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Abstract

Accelerated Processing Units (APUs) are central procsdbat
feature integrated GPU cores. In this study, we show that thi
architecture is well-suited to the domain of graph anadyti©ur
evaluation shows that a current-generation integrated GiPbut-
perform an externally-connected discrete GPU by upQ# for
the breadth-first search and PageRank algorithms. Furtuerioy
operating on data with different characteristics in unjgbe CPU
and integrated GPU can halve the running time of PageRank on
scale-free dataset.

1. INTRODUCTION

Large-scale graph-based computation is a key analytichiro
a range of disciplines, including social network analyseentific
computing, and e-commerce data mining. Graph-based cemput
tion is characterised by large structural definitions, \whiwust of-
ten be accessed in an irregular fashion. Such irregulaitften
poorly managed by traditional execution frameworks. Ong tea
alleviate this problem is to take advantage of processarbgéne-
ity to adapt to structural patterns in the data.

Graphics processors (GPUs) can offer several advantaggs ov
traditional CPUs when applied to specific graph-centridfams.
When encountering regions of data or code that call for agded
allelism, GPUs offer a much higher hardware thread coum tha
CPUs (up to three orders of magnitude more) and also havescce
to higher memory bandwidth. However, the local memory ciypac
on a GPU card will typically be lower than RAM capacity on the
host system. Furthermore, GPUs are typically connectedhta-a
chine via an external peripheral bus (PCI Express), whichnse
that data transfer throughput between the host and the GRYJ is
stricted.

An alternative architecture, which is currently a key aréde>
velopment for hardware manufacturers, is to incorporattl Gétes

into CPU chip design. These CPUs with integrated GPUs (also

known as accelerated processing units or APUs) are priyriaei
ing developed to address the need for miniaturisation aedggn
efficiency. However, the APU architecture also presentssaipte
opportunity for graph analytics, by removing the bottldném-
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posed by the peripheral bus.

Until recently, the performance gap between integrated &PU
and discrete cards has been too large to warrant seriougleons
ation. However, current-generation hardware offers al lei/per-
formance that was previously only present in discrete GROLs.
interest in the technology is primarily application-drveve theo-
rise that graph applications have a set of requirementsitbatd
benefit from tighter integration and increased bandwidtfivben

aprocessing units. To this end, in this paper, we seek to aadhe
costs and benefits of adopting a current-generation AP Uophat
for graph computation, compared with discrete GPU comjmrtat
We have found that:

1. The integrated GPU consistently outperformed the discre
GPU by 15% to 50%, when reading graph data from a host-
allocated memory buffer.

. Despite having a higher bandwidth channel to local device
memory, the need to copy data over the peripheral bus ham-
pered the performance of the discrete GPU.

. CPU performance on PageRank (where communication costs
are dominant) is usually better than both GPU units tested,
when each unit is used in isolation. However, the integrated
GPU performs better on graphs with a low average degree.

Based on these findings, we also show how the APU architec-
ture could support two schemes for hybrid, heterogeneoaghgr
computation that have been successfully deployed in ojfs¢eiss:
switching and partitioning (described further in the nea¢tson).
Our results show that while the test platform was not conautd
the switching method, heterogeneous partitioning praviaeer-
formance improvement of up fx over the CPU-only benchmark.

We begin by discussing the characteristics of graph-ceotm-
putation, and how this relates to heterogeneous processiaghen
outline the parameters of our evaluation test bed, inctytiie al-
gorithms that were tested and the memory layout that wastedop
We then report our findings, analysing the feasibility of passi-
ble hybrid processing schemes. We then examine the restulis i
context of related work before concluding.

2. GRAPH PROCESSING OVERVIEW

In this section, we will review the features of graph computa
tion, and show how a tightly integrated heterogeneous pgicg
environment might be utilised to improve performance.

2.1 Graph processing

In data-parallel graph computation, the developer typiodé-
fines one or more granular operations to be applied to a tgdali



a graph (for instance, a vertex and its neighbours, or an @adé&s
associated endpoints). These operations are then execytarhl-
lel. The selection of graph elements to operate on, and tfer an
which these operations execute may affect the semantigsifireg
strict ordering) or the performance of the program.

For example, in PageRank [16], every vertex is updated ih eac
pass, with no constraints on the order that the verticesaatad.
However, ordering operations to follow the sequential layof
data in memory will (usually) improve performance. Altetively,
for traversal style algorithms such as breadth-first seawplra-
tions proceed in a frontier radiating from the source - iis tiligo-
rithm, it is necessary for operations to execute one frofgiee| at a
time, in order to preserve the semantics of the equivalentesgtial
algorithm.

A common approach taken by some current graph analysis plat-
forms is to adopt a static data-parallel execution stratedych
is usually necessitated in the case of networked machimethid
approach, the graph structure is (randomly) partitionedszcthe
cluster, and each node executes the operations on its lecatets.
Updates to the program metadata (algorithmic state) apagaied
along edges, with message-passing used for remote upAates-
chronisation barrier at the end of each iteration ensutegpdhtes
have completed before progressing to subsequent itesatiothe-
ory, such a scheme could also be adopted for distributed gomp
tation across a CPU and GPU, however the limitations of commu
nication over an external peripheral bus usually mean thiati$
impractical. Furthermore, this approach does not to takarsdge
of the differing performance characteristics of each typeewvice,
which will be discussed in the next section.

2.2 Heterogeneous Graph Computation

GPUs feature a number of advantages and constraints when com
pared with CPUs, which must be considered carefully wheldbui
ing a heterogeneous execution platform. The followingdistrac-
terises some of these differences:

e Parallelism model. Modern multicore CPUs allow full thread
flexibility, with a multiple-instruction multiple-data (MD)
processing model. In contrast, the "virtual cores" of a GPU
require the use of SIMT (single instruction multiple thrgad
computation.

Parallel processing power. Current CPU sockets accommo-
date less than a hundred concurrent hardware threads.
contrast, the vector registers of a GPU offers several thou-
sand hardware threads.

Local memory capacity. A commodity server may accom-
modate several hundred gigabytes of system RAM, but less
than ten gigabytes of graphics RAM. Note however that the

AMD A10-7850K | AMD R7 250

Processor / Graphics Card cPU iGPU dGPU
Cores 4 8 6
Clock MHz | 4000 720 1050
RAM 8GB DDR3 1GB GDDR5
Local Read GB/s| - 21.5 55.6
DMA Read GB/s| - 8.0 5.8

Table 1: Testing platform layout. “Local read” speeds indicate
throughput from device-visible RAM, whereas “DMA Read”
speeds are between the GPU device and host memory.

which affects the GPU’s overall throughput. Assuming that a
propriate graph elements are dispatched to the GPU in atithe
appropriate size, the associated overhead of kernel itieocean

be masked by the added parallelism and throughput of the GPU.

In situations where the elements to be processed are not well

suited to SIMT processing, an alternative is to processetligs
rectly on the CPU. This forms the basis of a heterogeneousmen
platform for graph computation, using a data-centric salerdhat
selects the correct device to process a given workload .e@Gusy/s-
tems in this domain can be categorised into two basic appesac

Heterogeneous Switching:in this approach, computation proceeds
on a single device until the scheduler detects that the data
to be processed could be better managed by another device.
The data and computation are then switched to the other de-
vice. To operate successfully in this manner, the overhead
of switching and measuring the characteristics of the otrre
workload must be offset by gains in processing efficiency.

Heterogeneous Partitioning: in this approach, computation pro-
ceeds in parallel on two or more heterogeneous devices, with
the data to be processed by each device tailored to fitits char
acteristics. For this approach to be successful, the oasdrhe
from partitioning the input data and synchronising the out-
put data must be offset by the gain in overall computation
throughput.

A system could support both approaches simultaneously; how
ever in this study we will analyse each scheme in isolatiom. |
particular, we show how each scheme could be respectively im
plemented with two separate algorithms, breadth-firstcbeand
PageRank. However, a key ingredient in ensuring such schepe

Inerate effectively is high-performance interoperabiligtween the

CPU and GPU - our evaluation shows that integrated GPUs may
be able to provide this capability in particular scenarios.

3. TESTING METHODOLOGY

Our main aim is to highlight some key differences in applica-

graphics hardware can access system memory via DMA acros#0n performance, when comparing graph processing onriatied

the PCI express bus, albeit at a higher latency cost.

Memory bandwidth. With high memory clock speeds and
multiple channels, graphics hardware typically has mughéui
local memory bandwidth than the CPU (up to ten times more).
GPU programs also have the option to specifically utilise
small areas of low-latency cache memory if desired.

To align these differences to the characteristics of gragh p
grams, it is necessary to select graph elements with relgtiwni-

GPUs (iGPUs) discrete GPUs (dGPUs). We also compare GPU
performance to CPU performance on two graph algorithms with
different characteristics — breadth-first search and PagkeRFi-
nally, we explore ways in which these differing performacbar-
acteristics can be exploited in the context of the hetereges pro-
cessing models discussed in Section 2.2.

3.1 Graph Algorithms

For these trials, we implemented multi-threaded kernel$vio
representative graph algorithms: breadth-first searclSjBRd PageR-

form properties to be analysed by the GPU. The aim of this is ank (PR). The BFS algorithm is a fundamental building blamka
to ensure that branch divergence is kept to a minimum. Diver- variety of other algorithms in the graph domain, such as vesak
gent branches in an SIMT kernel will result in partial sesiation, strongly-connected component detection, shortest pgtrigims,



graph colouring, and centrality measurement. PR is reptatee
of a class of graph algorithms based on fixed-point iteratom-
putation.

Both algorithms proceed in a distributed fashion by divigihe
job into vertex-centric subtasks, which execute repegtadtil a
solution condition is reached. However, the two algoritlexisibit
contrasting patterns of computation and 1/O:

e In BFS, subtasks are executed in a level-synchronous fash-
ion, which means that only vertices at a fixed distance from
the source (the “frontier”) are active in any iteration. IR,P
computation is required at every vertex in each iteration.

In each iteration of PR following initialisation, all graplata

is read and all algorithmic state is updated. In contrat, th
amount of data to be read or written in a BFS iteration is de-
pendent on the degree distribution of vertices in the feanti
set.

Results from our evaluation show that although the iGPU out-
performs the dGPU when operating from host memory for both
algorithms, the CPU typically performs better than the iG&U
the I/O-intensive PageRank workload. Further analysisasiged
in Section 4.

3.2 Graph Structure and Layout

Since our focus in this study is on comparative performarece b
tween heterogeneous processors, we have adopted a stnaight
ward graph data format, ensuring that it is preserved on daeh
vice. We use an adjacency list representation to store ehigrap
edges, with an associated index to allow efficient iteratRmior to
running each algorithm, we read the adjacency and indexXfaata
disk into arrays pinned in host memory. Since this step iss&ary
for all trials, it is excluded from the reported runtime figar

In addition to each graph’s structural data, each algorgtones
state in auxiliary data structures. We allocate buffers@al device
memory to store these structures. In the case of the iGP] loc
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Figure 1: Running times on RMAT Scale-20 graph, for BFS
(top) and PR (bottom). ZC denotes Zero Copy mode, where
graph data is read from a host-allocated buffer.

the iGPU, and is connected via a PCI Express 3.0 bus. The dGPU
was also equipped with one gigabyte of dedicated GDDR5 graph
ics memory. GDDRS5 is optimised for high bandwidth streaming
throughput, whereas DDR3 is optimised for low latency ateke

device memory refers to an area of RAM reserved as cache by thepense of bandwidth. As a result, there is a difference inutnput

OpenCL runtime platform. The main graph data structuresewer
also loaded into local device memory in some trials, if sigfit
capacity was available. In other cases, the adjacencyniisiralex
arrays were read directly from host memory by the GPU device.
This is also known as a “zero-copy” transfer, as blocks oa@aie
only loaded from host memory when required.

For the trials, we used two forms of synthetic random graph.
The R-MAT [3] graph generator synthesises graphs with aescal
free degree distribution, mirroring the structure of maegi+world
networks. For comparison, we also used an Erdos-Renyi [B) (E
random graph generator, which produces graphs with a badomi
degree distribution. We generated a variety of graphs wifthrel
ing sizes and degrees (the degree of a graph is the averagenum
of neighbours per vertex). Unless otherwise specified, rg¢ee
graphs have a degree of 16, and are referred to by their “s¢ae
instance, a “Scale-22" graph ha¥ vertices (these are the default
parameters adopted by the Graph500 benchmark [14]).

3.3 Platform and Implementation

when operating from local memory on the dGPU. In contragt, th
iGPU has higher rates of throughput when operating from-host
allocated memory.

The testing machine was installed with the Windows 8.1 @4-bi
operating system, with the AMD Catalyst 14.1 Beta deviceadri
which provides OpenCL support for both the iGPU and dGPU. We
developed kernels for the BFS and PR algorithms with OpenCL,
which were designed to work with the graph format descrilmed i
the previous section.

4. EVALUATION

We begin by examining performance on a graph that can be held
within dedicated RAM on the discrete GPU card, before atiradys
performance on larger and more varied graph data. Basecdsa th
results, we can then predict whether or not the heterogenemu-
putation models described earlier can be applied in thisr@amv
ment. Our main finding is that heterogeneous switching durin
BFS is unlikely to yield major performance benefits, howevet

To run the experiments in the evaluation, we assembled a PCerogeneous partitioning may be feasible in some circurostan

based on the components described in Table 1. Hencefortre-we
fer to the integrated GPU as an “iGPU”, and the discrete GP& as
“dGPU". The device-local and host DMA read speeds in theetabl
were measured using AMD’s APP SDK [1]. The APU we used is
based on AMD'’s “Kaveri” architecture, which was releasedan-
uary 2014. The installed dGPU provides a comparison poitit wi

4.1 Zero-Copy Efficiency

For our first set of trials, we used an RMAT graph witt{ (ap-
proximately one million) vertices and 16 million undiredtedges.
The resulting graph data occupies approximately 500 megaby
of memory, which is small enough to fit within a single OpenCL
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Figure 2: Running times for BFS (top) and PR (bottom) on ER
graphs of varying size. GPUs operate in zero-copy mode.

buffer object. Figure 1 shows the runtime performance of BR&

PR with this graph. In the CPU’s case, graph data is read from
the arrays pinned in RAM. For the iGPU and dGPU, these arrays
are first copied into local device memory. As one might expect
the discrete GPU exhibits the fastest compute performasahis
workload. However, there is a significant cost in transfeyrihe
graph data to the dGPU so that it can be processed.

As discussed earlier, an alternative approach is to mapfarbuf
into host memory, and load data directly from the host when re
quired. This approach is known as “zero copy” mode, as itds/oi
the need to allocate and transfer data in advance. The sdsult
BFS show that the runtime performance of the iGPU in zerorcop
mode is better than the dGPU operating from local device nngmo
after adding the time taken to finish the initial copy. Howevtke
results for PageRank show that the CPU outperforms bothsfofm
GPU, regardless of the memory transfer mode. These regelts a
indicative of what we found in most trials on this testingtfdam.
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Figure 3: Breakdown of running time per iteration for BFS on
ER graph with an average of four neighbours per vertex.

the size of the input graph for BFS and PR. For these trials, we
generated graphs with a constant average degree (set tag?f ne
bours), but with a varying number of edges, between 20 milim
100 million. The Erdos-Renyi generator was used to creaseth
graphs, since it allows free control of the desired numbeedices

in the graph (whereas the RMAT generator requires the nuwier
vertices to be a power of 2). The figures show the running times
plotted against the memory capacity requirements for eaahhg
Note that the dGPU has a maximum local memory capacity of one
gigabyte, but no change is evident in the running time figfmes
graphs that exceed this threshold. The likely explanatarttis

is that neither algorithm exhibits data access patterrisatigawell
suited to caching (which is normally the case for irreguleapin
applications).

The results reinforce the trends evident in the first figunethe
compute-dominant BFS workload, the GPUs outperform the CPU
when using an identical OpenCL kernel, by a factoBgf (dGPU)
to 6x (iIGPU), whereas for the 1/0-intensive PageRank workload,
the CPU outperforms the GPUs by a factoriox to 2x. In
the following sections, we turn our attention to the heteregpus
computation schemes discussed in Section 2.2, exploramnpsios
where these may be applicable on this platform.

4.2 Heterogeneous Switching

Recall that the switching method involves shifting all cargp
tion to a single device at a particular point in the algorittrased
on the nature of the work that is about to be processed. Podt w
by Hong et al. [7] has focused on building a hybrid CPU/GPU
workflow for BFS, based on this model. In that work, the aushor
found that the CPU was more suited to handling iterationfién t
distributed computation where only a few vertices existedhie
frontier set, but would switch to processing on the GPU when e
ponential growth in the frontier set was observed.

To test the feasibility of a similar scheme in this enviromteve
looked at the running time in each iteration of BFS on eaclicgev
Figure 3 shows one such trace, for BFS on an ER graph with 16

Another reason to make use of zero-copy host memory is that million vertices and 64 million edges. In each trace, the/ qadint

it allows access to data that exceeds the local memory dgpztci
a device, without requiring the developer to perform the loem
some task of splitting up the source data into manageablekshu
for processing in local memory. For the remainder of theltesu
reported in this section, we have used the zero-copy methodp
the graph data structures.

at which the CPU outperforms the GPUs is in the first iteratian
BFS, the first iteration is a trivial step, which does not liegjany
parallelism. However, for all remaining iterations (in sv8FS
trial), the performance on the GPUs ran faster than the OpenC
CPU implementation.

In the trace shown in the figure, the running time for the 8th it

In Figure 2, we show how the running time scales as we increase eration on the dGPU was faster than the iGPU. In all of theegac
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Figure 4: Running times for BFS (left) and PR (right) on RMAT and ER graphs with varying mean degree and a fixed number of
edges.

we examined, this was one of the few cases where this conditio 1
existed. In theory, it would be possible to take advantagthef
runtime savings (which amounts to approximately 60 mitligels,
offset by the cost of shifting algorithmic metadata which egti-
mate to be 5-10 milliseconds in this instance). However dipre
tive mechanism is also required, to allow a switching caadito
be recognised. When comparing with results from other rues,
found several other instances where the same level of griovitte
frontier set did not lead to improved performance on the dGPU

At this stage, we cannot find any evidence to suggest that hy- 0
brid switching is a feasible tactic on this testing platforRurther 28 29 30 31 32 33 34 35 36
work is required to determine whether an optimised CPU BFS im Partition Point (ER)
plementation could change this.
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As described in Section 2.2, a common cause of performance
degradation in SIMT GPU applications is thread divergentre.
both of these algorithms, the degree distribution of preedsiodes
directly impacts the amount of work that needs to be comglpé
vertex. In Figure 4, we show the impact of varying the degisie
bution on BFS and PR. For these trials, we synthesised graitins
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with the number of vertices set to eith@#*, 222 or 22°, resulting %00 % % % % % %%

in graphs with a mean degree of 4, 16 or 64 neighbours pemnverte Partition Point (RMAT)

respectively. We generated graphs using both the ER and RMAT

generators for this experiment — recall that the degreeildigion Figure 5: Running times for the hybrid partitioning prototy pe,

of the ER graphs is more tightly clustered around the mearedeg  on the ER (top) and RMAT (bottom) scale-22 graphs. The par-
The results for BFS show that the performance gap between thetition point was varied to find the optimal balance in runtimes.

CPU and GPUs reduces as the average degree increases. Howeve

the effect on running times for the GPU devices is minimale Th

PageRank results show more marked differences; similartje running time of each kernel was similar.

BFS results, the CPU’s performance increases as the avdeage The results of the hybrid partitioning prototype is showirig-

gree of the input graph increases, whereas the GPU runmimggti  ure 5, when tested on the ER and RMAT scale-22 graphs. In the
remain unaffected. However, in this case, for the graphh thie case of the ER graph, there is a clear crossover point, justeab
lowest average degree, CPU performance degrades to aHav&t  the mean number of edges per vertex. For the RMAT graph, vari-
poorer than the iGPU (but not the dGPU). ance in the iGPU runtime means that the crossover point iggiot

These results indicate that a simple partitioning schenherev clear, however there is a range of partition values that yigld
the GPU processes low degree vertices only, might lead tdfarpe near-optimal performance. Comparing these results walCiRU-
mance improvement. To test this hypothesis, the PageRanklke  only trials reveals that the hybrid partitioning prototypields a
was modified to accept an additional parameter, namely the “p  speedup of approximately.6x on the ER graph anélx on the
tition point”. On the GPU, all vertices with degrees gredten RMAT graph.
the partition point are rejected, and vice versa for the OPing
this new kernel, the test launcher was modified to instantiab
OpenCL contexts concurrently, on the CPU and iGPU. Afteheac 5. RELATED WORK
iteration, it is necessary to synchronise the PageRanle wadator The results from this pilot study seem to indicate that gragrh-
across both partitions, however this is a relatively inepee op- putation on APUs will be a promising area for further invgation.
eration compared to the runtime of the main kernel. By vayyin In this section, we will explore possible extensions andnoisg-
the partition point, it was then possible to find a point whire tions of this work, in the context of related research.
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