
On the Efficacy of APUs for
Heterogeneous Graph Computation

Karthik Nilakant
University of Cambridge

United Kingdom
Email: karthik.nilakant@cl.cam.ac.uk

Eiko Yoneki
University of Cambridge

United Kingdom
Email: eiko.yoneki@cl.cam.ac.uk

Abstract
Accelerated Processing Units (APUs) are central processors that
feature integrated GPU cores. In this study, we show that this
architecture is well-suited to the domain of graph analytics. Our
evaluation shows that a current-generation integrated GPUcan out-
perform an externally-connected discrete GPU by up to50% for
the breadth-first search and PageRank algorithms. Furthermore, by
operating on data with different characteristics in unison, the CPU
and integrated GPU can halve the running time of PageRank on a
scale-free dataset.

1. INTRODUCTION
Large-scale graph-based computation is a key analytical tool in

a range of disciplines, including social network analysis,scientific
computing, and e-commerce data mining. Graph-based computa-
tion is characterised by large structural definitions, which must of-
ten be accessed in an irregular fashion. Such irregularity is often
poorly managed by traditional execution frameworks. One way to
alleviate this problem is to take advantage of processor heterogene-
ity to adapt to structural patterns in the data.

Graphics processors (GPUs) can offer several advantages over
traditional CPUs when applied to specific graph-centric problems.
When encountering regions of data or code that call for addedpar-
allelism, GPUs offer a much higher hardware thread count than
CPUs (up to three orders of magnitude more) and also have access
to higher memory bandwidth. However, the local memory capacity
on a GPU card will typically be lower than RAM capacity on the
host system. Furthermore, GPUs are typically connected to ama-
chine via an external peripheral bus (PCI Express), which means
that data transfer throughput between the host and the GPU isre-
stricted.

An alternative architecture, which is currently a key area of de-
velopment for hardware manufacturers, is to incorporate GPU cores
into CPU chip design. These CPUs with integrated GPUs (also
known as accelerated processing units or APUs) are primarily be-
ing developed to address the need for miniaturisation and energy
efficiency. However, the APU architecture also presents a possible
opportunity for graph analytics, by removing the bottleneck im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

posed by the peripheral bus.
Until recently, the performance gap between integrated GPUs

and discrete cards has been too large to warrant serious consider-
ation. However, current-generation hardware offers a level of per-
formance that was previously only present in discrete GPUs.Our
interest in the technology is primarily application-driven; we theo-
rise that graph applications have a set of requirements thatwould
benefit from tighter integration and increased bandwidth between
processing units. To this end, in this paper, we seek to analyse the
costs and benefits of adopting a current-generation APU platform
for graph computation, compared with discrete GPU computation.
We have found that:

1. The integrated GPU consistently outperformed the discrete
GPU by 15% to 50%, when reading graph data from a host-
allocated memory buffer.

2. Despite having a higher bandwidth channel to local device
memory, the need to copy data over the peripheral bus ham-
pered the performance of the discrete GPU.

3. CPU performance on PageRank (where communication costs
are dominant) is usually better than both GPU units tested,
when each unit is used in isolation. However, the integrated
GPU performs better on graphs with a low average degree.

Based on these findings, we also show how the APU architec-
ture could support two schemes for hybrid, heterogeneous graph
computation that have been successfully deployed in other systems:
switching and partitioning (described further in the next section).
Our results show that while the test platform was not conducive to
the switching method, heterogeneous partitioning provided a per-
formance improvement of up to2× over the CPU-only benchmark.

We begin by discussing the characteristics of graph-centric com-
putation, and how this relates to heterogeneous processing. We then
outline the parameters of our evaluation test bed, including the al-
gorithms that were tested and the memory layout that was adopted.
We then report our findings, analysing the feasibility of twopossi-
ble hybrid processing schemes. We then examine the results in the
context of related work before concluding.

2. GRAPH PROCESSING OVERVIEW
In this section, we will review the features of graph computa-

tion, and show how a tightly integrated heterogeneous processing
environment might be utilised to improve performance.

2.1 Graph processing
In data-parallel graph computation, the developer typically de-

fines one or more granular operations to be applied to a locality in

a graph (for instance, a vertex and its neighbours, or an edgeand its
associated endpoints). These operations are then executedin paral-
lel. The selection of graph elements to operate on, and the order in
which these operations execute may affect the semantics (requiring
strict ordering) or the performance of the program.

For example, in PageRank [16], every vertex is updated in each
pass, with no constraints on the order that the vertices are updated.
However, ordering operations to follow the sequential layout of
data in memory will (usually) improve performance. Alternatively,
for traversal style algorithms such as breadth-first search, opera-
tions proceed in a frontier radiating from the source - in this algo-
rithm, it is necessary for operations to execute one frontier level at a
time, in order to preserve the semantics of the equivalent sequential
algorithm.

A common approach taken by some current graph analysis plat-
forms is to adopt a static data-parallel execution strategy, which
is usually necessitated in the case of networked machines. In this
approach, the graph structure is (randomly) partitioned across the
cluster, and each node executes the operations on its local elements.
Updates to the program metadata (algorithmic state) are propagated
along edges, with message-passing used for remote updates.A syn-
chronisation barrier at the end of each iteration ensures all updates
have completed before progressing to subsequent iterations. In the-
ory, such a scheme could also be adopted for distributed compu-
tation across a CPU and GPU, however the limitations of commu-
nication over an external peripheral bus usually mean that this is
impractical. Furthermore, this approach does not to take advantage
of the differing performance characteristics of each type of device,
which will be discussed in the next section.

2.2 Heterogeneous Graph Computation
GPUs feature a number of advantages and constraints when com-

pared with CPUs, which must be considered carefully when build-
ing a heterogeneous execution platform. The following listcharac-
terises some of these differences:

• Parallelism model. Modern multicore CPUs allow full thread
flexibility, with a multiple-instruction multiple-data (MIMD)
processing model. In contrast, the "virtual cores" of a GPU
require the use of SIMT (single instruction multiple thread)
computation.

• Parallel processing power. Current CPU sockets accommo-
date less than a hundred concurrent hardware threads. In
contrast, the vector registers of a GPU offers several thou-
sand hardware threads.

• Local memory capacity. A commodity server may accom-
modate several hundred gigabytes of system RAM, but less
than ten gigabytes of graphics RAM. Note however that the
graphics hardware can access system memory via DMA across
the PCI express bus, albeit at a higher latency cost.

• Memory bandwidth. With high memory clock speeds and
multiple channels, graphics hardware typically has much higher
local memory bandwidth than the CPU (up to ten times more).
GPU programs also have the option to specifically utilise
small areas of low-latency cache memory if desired.

To align these differences to the characteristics of graph pro-
grams, it is necessary to select graph elements with relatively uni-
form properties to be analysed by the GPU. The aim of this is
to ensure that branch divergence is kept to a minimum. Diver-
gent branches in an SIMT kernel will result in partial serialisation,

Processor / Graphics CardAMD A10-7850K AMD R7 250
CPU iGPU dGPU

Cores 4 8 6
Clock MHz 4000 720 1050

RAM 8GB DDR3 1GB GDDR5
Local Read GB/s – 21.5 55.6
DMA Read GB/s – 8.0 5.8

Table 1: Testing platform layout. “Local read” speeds indicate
throughput from device-visible RAM, whereas “DMA Read”
speeds are between the GPU device and host memory.

which affects the GPU’s overall throughput. Assuming that ap-
propriate graph elements are dispatched to the GPU in batches of
appropriate size, the associated overhead of kernel invocation can
be masked by the added parallelism and throughput of the GPU.

In situations where the elements to be processed are not well-
suited to SIMT processing, an alternative is to process these di-
rectly on the CPU. This forms the basis of a heterogeneous runtime
platform for graph computation, using a data-centric scheduler that
selects the correct device to process a given workload. Current sys-
tems in this domain can be categorised into two basic approaches:

Heterogeneous Switching:in this approach, computation proceeds
on a single device until the scheduler detects that the data
to be processed could be better managed by another device.
The data and computation are then switched to the other de-
vice. To operate successfully in this manner, the overhead
of switching and measuring the characteristics of the current
workload must be offset by gains in processing efficiency.

Heterogeneous Partitioning: in this approach, computation pro-
ceeds in parallel on two or more heterogeneous devices, with
the data to be processed by each device tailored to fit its char-
acteristics. For this approach to be successful, the overhead
from partitioning the input data and synchronising the out-
put data must be offset by the gain in overall computation
throughput.

A system could support both approaches simultaneously, how-
ever in this study we will analyse each scheme in isolation. In
particular, we show how each scheme could be respectively im-
plemented with two separate algorithms, breadth-first search and
PageRank. However, a key ingredient in ensuring such schemes op-
erate effectively is high-performance interoperability between the
CPU and GPU – our evaluation shows that integrated GPUs may
be able to provide this capability in particular scenarios.

3. TESTING METHODOLOGY
Our main aim is to highlight some key differences in applica-

tion performance, when comparing graph processing on integrated
GPUs (iGPUs) discrete GPUs (dGPUs). We also compare GPU
performance to CPU performance on two graph algorithms with
different characteristics – breadth-first search and PageRank. Fi-
nally, we explore ways in which these differing performancechar-
acteristics can be exploited in the context of the heterogeneous pro-
cessing models discussed in Section 2.2.

3.1 Graph Algorithms
For these trials, we implemented multi-threaded kernels for two

representative graph algorithms: breadth-first search (BFS) and PageR-
ank (PR). The BFS algorithm is a fundamental building block for a
variety of other algorithms in the graph domain, such as weakand
strongly-connected component detection, shortest path algorithms,

graph colouring, and centrality measurement. PR is representative
of a class of graph algorithms based on fixed-point iterativecom-
putation.

Both algorithms proceed in a distributed fashion by dividing the
job into vertex-centric subtasks, which execute repeatedly until a
solution condition is reached. However, the two algorithmsexhibit
contrasting patterns of computation and I/O:

• In BFS, subtasks are executed in a level-synchronous fash-
ion, which means that only vertices at a fixed distance from
the source (the “frontier”) are active in any iteration. In PR,
computation is required at every vertex in each iteration.

• In each iteration of PR following initialisation, all graphdata
is read and all algorithmic state is updated. In contrast, the
amount of data to be read or written in a BFS iteration is de-
pendent on the degree distribution of vertices in the frontier
set.

Results from our evaluation show that although the iGPU out-
performs the dGPU when operating from host memory for both
algorithms, the CPU typically performs better than the iGPUon
the I/O-intensive PageRank workload. Further analysis is provided
in Section 4.

3.2 Graph Structure and Layout
Since our focus in this study is on comparative performance be-

tween heterogeneous processors, we have adopted a straightfor-
ward graph data format, ensuring that it is preserved on eachde-
vice. We use an adjacency list representation to store a graph’s
edges, with an associated index to allow efficient iteration. Prior to
running each algorithm, we read the adjacency and index datafrom
disk into arrays pinned in host memory. Since this step is necessary
for all trials, it is excluded from the reported runtime figures.

In addition to each graph’s structural data, each algorithmstores
state in auxiliary data structures. We allocate buffers in local device
memory to store these structures. In the case of the iGPU, local
device memory refers to an area of RAM reserved as cache by the
OpenCL runtime platform. The main graph data structures were
also loaded into local device memory in some trials, if sufficient
capacity was available. In other cases, the adjacency list and index
arrays were read directly from host memory by the GPU device.
This is also known as a “zero-copy” transfer, as blocks of data are
only loaded from host memory when required.

For the trials, we used two forms of synthetic random graph.
The R-MAT [3] graph generator synthesises graphs with a scale-
free degree distribution, mirroring the structure of many real-world
networks. For comparison, we also used an Erdos-Renyi [5] (ER)
random graph generator, which produces graphs with a binomial
degree distribution. We generated a variety of graphs with differ-
ing sizes and degrees (the degree of a graph is the average number
of neighbours per vertex). Unless otherwise specified, generated
graphs have a degree of 16, and are referred to by their “scale”. For
instance, a “Scale-22” graph has222 vertices (these are the default
parameters adopted by the Graph500 benchmark [14]).

3.3 Platform and Implementation
To run the experiments in the evaluation, we assembled a PC

based on the components described in Table 1. Henceforth, were-
fer to the integrated GPU as an “iGPU”, and the discrete GPU asa
“dGPU”. The device-local and host DMA read speeds in the table
were measured using AMD’s APP SDK [1]. The APU we used is
based on AMD’s “Kaveri” architecture, which was released inJan-
uary 2014. The installed dGPU provides a comparison point with

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

CPU
dGPU

iGPU
dGPU-ZC

iGPU-ZC

B
F

S
 R

un
tim

e
(s

)

Compute
Copy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

CPU
dGPU

iGPU
dGPU-ZC

iGPU-ZC

P
R

 R
un

tim
e

(s
)

Compute
Copy

Figure 1: Running times on RMAT Scale-20 graph, for BFS
(top) and PR (bottom). ZC denotes Zero Copy mode, where
graph data is read from a host-allocated buffer.

the iGPU, and is connected via a PCI Express 3.0 bus. The dGPU
was also equipped with one gigabyte of dedicated GDDR5 graph-
ics memory. GDDR5 is optimised for high bandwidth streaming
throughput, whereas DDR3 is optimised for low latency at theex-
pense of bandwidth. As a result, there is a difference in throughput
when operating from local memory on the dGPU. In contrast, the
iGPU has higher rates of throughput when operating from host-
allocated memory.

The testing machine was installed with the Windows 8.1 64-bit
operating system, with the AMD Catalyst 14.1 Beta device driver,
which provides OpenCL support for both the iGPU and dGPU. We
developed kernels for the BFS and PR algorithms with OpenCL,
which were designed to work with the graph format described in
the previous section.

4. EVALUATION
We begin by examining performance on a graph that can be held

within dedicated RAM on the discrete GPU card, before analysing
performance on larger and more varied graph data. Based on these
results, we can then predict whether or not the heterogeneous com-
putation models described earlier can be applied in this environ-
ment. Our main finding is that heterogeneous switching during
BFS is unlikely to yield major performance benefits, howeverhet-
erogeneous partitioning may be feasible in some circumstances.

4.1 Zero-Copy Efficiency
For our first set of trials, we used an RMAT graph with220 (ap-

proximately one million) vertices and 16 million undirected edges.
The resulting graph data occupies approximately 500 megabytes
of memory, which is small enough to fit within a single OpenCL

 0

 1

 2

 3

 4

 5

 6

 7

 400
 600

 800
 1000

 1200
 1400

 1600
 1800

 2000
 2200

 2400

B
F

S
 R

un
tim

e
(s

)

Adjacency List Size (MB)

CPU
dGPU
iGPU

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400
 600

 800
 1000

 1200
 1400

 1600
 1800

 2000
 2200

 2400

P
R

 R
un

tim
e

(s
)

Adjacency List Size (MB)

CPU
dGPU
iGPU

Figure 2: Running times for BFS (top) and PR (bottom) on ER
graphs of varying size. GPUs operate in zero-copy mode.

buffer object. Figure 1 shows the runtime performance of BFSand
PR with this graph. In the CPU’s case, graph data is read from
the arrays pinned in RAM. For the iGPU and dGPU, these arrays
are first copied into local device memory. As one might expect,
the discrete GPU exhibits the fastest compute performance for this
workload. However, there is a significant cost in transferring the
graph data to the dGPU so that it can be processed.

As discussed earlier, an alternative approach is to map a buffer
into host memory, and load data directly from the host when re-
quired. This approach is known as “zero copy” mode, as it avoids
the need to allocate and transfer data in advance. The results for
BFS show that the runtime performance of the iGPU in zero-copy
mode is better than the dGPU operating from local device memory,
after adding the time taken to finish the initial copy. However, the
results for PageRank show that the CPU outperforms both forms of
GPU, regardless of the memory transfer mode. These results are
indicative of what we found in most trials on this testing platform.

Another reason to make use of zero-copy host memory is that
it allows access to data that exceeds the local memory capacity of
a device, without requiring the developer to perform the cumber-
some task of splitting up the source data into manageable chunks
for processing in local memory. For the remainder of the results
reported in this section, we have used the zero-copy method to map
the graph data structures.

In Figure 2, we show how the running time scales as we increase

 0.001

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

B
F

S
 It

er
at

io
n

R
un

tim
e

(s
)

Iteration

CPU
dGPU
iGPU

Figure 3: Breakdown of running time per iteration for BFS on
ER graph with an average of four neighbours per vertex.

the size of the input graph for BFS and PR. For these trials, we
generated graphs with a constant average degree (set to 20 neigh-
bours), but with a varying number of edges, between 20 million to
100 million. The Erdos-Renyi generator was used to create these
graphs, since it allows free control of the desired number ofvertices
in the graph (whereas the RMAT generator requires the numberof
vertices to be a power of 2). The figures show the running times
plotted against the memory capacity requirements for each graph.
Note that the dGPU has a maximum local memory capacity of one
gigabyte, but no change is evident in the running time figuresfor
graphs that exceed this threshold. The likely explanation for this
is that neither algorithm exhibits data access patterns that are well
suited to caching (which is normally the case for irregular graph
applications).

The results reinforce the trends evident in the first figure: in the
compute-dominant BFS workload, the GPUs outperform the CPU
when using an identical OpenCL kernel, by a factor of3× (dGPU)
to 6× (iGPU), whereas for the I/O-intensive PageRank workload,
the CPU outperforms the GPUs by a factor of1.2× to 2×. In
the following sections, we turn our attention to the heterogeneous
computation schemes discussed in Section 2.2, exploring scenarios
where these may be applicable on this platform.

4.2 Heterogeneous Switching
Recall that the switching method involves shifting all computa-

tion to a single device at a particular point in the algorithm, based
on the nature of the work that is about to be processed. Prior work
by Hong et al. [7] has focused on building a hybrid CPU/GPU
workflow for BFS, based on this model. In that work, the authors
found that the CPU was more suited to handling iterations in the
distributed computation where only a few vertices existed in the
frontier set, but would switch to processing on the GPU when ex-
ponential growth in the frontier set was observed.

To test the feasibility of a similar scheme in this environment, we
looked at the running time in each iteration of BFS on each device.
Figure 3 shows one such trace, for BFS on an ER graph with 16
million vertices and 64 million edges. In each trace, the only point
at which the CPU outperforms the GPUs is in the first iteration. In
BFS, the first iteration is a trivial step, which does not require any
parallelism. However, for all remaining iterations (in every BFS
trial), the performance on the GPUs ran faster than the OpenCL
CPU implementation.

In the trace shown in the figure, the running time for the 8th it-
eration on the dGPU was faster than the iGPU. In all of the traces

 0

 1

 2

 3

 4

 5

 6

 7

 8

4 16 64

B
F

S
 R

un
tim

e
(s

)

Average Degree (RMAT)

CPU
dGPU
iGPU

 0

 1

 2

 3

 4

 5

 6

 7

 8

4 16 64

B
F

S
 R

un
tim

e
(s

)

Average Degree (ER)

CPU
dGPU
iGPU

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 16 64

P
R

 R
un

tim
e

(s
)

Average Degree (RMAT)

CPU
dGPU
iGPU

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 16 64

P
R

 R
un

tim
e

(s
)

Average Degree (ER)

CPU
dGPU
iGPU

Figure 4: Running times for BFS (left) and PR (right) on RMAT and ER graphs with varying mean degree and a fixed number of
edges.

we examined, this was one of the few cases where this condition
existed. In theory, it would be possible to take advantage ofthe
runtime savings (which amounts to approximately 60 milliseconds,
offset by the cost of shifting algorithmic metadata which weesti-
mate to be 5-10 milliseconds in this instance). However a predic-
tive mechanism is also required, to allow a switching condition to
be recognised. When comparing with results from other runs,we
found several other instances where the same level of growthin the
frontier set did not lead to improved performance on the dGPU.

At this stage, we cannot find any evidence to suggest that hy-
brid switching is a feasible tactic on this testing platform. Further
work is required to determine whether an optimised CPU BFS im-
plementation could change this.

4.3 Heterogeneous Partitioning
As described in Section 2.2, a common cause of performance

degradation in SIMT GPU applications is thread divergence.In
both of these algorithms, the degree distribution of processed nodes
directly impacts the amount of work that needs to be completed per
vertex. In Figure 4, we show the impact of varying the degree distri-
bution on BFS and PR. For these trials, we synthesised graphswith
a fixed number of edges (226 or approximately 64 million), and
with the number of vertices set to either2

24, 222 or 220, resulting
in graphs with a mean degree of 4, 16 or 64 neighbours per vertex
respectively. We generated graphs using both the ER and RMAT
generators for this experiment – recall that the degree distribution
of the ER graphs is more tightly clustered around the mean degree.

The results for BFS show that the performance gap between the
CPU and GPUs reduces as the average degree increases. However,
the effect on running times for the GPU devices is minimal. The
PageRank results show more marked differences; similarly to the
BFS results, the CPU’s performance increases as the averagede-
gree of the input graph increases, whereas the GPU running times
remain unaffected. However, in this case, for the graphs with the
lowest average degree, CPU performance degrades to a level that is
poorer than the iGPU (but not the dGPU).

These results indicate that a simple partitioning scheme, where
the GPU processes low degree vertices only, might lead to a perfor-
mance improvement. To test this hypothesis, the PageRank kernel
was modified to accept an additional parameter, namely the “par-
tition point”. On the GPU, all vertices with degrees greaterthan
the partition point are rejected, and vice versa for the CPU.Using
this new kernel, the test launcher was modified to instantiate two
OpenCL contexts concurrently, on the CPU and iGPU. After each
iteration, it is necessary to synchronise the PageRank value vector
across both partitions, however this is a relatively inexpensive op-
eration compared to the runtime of the main kernel. By varying
the partition point, it was then possible to find a point wherethe

 0

 0.2

 0.4

 0.6

 0.8

 1

 28 29 30 31 32 33 34 35 36

P
R

 C
on

cu
rr

en
t R

un
tim

e
(s

)
Partition Point (ER)

CPU
iGPU

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800
 2000

 2200

P
R

 C
on

cu
rr

en
t R

un
tim

e
(s

)

Partition Point (RMAT)

CPU
iGPU

Figure 5: Running times for the hybrid partitioning prototy pe,
on the ER (top) and RMAT (bottom) scale-22 graphs. The par-
tition point was varied to find the optimal balance in runtimes.

running time of each kernel was similar.
The results of the hybrid partitioning prototype is shown inFig-

ure 5, when tested on the ER and RMAT scale-22 graphs. In the
case of the ER graph, there is a clear crossover point, just above
the mean number of edges per vertex. For the RMAT graph, vari-
ance in the iGPU runtime means that the crossover point is notas
clear, however there is a range of partition values that willyield
near-optimal performance. Comparing these results with the CPU-
only trials reveals that the hybrid partitioning prototypeyields a
speedup of approximately1.6× on the ER graph and2× on the
RMAT graph.

5. RELATED WORK
The results from this pilot study seem to indicate that graphcom-

putation on APUs will be a promising area for further investigation.
In this section, we will explore possible extensions and optimisa-
tions of this work, in the context of related research.

Heterogeneous switching for breadth-first search was previously
investigated by Hong et al. [7]. Memory transfer overhead made
switching back forth between the CPU and GPU infeasible in that
study. Although the APU platform reduces the transfer overhead,
in our trials the CPU was simply not as efficient as the GPUs. The
CPU implementation of the OpenCL kernel may not take advan-
tage of the differences in device architecture. In Hong’s work, the
CPU-based implementation of BFS uses the classical queue-based
algorithm, adapted to multiple threads. Numerous other optimisa-
tions for multi-threaded BFS have been posited in the literature, for
both CPUs [2, 4] and for GPUs [13, 11, 10]. A possible direction
for future research could be to investigate how these algorithms
could interoperate in the APU platform.

We showed that the CPU and GPU cores in an APU can work ef-
fectively in unison, when processing different types of data. Instead
of determining such partitions dynamically at runtime, an alterna-
tive approach would be to statically pre-process the graph into an
optimally partitioned format. Graph partitioning is a well-studied
domain, with tools such as METIS [8] allowing graph data to beor-
ganised with balanced cuts. However, finding such cuts is computa-
tionally expensive, which has led other systems to employ random
partitioning schemes; Pregel [12] is an example of a distributed
graph processing system that takes this approach. Future research
may seek to investigate how partitioning schemes can be adapted
to heterogeneous processors.

We intend to explore other GPU-based graph algorithms, and
possibly optimise these for the APU platform. Other research has
explored how to take advantage of architectural features such as
memory coalescing [6]. A number of other papers have analysed
optimisations for multi-GPU platforms [20, 18, 9] – this need to be
investigated in the context of the APU environment.

Our broader aim is to investigate how heterogeneous (and in
particular, APU-based) processing can augment existing execution
platforms for graph computation. Systems such as Galois [15] and
Ligra [19] provide a simple programming interface, and a multi-
threaded engine for executing these programs, but do not currently
utilise GPU-based execution. In contrast, Dandelion [17] is an ex-
ample of an existing system that takes a task parallel approach to
executing programs across heterogeneous devices.

6. CONCLUSION
This investigation has shown that APUs can provide an effec-

tive platform for graph computation. The high bandwidth channel
between the CPU and iGPU cores allows computation to proceed
faster than it does on an externally-attached discrete GPU.This is
true for both the compute-intensive graph traversal workload, and
for the I/O-intensive PageRank workload. Furthermore, by adapt-
ing the PageRank algorithm to employ heterogeneous partitioning,
the combined performance of the APU outperforms the CPU by a
factor of up to2×.

Further work is required to extend the scope of this study to a
wider variety of algorithms, graph types, CPU/GPU optimisations
and other types of accelerator hardware.

7. REFERENCES
[1] http://developer.amd.com/.
[2] AGARWAL , V., PETRINI, F., PASETTO, D., AND BADER,

D. A. Scalable graph exploration on multicore processors. In
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (2010).

[3] CHAKRABARTI , D., ZHAN , Y., AND FALOUTSOS, C.
R-mat: A recursive model for graph mining.Computer
Science Department (2004), 541.

[4] CHHUGANI , J., SATISH, N., KIM , C., SEWALL , J.,AND

DUBEY, P. Fast and efficient graph traversal algorithm for
cpus: Maximizing single-node efficiency. InParallel
Distributed Processing Symposium (IPDPS) (2012).

[5] ERD6S, P. On the evolution of random graphs.Publ. Math.
Inst. Hungar. Acad. Sci 5 (1960), 17–61.

[6] HONG, S., KIM , S. K., OGUNTEBI, T., AND OLUKOTUN ,
K. Accelerating cuda graph algorithms at maximum warp. In
Principles and Practice of Parallel Programming (PPoPP)
(2011).

[7] HONG, S., OGUNTEBI, T., AND OLUKOTUN , K. Efficient
parallel graph exploration on multi-core cpu and gpu. In
Parallel Architectures and Compilation Techniques (PACT)
(2011), pp. 78–88.

[8] K ARYPIS, G., AND KUMAR , V. A fast and high quality
multilevel scheme for partitioning irregular graphs.SIAM J.
Sci. Comput. 20, 1 (1998).

[9] K IM , J., KIM , H., LEE, J. H.,AND LEE, J. Achieving a
single compute device image in opencl for multiple gpus. In
Principles and Practice of Parallel Programming (PPoPP)
(2011).

[10] L I , D., AND BECCHI, M. Deploying graph algorithms on
gpus: An adaptive solution. InParallel Distributed
Processing (IPDPS) (2013).

[11] LUO, L., WONG, M., AND HWU, W.-M . An effective gpu
implementation of breadth-first search. InDesign
Automation Conference (DAC) (2010).

[12] MALEWICZ , G., AUSTERN, M. H., BIK , A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G.
Pregel: a system for large-scale graph processing. InPODC
(2009).

[13] MERRILL, D., GARLAND , M., AND GRIMSHAW, A.
Scalable gpu graph traversal. InPrinciples and Practice of
Parallel Programming (PPoPP) (2012).

[14] MURPHY, R. C., WHEELER, K. B., BARRETT, B. W., AND

ANG, J. A. Introducing the graph 500.Cray User?s Group
(CUG) (2010).

[15] NGUYEN, D., LENHARTH, A., AND PINGALI , K. A
lightweight infrastructure for graph analytics. InProceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (2013), SOSP ’13.

[16] PAGE, L., BRIN, S., MOTWANI , R., AND WINOGRAD, T.
The pagerank citation ranking: Bringing order to the web,
1999.

[17] ROSSBACH, C. J., YU, Y., CURREY, J., MARTIN , J.-P.,
AND FETTERLY, D. Dandelion: A compiler and runtime for
heterogeneous systems. InProceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 49–68.

[18] SCHAA , D., AND KAELI , D. Exploring the multiple-gpu
design space. InParallel Distributed Processing (IPDPS)
(2009).

[19] SHUN, J.,AND BLELLOCH, G. E. Ligra: A lightweight
graph processing framework for shared memory. In
Principles and Practice of Parallel Programming (PPoPP)
(2013).

[20] SPAFFORD, K., MEREDITH, J. S.,AND VETTER, J. S.
Quantifying numa and contention effects in multi-gpu
systems. InWorkshop on General Purpose Processing on
Graphics Processing Units (2011).

