatter model in GraphLab [3, 4] and PowerGraph [1]. The dis-
tributed systems like Pregel, GraphLab and PowerGraph gather in-
coming messages from neighbor vertices, next process a bunch of
gathered messages together to invoke user define functions (UDF-
s), e.g., the function used to compute PageRank, and finall scatter
the updates of computed results also as a bunch of messages to
outgoing neighbors. The batch manner avoids sending a piece of
message for each update, and consequently saves network band-
width in a distributed setting. We will show that centralized sys-
tems GraphChi and XStream inherently adopt the batch manner to
implement the gather/scatter abstraction. Due to the significant
ly difference between the distributed and centralized settings, the
batch manner could lead to suboptimal performance in centralized
systems, which will be verifie in our experimental results.
(ii) Relatively slower SSD-based operations: Given limited

memory of a single machine, the centralized systems cannot load
an entire graph into memory, and frequently use external storage,
e.g., SSD. Since sequential access to SSD can offer much faster I/O
throughput than random access, GraphChi and XStream sequen-
tially read graphs from SSDs and sequentially write computation
results back to SSDs. The SSDs become an intermediate media to
propagate the update of computation results from a vertex to an-

other. Sequential write to SSD, though faster than random write,
is still slower than memory-based read and write. We believe that
memory-based operations provide a new opportunity to offer high-
er computation efficiency, instead of SSD-based sequential write.
To address the above challenges, in this paper, we design a gener-

al graph analytical system, namely L-Graph, on SSD-based single
machines, with the following contributions.

• We propose a new continuous graph computation abstrac-
tion. The novelty of the abstraction is to continuously ex-
ecute the UDFs, incrementally update vertex states (a.k.a
computation results, such as PageRank of a vertex), and fi
nally acquire the correct computation result when an entire
iteration of graph processing is completed. The continuous
style can help to quickly propagate the updated vertex states
for faster convergence.

• For the graph execution model, L-Graph advocates the main-
tenance of vertex states inside memory. The updates of ver-
tex states can be immediately seen even inside the same com-
putation iteration. Furthermore, L-Graph adopts memory-
based updates, instead of sequential write onto SSD, to quick-
ly propagate updated vertex state. Finally, we design an ef-
ficien memory layout scheme to minimize the overall I/O
cost, when main memory can maintain a subset of vertex s-
tates only.

• For demonstration, we implement four example graph ana-
lytic applications atop L-Graph: Weakly Connected Compo-
nents (WCC), PageRank, graph traversals and Single Source
Shortest Path (SSSP). The implementation optionally uses a
user define iterator (UDI) to improve graph traversals and
SSSP for faster running time.

• We develop a proof of concept prototype and perform ex-
tensive evaluations on both real and synthetic graphs. The
experimental results verifie that the proposed continuous
model greatly outperforms the widely used batch model and
L-Graph can achieve much faster running time than the state
of the art GraphChi.

The rest of this paper is organized as follows. Section 2 reviews
the preliminaries and related works. Section 3 introduces the con-
tinuous computation model, and Section 4 gives the execution en-
gine. After that, Section 5 evaluates L-Graph. Section 6 finall
concludes this paper.

2. PRELIMINARIESANDRELATEDWORK
In this section, we briefl review the widely used gather/scatter

graph computation model and give a quick overview of the state of
art GraphChi and recent work XStream.

2.1 Graph Computation Abstraction
Given the diverse graph analytic applications (including graph

traversals, PageRank and shortest path), general graph analytic sys-
tems frequently require a graph computation abstraction and expose
application programming interfaces (APIs). Application program-
mers next use such APIs to comfortably implement various graph
applications with several lines of codes. The vertex centric gath-
er/scatter model in Alg. 1 has been widely used by the state of art
systems Pregel, GraphLab, PowerGraph, GraphChi and XStream.
The vertex centric gather/scatter model maintains a state of com-

putation result in each vertex. We denote such a state to be a vertex
state, e.g., the computed PageRank of a vertex. The main loop

(lines 1-3) alternatively runs through an iterator over vertices that
need to scatter vertex states by a scatter function and another iter-
ator over those that need to gather states by a gather function. The
gather function (lines 4-8) takes the updates on an input vertex’s in-
coming edges to update the state of the vertex. The scatter function
(lines 9-13) takes an input parameter vertex to generate updates to
be propagated along outgoing edges.

Algorithm 1: Vertex centric gather/scatter computation model
while not done do1

for all vertices v in GatterIterator do gather(v)2
for all vertices v in ScatterIterator do scatter(v)3

Function gather(v) begin4
for all edges e into v do5

v = User_Defined_Gather v.e.update)6
if v.need_scatter then scatterIterator.add(v)7

end8
Function scatter(v) begin9

for all edges e out of v do10
e.update=User_defined_scatter v,e)11
if e.update.need_gather then GatherIterator.add(e.dest)12

end13

A fairly large number of graph computation abstractions can be
mapped to the vertex-centric gather/scatter model,including Bulk
Synchronous Parallel (BSP) abstraction in Pregel [6], Asynchronous
Iterative Computation (AIC) abstraction in GraphLab, and a hybrid
of BSP and AIC in PowerGraph. The centralized system GraphChi
supports the asynchronous vertex-centric scatter/gather model, and
the recent one XStream is an asynchronous edge-centric gather/scatter
model, though not vertex-centric any more.

2.2 GraphChi and XStream
GraphChi [2] was the firs system to explore the idea of using se-

quential operations to external storage (SSD) for high I/O through-
put. The key of GraphChi is specially designed shards (or parti-
tions) of edges on SSDs. A shard, associated with an interval of
vertices, stores all the edges that have destinations inside the inter-
val. The edges in such a shard are sorted by their source. Based on
this design, GraphChi processes the shards one by one. When ful-
ly loads the subgraph of a shard p to memory via sequential read,
GraphChi invokes a UDF to update vertex states of destinations.
Due to the sorted edges ordered by source in all shards, the out-
edges for the vertices in p are stored in consecutive chunks in all
other shards. This indicates that the updates of the vertex states in
p are all sequentially written to the other shards. Such updates are
then seen during the processing of the remaining shards. In this
way, with the help of sequential read and write, GraphChi uses the
SSD as medium to propagate the updates of vertex states, avoiding
random access to external storage.
By using streaming, XStream [7] proposed an edge centric graph

computation model. Nevertheless, it still follows a gather/scatter
model to process the edges. For example, edges are all processed
before the updates are all gathered. Due to streaming partitions,
XStream removes the necessity for pre-processing and builds an
index that causes random access into the set of edges. However, as
reported in [7], a severe problem of XStream is the wasted I/O cost
of streaming the entire edge list but contributing little to graph pro-
cessing when an input graphs is associated with a high diameter.

3. CONTINUOUS MODEL
In this section, we describe the continuous computation model.

Section 3.1 motivates the model, and Section 3.2 gives the detail.

3.1 Motivation
By a motivation example, we will show that the batch-based im-

plementation of the gather/scather models, adopted by many dis-
tributed and centralized systems, could delay the prorogation of
vertex states and lead to slow convergence.

Algorithm 2: WCC_UDF (int u, int v, floa w, int s(u), int s(v))
if (s(u) > s(v)) then return s(u);1
else return null;2

Consider that the label propagation algorithm [10] is used to fin
Weakly Connected Components (WCC) in an input graph. Each
vertex is initiated with its vertex ID (i.e., the label) as the initial
vertex state. In the following iterations to process an edge 〈u, v〉,
the algorithm executes the UDF define in Alg. 2. The input pa-
rameters of the UDF include the endpoints of an edge 〈u, v〉, the
edge weight w (note that WCC does not use the weight w, yet w
could be used by other applications such as PageRank), and the
associated vertex states s(u) and s(v). If the label s(v) of destina-
tion v is smaller than the one s(u) of source u, the UDF returns the
larger one s(u), and otherwise null. Depending on the returned re-
sult, WCC then updates the vertex state s(v) by the non-null result.
Thus, a larger label is propagated from source u to destination v.
Next, we defin the convergence of WCC as follows.

Definitio 1 Convergence of WCC: The vertex state of v, denoted
by s(v), becomes convergent, if the vertex v is updated by the largest
label Li among all source vertices pointing to the vertex v. If and
only if all vertex states in a graph are convergent, we then say that
WCC becomes convergent.

Based on the above UDF and convergence, we show that the syn-
chronous and asynchronous computation abstractions (which are
used by Pregel and PowerGraph, respectively) inherently follow a
batch style to execute WCC.

u1

u2

ui

…

…

t1
t2

tj
…

…Li

apply

gather scatter
… …

apply

apply

u1

u2

ui

…

…

t1

t2

tj
…

…

gather scatter

Li

apply
u1

u2

ui

…

…

t1

t2

tj
…

…Li

gather
apply

scatter

(a) (b) (c)

Figure 1: Three computation abstractions: (a) Synchronous,
(b) Asynchronous, (c) Continuous

First in Alg. 1 (a), in a vertex v, the synchronous BSP model
(used by Pregel) gathers messages from neighbors u1, u2...ui... (see
the gather function), processes a bunch of received messages as
a batch to execute the apply function (which next invokes the us-
er define functions UDFs), propagates the updated vertex states
by sending a bunch of outgoing messages to outgoing neighbors
t1, t2...ti... (see the scatter function). The batch manner avoids pro-
cessing each piece of the update and sending too many messages,
and helps optimizing the distributed solutions for less network traf-
fi and faster processing time. In Pregel, the batch style is implicitly
implemented by using the barrier between supersteps.
In Alg. 1 (b), the asynchronous model has been used by Pow-

erGraph, GraphLab and GraphChi. We take PowerGraph as an ex-
ample. Besides BSP, PowerGraph also supports asynchronous exe-
cution which does not execute the gather, apply and scatter phases
in strict order. Instead, the asynchronous style immediately com-
mits the updates made to vertex states during the apply and scatter

functions to the graph, and such updates are visible to subsequen-
t computation on neighboring vertices [1]. However, the gather
function still adopts the batch style to gather a bunch of received
messages.
We show that the above batch manner could delay the conver-

gence of WCC. Recall that both synchronous and asynchronous
models require the batch manner to gather received messages from
the sources. Thus, if and only if the gather function is executed
to gather all such labels from the sources, the largest label, say Li,
among all sources to v can be found, i.e., the vertex state s(v) be-
comes convergent (see Def. 1).
Now we consider the case that the message containing the la-

bel Li from source S i is received to v in a very early moment. At
such a moment, if the WCC_UDF is executed, the state s(v) then
becomes convergent, even though the labels from other sources are
still not received and processed. Next, if the update to s(v) is pro-
rogated from v to its neighbors (no matter whether labels from the
sources to v are received to process or not), we have chance to
greatly speedup the prorogation throughout graphs. Intuitively, the
prorogation of the largest labels can be treated as a broadcasted
throughout the graph. It significantl differs from the batch man-
ner, and could greatly speedup the convergence of WCC. Instead,
the batch-based manner needs to receive all labels from sources
(before the convergence of si) and delays the convergence.

3.2 Continuous Computation Model
In this section, we propose a continuous model to make vertex

states quicker convergent than the batch model does.

Algorithm 3: Continuous Computation Model
while not done do1

for all edges e in User_Defined_Ite ator do2
returned_val = Process(e);3
if returned_val � null then e.dst = returned_val;4

Function Process(e) begin5
if e.src has_updates then return UDF(e.src, e.dst, e.wgt)6

end7

Definitio 2 Continuous Computation Model: Whenever an edge
〈u, v〉 and the current states s(u) and s(v) are gathered to be avail-
able in memory, the vertex state s(v) can be updated immediately
by the invoke of UDF.

Based on the above definition when those edges with v as des-
tination are continuously gathered to be available in memory (un-
necessarily processed as a batch), the vertex state s(v) is also con-
tinuously updated. We describe how the continuous model can be
used for the graph processing. In Alg. 3, there exist a user define
function (UDF) and a user define iterator (UDI). Each graph ap-
plication is required to explicitly implement a specifi UDF, and
optionally implement a UDI if necessary and otherwise a default
UDI is used. The UDI can schedule the invoke of a UDF. The key
point of Alg. 3 is that the UDF over a vertex v is invoked to update
the vertex state s(v) as soon as the edge 〈u, v〉 is loaded to be avail-
able in memory. Thus, for all edges e, Alg. 3 continuously invokes
the UDF to update the vertex states of the destination of edges e.
Again we use WCC as the running example to show the contin-

uous model’s benefits

• Faster convergence: When the edge 〈ui, v〉 associated with
the largest label Li is gathered to process in the earliest mo-
ment, the vertex state s(v) can be updated by Li and WCC
has chance to become fastest convergent.

• Low memory consumption: The batch model requires that all
edges pointing to v are gathered to be available in memo-
ry. This indicates high memory consumption to buffer such
edges. Real graphs frequently exhibit power-law degree dis-
tribution, and the vertices with very high degrees require high
memory to buffer such edges. Instead, when an edge is load-
ed into memory, Alg. 3 immediately invokes UDF without
such buffering overhead.

• Trivial preprocessing overhead: Recall that GraphChi re-
quires nontrivial preprocessing overhead to organize special
graph shards by sorting edges by source vertices (and also by
the associated destination vertices), such that all edges point-
ing to a vertex v can be loaded to process together as a batch.
Instead, the continuous model does not require any sorting of
the edges.

4. EXECUTION ENGINE
This section describes the centralized engine to implement the

continuous model on a SSD-based single machine. We firs briefl
introduce the steps to process an input graph (Section 4.1), and next
highlight the challenges and then gives a solution (Section 4.2).

4.1 Processing Steps
For a graph G = {V,E}, the edges E are rather voluminous. It is

common that the memory of a machine cannot fully load the edges
E. L-Graph internally organizes E into edge blocks, and an edge is
uniquely assigned to an edge block. A compression algorithm over
the blocks, such as Zip, can be used to save the I/O cost of loading
the blocks.
Next, L-Graph similarly organizes vertices V into blocks. Here

we firs make an assumption that all vertex states can be maintained
in nowadays main memory (Next section will give a solution that
main memory cannot fi all vertex states). Based on the assumption,
L-Graph directly maintains an array of vertex states in memory.
Still using WCC as the motivation example, we show the steps of
L-Graph to execute WCC_UDF define in Alg. 2. (1) Loading
Edges: By sequential access to SSD, L-Graph loads edge blocks
to main memory. Using multitheading requests can help achieving
maximal I/O throughput. (2) Invoking WCC_UDF: When an edge
〈u, v〉 is available in memory, L-Graph invokes WCC_UDF with
the vertex states s(u) and s(v) and weight w as input parameters.
Here, the states s(u) and s(v) associated with the two endpoints u
and v can be directly read from memory (i.e., the labels of u and
v). (3) Convergence of WCC: When all edges have been loaded
to process, L-Graph finishe one iteration of the graph processing.
One iteration can ensure that at least a subset of the vertex states
becomes convergent. By multiple iterations of graph processing,
L-Graph checks whether or not the vertex states are still needed to
be updated. If none of the vertex states is needed to be updated,
WCC becomes convergent.

4.2 Challenge and Solution
When only a subset of V is inside memory, i.e., vertices out of

core, the invoke of UDF over an edge 〈u, v〉 may request a vertex
state out of memory. We say that such a request is missed. The
request is otherwise hit if the requested vertex state is just insid-
e memory. We defin the hit ratio to be the one between the hit
requests and all requests to the needed vertex states during the pro-
cessing of a graph. Vertices out of core indicate that the hit ratio is
always smaller than 1.0.
For the hit request, the processing is exactly the same as Section

4.1. However, the missed state could lead to slower graph process-

Zipped edge
blocks

Decompressed
edge blocks

src

dst

wgt

Vertex block map

compressed
edge blocks

Compressed
vertex blocks

hit

missed

Edge block map

SSD Main Mem.

Seq.
access

Random
access

Disk

Figure 2: Flow of Edge Processing

ing that is illustrated by Fig. 2. To access the missed vertex state
s(u), a simple approach is to lookup the vertex block on SSD for
the missed s(u). That is, we have to seek for the missed s(u) on
SSD by the sequential scan of vertex states in such a block until the
missed s(u) is found. In the worst case, all memory space is occu-
pied by the current vertex states and no more free memory space
can be allocated for the missed s(u) that should be loaded from SS-
D to memory. In this case, we have to dump a currently available
vertex state, say s(u′), from memory back to SSD and then release
the associated memory space for s(u). Consequently, two opera-
tions are used: (i) write of the memory-resident s(u′) and (ii) read
of the missed s(u). For an edge, the associated cost of the two op-
erations might be trivial. However, if not properly designed, each
of all E edges incurs two of such operations (E is the total number
of edges), leading to high I/O cost with the scale of O(E).
To tackle the above challenge, we propose a memory layout in

order to maximize the hit ratio. In more detail, we design a simple
and yet efficient memory layout by allocating main memory into
two parts:
(1) Static memory (SM) for the vertices with the top highest de-

gree. Based on the input graph, such vertices can be easily found
during the preprocessing phase. Selecting the vertices with high-
est degree is based on the following observation. For an iteration
of processing an entire graph G, L-Graph loads every edge only
one time to read and write the state of each endpoint, say u. Since
the vertex u can be the source or destination of multiple edges, L-
Graph reads and writes the vertex state s(u) by multiple times. It
is not hard to fin that the frequency of reading and writing s(u)
is equal to the vertex degree of u. Thus, the vertices with highest
degree will help maximizing the hit ratio.
(2) Dynamic memory (DM) for runtime needed vertices. Such

vertices are those need by missed requests. The key is to treat D-
M as a caching system, and the read and write of vertex states be-
tween SSD and DM as the replacement of the existing cached items
by newly incoming items. The classic caching replacement policy,
such as least recently used (LRU), has been shown to be practically
useful to achieve high hit ratio. L-Graph can use such a replace-
ment policy for DM to replace the currently available vertex states
and write them from DM to SSD.

5. EVALUATION
Section 5.1 firs briefl describes L-Graph prototype, and Section

5.2 reports the performance result by preliminary experiments.

5.1 Prototype
We implement a L-Graph prototype by Java 1.70 with the fol-

lowing components:

(i) VertexManagermanages vertex states on SSD and main mem-
ory. It maintains vertex states as many as possible in memory with
SSD as external memory.
(ii) EdgeManager maintains read-only edge blocks (compressed

by Java built-in Zip algorithm) on SSD and in main memory. When
loading edge blocks from SSD, the manager allocates a subset of
memory to buffer the loaded blocks. The size of the buffered edge
blocks depends upon the available memory size (say Sm) and space
cost (say S v) of maintained vertex states. Given S m > S v, we set
the memory size allocated for edge blocks to be (S m − S v). Oth-
erwise, the manager allocates the majority of main memory, e.g.,
0.8∗S m, to maintain a subset of vertex states. Thus vertex states are
maintained on both SSD and memory, and the remaining 0.2 ∗ Sm
memory buffers loaded edge blocks. We set the block size B = 40
Megabytes by default. Based on such a size, we compute the total
number, say B, of blocks to maintain all edges. After that, we map
an edge 〈u, v,w〉 to a specifi block by a hash function, e.g., the
modular operation % , over the vertex ID of source u. In this way,
all edges are assigned to the B blocks.
(iii) L-GraphEngine manages the overall runtime engine of L-

Graph. In detail, it schedules the loading of edge blocks based on
UDI if any, manages vertex states, and invokes UDF.
(iv) ProgramRunner executes graph analytic applications. Each

application is required to implement an interface Program. The
interface define an iterator iter for UDI and four abstract func-
tions: udf() to implement the user define function, stop() to set
the stopping condition, get() and put() to defin the put and get
operations over the UDI. By default, the iterator iter is scheduled
to sequentially load edge blocks with no explicit implementation.
Based on the Program interface, we have implemented four exam-
ple applications PageRank, BFS, DFS and SSSP.

5.2 Preliminary Result
We measure the running time of four implemented application-

s: WCC (2 iterations), PageRank (2 iterations), BFS and SSSP.
For each application, we repeat each test f ve times and compute
the average running time. We follow a test environment similar to
the GraphChi and XStream on two personal computers: (i) a HP
EliteBook laptop (4 cores, 3GB memory and a 160GB Intel 320
SSD) installed with a 32-bit Windows 7; and (ii) a Dell Desktop
(4 cores, 16GB memory, and 180GB Intel 520 SSD) with 64-bit
Ubuntu (Linux version 3.2.0). The maximal Java virtual memo-
ry is set to 1024MB on the HP laptop, and 6144MB on the Dell
desktop. We conduct the following preliminary experiments. The
preliminary experiment is used to verify the advantages of L-Graph
over two previous works, and the sensitivity experiment shows how
L-Graph performs well by varying some key parameters.
In the experiment, we compare L-Graph with GraphChi and XStream

as follows. (i) GrapChi provided two implementation versions in-
cluding Java and C++1. Both versions offered the example applica-
tions PageRank and WCC, but without traversals and SSSP. There-
fore, we use the exposed APIs to implement traversals and SSSP.
We test Java and C++ versions on the HP Laptop and Dell Desktop,
respectively. Following the evaluation section of GraphChi [2], we
use 16 shards and a block size of 4MB (such a configuratio can
achieve good enough performance). (ii) XStream provided only the
C++ version and have implemented all the four graph applications.
By the configuratio of out-of-core XStream with a thread-private
buffer of size 256 MB, we test XStream on the Dell Desktop.
We use two graphs: (i) a generated Erdos Renyi (ER) random

graph with 13 million vertices and 103 million edges, and (ii) a
real Twitter graph with 52 million vertices and 1,963 million edges.
1https://github.com/GraphChi

The data size of the raw data to maintain the the two graphs is
1.59GB and 28GB, respectively. In addition, the file contain only
graph structure with no edge weights, so we generate such weights
randomly between the range (0.0, 1.0] for the SSSP application.
We test L-Graph, GraphChi and XStream on the HP laptop with
the generated graph, and the Dell desktop with the Twitter graph.
By default, L-Graph uses 4 threads to load edge blocks and execute
UDF in order to optimize the throughput.

HP Laptop Dell Desktop
WCC 16 459

PageRank 57 1032
BFS 36 683
SSSP 173 4592

Table 1: Experiment Result (running time: seconds)

 0.5

 1

 2

 4

 8

 16

 32

WCC PR BFS SSSP

S
pe

ed
up

 ra
tio

 (l
og

2)

GraphChi-Java
GraphChi-C++

XStream

Figure 3: Speedup over GraphChi and XStream

Table 1 shows the running time of 4 applications implemented
atop L-Graph, and Fig. 3 gives the runtime speedup of L-Graph
over GraphChi and XStream. The speedup ratio of GraphChi-Java
is the one between the running time by GraphChi Java version
over the L-Graph, both of which are tested on HP Laptop, the ra-
tio of GraphChi-C++ is the one between GraphChi C++ version
over the L-Graph, both tested on Dell Desktop, and finall the ratio
of XStream is the one between XStream C++ version over the L-
Graph on Dell Desktop. A larger ratio indicates that L-Graph uses
less running time compared with the counterpart and vice versa.
Based on Fig. 3, we have the following results:

• First, for all four graph applications, L-Graph greatly out-
performs GraphChi Java version, with the speedup ratios of
27.1×, 4.89×, 8.33× and 5.92× on the WCC, PageRank, BF-
S and SSSP, respectively. These results indicate the obvious
advantage of the continuous model over the batch model used
by GraphChi.

• Second, though GraphChi-C++ version is much faster than
its Java version, L-Graph still outperforms GraphChi-C++
version on WCC, BFS and SSSP (except PageRank with the
speedup ratio 0.92, indicating that the GraphChi-C++ ver-
sion achieves only slightly faster running time on PageRank
than L-Graph).

• Third, compared with XStream, L-Graph is slower on PageR-
ank and SSSP with the speedup ratios 0.63 and 0.85 respec-
tively, but is still slightly faster onWCC and BFS. The slower
running time of L-Graph is caused by the implementation of
different programming languages. In addition, our result is
consistent with the one reported by XStream [7]: the running
time of GraphChi C++ version is slower than XStream on all
four applications by around 2-3×.
• Finally, by comparing the running time of different applica-
tions, we fin that the absolute running time of WCC imple-
mented by two GraphChi versions and XStream is larger than
the one of PageRank, consistent with the result in GraphChi
[2] and XStream [7]. Instead, the time of WCC implemented
by L-Graph is much faster than the one of PageRank. We
believe that it is caused by the continuous model in L-Graph,
which allows WCC to quickly propagate (or broadcast) the
(largest) labels throughout graphs, leading to the fastest con-
vergence and thus the largest speedup ratio among all the
four applications. Instead, the computation of PageRank re-
quires all edges to invoke UDF.

As a summary, the above preliminary experiment has successful-
ly verifie that L-Graph is much faster than GraphChi on all four
applications, when both implemented by the same programming
language Java. Even with the C++ implementation of GraphChi
and the very recent XStream, L-Graph is faster than GraphChi on
WCC, BFS and SSSP, only except PageRank, and still faster than
XStream on WCC and BFS. These results are enough to demon-
strate the advantage of the continuous model over the batch model.

6. CONCLUSION
In this paper, we have presented a general graph analytic sys-

tem L-Graph on single machines. First, by the proposed contin-
uous computation model, L-Graph ensures faster propagation of
vertex states. Second, based on the execution model, L-Graph
avoids writes of voluminous onto SSD edges and instead advocates
memory-based operations to update vertex states. Finally, L-Graph
designs an adaptive memory layout to minimize the overall I/O pro-
cessing overhead. Our preliminary experiment indicates that that
L-Graph greatly outperforms GraphChi Java version by tends of
faster running time, and achieves comparable result as GraphChi
and XStream C++ versions.
As the future work, we continue the research of L-Graph on the

following directions. i) In terms of the computation model, we are
particularly interested in how our proposed computation model can
be integrated with asynchronous models, such as GRACE [9], for
even faster convergence, and fin potential graph applications that
can benefi from the computation model. ii) We plan to extend L-
Graph for a distributed setting, where each machine can perform
the local graph processing based on L-Graph. iii) Given the dy-
namical graph evolution, incremental operations over L-Graph can
avoid the entire graph re-processing.

Acknowledgment: Part of this work was done whenW. Rao was at
University of Cambridge. This work is partially supported in part
by Science and Technology Commission of Shanghai Municipal-
ity (Grant No. 15ZR1443000). We also would like to thank the
anonymous ACM MobiCom 2015 HotPlanet workshop reviewers
for their valuable comments that helped improve this paper.

7. REFERENCES
[1] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.

Powergraph: distributed graph-parallel computation on
natural graphs. In Proceedings of the 10th USENIX
conference on Operating Systems Design and
Implementation (OSDI), pages 17–30. USENIX Association,
2012.

[2] A. Kyrola and G. Blelloch. Graphchi: Large-scale graph
computation on just a PC. In Proceedings of the 10th
conference on Symposium on Opearting Systems Design &
Implementation (OSDI). USENIX Association, 2012.

[3] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Distributed graphlab: A framework for
machine learning in the cloud. Proc. VLDB Endow.,
5(8):716–727, 2012.

[4] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Distributed graphlab: A framework for
machine learning in the cloud. PVLDB, 5(8):716–727, 2012.

[5] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry.
Challenges in parallel graph processing. Parallel Processing
Letters, 17(1):5–20, 2007 2007.

[6] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of
data, pages 135–146. ACM, 2010.

[7] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
Edge-centric graph processing using streaming partitions. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP), pages 472–488, New
York, NY, USA, 2013. ACM.

[8] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph
engine on a memory cloud. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data
(SIGMOD), pages 505–516, New York, NY, USA, 2013.
ACM.

[9] G. Wang, W. Xie, A. J. Demers, and J. Gehrke.
Asynchronous large-scale graph processing made easy. In
CIDR, 2013.

[10] X. Zhu and Z. Ghahramani. Learning from labeled and
unlabeled data with label propagation. Technical report,
Technical Report CMU-CALD-02-107, Carnegie Mellon
University, 2002.

