
Centrality and mode detection in dynamic contact

graphs; a joint diagonalisation approach.

Damien Fay

School of Design Engineering and Computing

Bournemouth University

United Kingdom

Email: dfay@bournemouth.ac.uk

Jérôme Kunegis

Centre for Web studies

University of Koblenz–Landau

Germany

kunegis@uni-koblenz.de

Eiko Yoneki

Computer Laboratory

University of Cambridge

United Kingdom

eiko.yoneki@cl.cam.ac.uk

Abstract—This paper presents a technique for analysis of
dynamic contact networks aimed at extracting periods of time
during which the network changes behaviour. The technique is
based on tracking the eigenvectors of the contact network in time
(efficiently) using a technique called Joint Diagonalisation (JD).
Repeated application of JD then shows that real-world networks
naturally break into several modes of operation which are time
dependent and in one real-world case, even periodic. This shows
that a view of real-world contact networks as realisations from a
single underlying static graph is mistaken. However, the analysis
also shows that a small finite set of underlying static graphs can
approximate the dynamic contact graphs studied. We also provide
the means by which these underlying approximate graphs can be
constructed.

Core to the approach is the analysis of spanning trees
constructed on the contact network. These trees are the routes a
broadcast would take given a random starting location and we
find that these propagation paths (in terms of their eigenvector
decompositions) cluster into a small subset of modes which
surprisingly correspond to clusters in time. The net result is that
a dynamic network may be approximated as a (small finite) set of
static graphs. Most interestingly the MIT dataset shows a periodic
behaviour which allows us to know in advance which mode the
network will be in. This has obvious consequences as individuals
in the network take differing roles in differing modes. Finally, we
demonstrate the technique by constructing a synthetic network
with an 4 underlying modes of operation; creating synthetics
contacts and then used JD to extract the original underlying
modes.

I. INTRODUCTION

Real world contact networks have attracted much attention
in recent years with the rise of ubiquitous sensing devices and
social networking in general. Of particular interest is the spread
of viruses in the real world in time varying networks [13] [15]
and targeted marketing of individuals or communities [7]
based on their physical contacts. As noted in [13], often the
time varying structure of these networks is considered too
complex to model and instead a static underlying network
is assumed. However, contact networks can change radically
over a short space of time. The most obvious example being
the diurnal pattern; many contact during the day and few at
night. In addition to this, humans are generally members of
several different communities and even within a community the
connections can vary depending on the context; for example
a work context versus a social occasion. While the different
contexts may be inferred from graph measures or contextual
information (for example location) the method presented here

is data driven. Given a set of contacts we wish to infer the
underlying modes of the network, when they occur, if they
are repeated and to what degree the network can be classed
as being in a certain mode at a given time. In addition, we
present a means of creating a static graph which represents
the interaction for a mode. The network as a whole may then
be modeled as one which changes state between this (small)
set of static graphs.

Another factor that makes time dependent networks diffi-
cult to model is path ordering; for a time dependent network,
the order in which contacts occur is important. For example, a
contact path between 3 nodes, A → B → C, does not imply
the reverse; A → B → C. However, currently static graphs
are constructed based on the total number of contacts between
two individuals (for example in [7]), which ignores both the
time and the order dependence in the network. However,
consider the spread of a message from a single individual at a
given time. This message will propagate through the network
forming a (time and order dependent) spanning tree of the
network. This spanning tree is a static graph. For many starting
individuals and many starting times there will be many such
spanning trees. The core of the algorithm proposed here is to
look for common eigenspaces1 in these spanning trees thus
preserving ordering and time information.

In this paper we propose the application of Joint Diagonal-
isation (JD) to track the changes in the eigenspace of contact
networks (Section III). The key contributions of our work are:
1. An algorithm for identifying the modes in a contact network
and the times at which they appear, and 2. An approximation
of a mode as a static network. Overall, therefore we are able to
take a complex time-varying network and preserve order and
time information while still providing a sparse representation
of the information in terms of the modes of the network.

II. RELATED WORK

Scellato et al. [17] examine the different characteristics
of contact networks as they evolve over time. However, the
analysis there is based on forming static graphs by amalgamat-
ing all links seen in an interval of time. This may introduce
connections which in fact are unordered. Graph measures (e.g.
the clustering coefficient) are then measured from these graphs
and a time series analysis of these follows. The technique
presented here does not assume a fixed interval but rather

1i.e. eigenvectors and eigenvalues.
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Fig. 1. A simple graph and its 6 spanning trees. (The numbers represent the root nodes and probability of observing the tree ex: 1,6,2,3 are the root nodes for
the third tree and this tree is observed with probability 4/14)

determining the appropriate intervals is one of the research
questions addressed.

Perhaps the closest papers in spirit to that presented here
are those which use tensor decomposition [18][13][9]. A tensor
is multi-dimensional matrix (for example a set of adjacency
matrices) which are essentially reduced using PCA to a core
tensor. Sun et al. [18] for example, use tensor analysis to
examine time dependent networks. They identify core tensors
which allow changes in the network to be tracked in time. Here
however, (in their terminology) we uncover a small set of cores
which are relevant at different times. In a similar paper, Lin
et. al. [9] examine context driven networks such as Flikr and
Digg with the focus being on community detection.

The spanning tree analysis carried out here is similar to that
in Riolo et al. [15]. They investigate time dependent epidemic
networks with a view to constructing transmission graphs,
directed graphs which indicate the direction of transmission
of a disease through a network.The methodology used is
significantly different as they examine one time infections in
real networks.

Joint diagonalisation has been used in many applications
where the evolution of a system can be tracked smoothly via
its eigenspace. For example, Macagnano et al. [10] present
an algorithm for localisation of multiple objects given partial
location information. As time evolves the location of the
objects changes smoothly which may be seen through the
evolution of the eigenvectors of a distance matrix. Other
examples include blind beam forming [3] and blind source
separation [19]. By applying joint diagonalisation to social
networks we are not tracking position but rather centrality (as
centrality is related to the entries of the largest eigenvectors).
To the best of our knowledge decomposing a network via
eigenspace evolution has not been applied to contact/time
dependent networks previously.

III. THEORETICAL BACKGROUND

Snowball sampling consists of selecting a root node ran-
domly in the network with uniform probability and performing

a Breath First Search (BFS) from this node.2 This produces a
spanning tree, H , where H is a subset of the original graph
G(V,E), where V and E denote the vertex and edge sets
respectively, and |V | = N denotes the number of nodes.
We call the starting node the observer or root and H , the
sample. Figure 1 shows a simple graph which will be used
for demonstration purposes. In the first sample node 5 is
selected at random and a shortest path first search results in
the first tree in Figure 1. In this simple graph there are a total
of 6 spanning trees (Figure 1). If we assume that the root
node is picked uniformly then it is interesting to note that all
spanning trees are not equally likely; the first spanning tree
occurs with probability 1/7 while the second has probability
4/14 ((Figure 1). We call this effect the sampling bias and the
aim here is to develop a centrality which reflects this bias.

Eigenvector centrality [12] is defined such that the central-
ity of node i, xi, equals the average of the centrality of all
nodes connected to it:

xi =
1

λ

N∑

j=1

Ai,jxj (1)

where Ai,j is element i, j of the (possibly weighted) adjacency
matrix and λ is the largest eigenvalue of Ai,j . as can be seen
by rewriting Equation 1 in matrix notation as:

X = λ−1AX (2)

The eigenvector corresponding to λmax gives the eigenvector
centrality of node i.

In the current context we have a set of adjacency matrices
ordered in time, A = {A1 . . . AT }, in which At is the adja-
cency matrix of contacts seen in a short interval of t+∆t where
∆t should be small and may include perhaps no interactions.
The network is sampled by choosing a random node uniformly
and a random start time uniformly. This node then propagates
a message for a period appropriate to the data set (for those

2i.e. determining a set of shortest paths from the source node to every other
node in the network.



used here the time-out is 12 hours) and a spanning tree of
network is thus formed.3

The Given M samples of a network, H = {H1 . . . HM},
the question now arises; how can these be combined to give
a matrix that reflects the sampling bias. We propose using
a method known as joint diagonalisation which produces an
average eigenspace of the samples. Specifically, we seek an
orthogonal matrix such that:

Hi = UCiU
T ∀i (3)

If U corresponds to the eigenvectors of Hi then Ci is diagonal
however no matrix U exists in which all Ci are diagonal
(except for the trivial case in which all Hi are equal). Joint
diagonalisation seeks average eigenvectors Ū such that the sum
of squares of the off diagonal elements of Ci are minimised.
Specifically:

Ū = argmin
U

off2(

M∑

j=1

Ci) (4)

where off2 is the sum of the off diagonal elements squared,
called the deviation of Hi from H̄ , δi :

δi = off2(Ci) =
∑

k 6=j

|Ck,j
i |

2 (5)

where C
k,j
i is the kth row and jth column of Ci. As shown

in [20] and [2] Equation 4 may be minimised efficiently
by a sequence of Givens rotations; convergence and stability
properties are proven in [1].

Given the average eigenstructure of the sample matrices an
weighted sampling graph may be constructed by jettisoning the
information in the off diagonal elements in each Ci and taking
the resulting average of the eigenvalues as:

H̄ = Ū C̄ŪT (6)

Where H̄ is a matrix in which the entries represent the average
weight of the links as observed by the samples in the network
(in a least squares sense) and C̄ is the average of diagonals of
Hi projected onto Ū ; i.e. the average eigenvalues. A sample
based centrality may then be constructed from H̄ using the
standard eigenvector centrality; i.e. by using the eigenvector
of H̄ corresponding to the maximum eigenvalue. Note that
the joint diagonalization of a set of symmetric matrices can be
equivalently described as a tensor decomposition; specifically
of a PARAFAC/CANDECOMP type [8].

A further decomposition can now be implemented but this
time using the distribution of δi to perform clustering of the
sample matrices, H. The aim here is to find K sub-populations
of H under the assumption that those Hi with similar values of
δi are themselves similar. As will be seen in the example below,
further rounds of clustering may be required to extract the
modes from the network. The clustering is based on a Gaussian
mixture mode (GMM) [11] to explain the distribution of the
deviations; fδi . Algorithm 1 summarises the steps above in the
Contact Network Mode Decomposition (CNDM) algorithm.

3During the night many of the spanning trees are incomplete or empty; this
has no effect on the JD algorithm as the algorithm performs a Givens rotation
on the largest absolute off-diagonal element which is never a zero element.

Algorithm 1: CNMD

Data: A: a set of time ordered adjacency matrices
Result: {C1, ..., CK}
{H̄, Ū , δi}
{H̄C1, ŪC1, δiC1

}...
{H̄CK , ŪCK , δiCK

}
begin

for i = 1→M do
Sample: v ∼ U [0, |V |]

t ∼ U [0, T ]
Hi ← BFS from v at time t

Joint Diag: {Ū , H̄, C̄, Ci, δi} ← JD(H)
Cluster: {K,C1, ...CK} ← GMM(δi)

for j = C1 → CK do

Joint Diag: {Ūj, H̄j , C̄j , Cij , δij} ← JD(HCj
)

A. Example: a Synthetic contact network.

The first network created in this section is a purely random
contact network in which 5% of 50 nodes are connected at
random in each time step. Figure 2 shows the distribution of
δi for this network is uni-modal. The distribution also follows
a Γ distribution4. This shows that a unimodal distribution is
the default for purely random network with no structure.
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Fig. 2. Distribution of δi (Random network).

The second network is more complicated and involves
generating four different behaviours for a contact network
termed generators. A generator consists of a static underlying
topology representing a set of possible contacts. These links
are transformed into contacts by using a Lévy walk (as justified
in [6] [14]); a set of times are generated from a power
law distribution and used to demarcate when a contact takes
place. The generator used is switched every 700 time units
as shown by the mode indicator in Figure 4. Specifically,
the first generator employs a Waxman topology [21] (α =
0.5,β = 0.3)5. The second generator is also a Waxman model

4δi is a squared quantity which should follow a similar distribution to a
sample variance; i.e. δi ∼ χ2. The Γ distribution is a generalisation of the
χ2 distribution and so is used.

5Waxman topology: p(u ↔ v) = αe−βd where α and β are parameters
of the model. The nodes are distributed randomly on a grid and the distance
between them is d.
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Fig. 7. (a) The generating graph for submode 2∗. (b) H̄ shortest path graph for submode 2∗. (c) A spy plot of the generating graph (.) and H̄ (o)∗∗. (Synthetic

data)
∗ The size of a node is proportional to the sum of weights incident on that node. ∗∗ The rows and columns have been permuted using

approximate minimum degree to highlight the preferential attachment community structure in the graph. H̄ has been thresholded using a value
of 0.1 (H̄ < 0.1 7−→ 0).
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with α = 0.7,β = 0.3. The third and fourth generators are
Generalised Linear Preferential (GLP) topologies based on
preferential attachment [16]. As can be seen 3 modes are
detected in the data (Figure 3). These correspond with the
generator times for 2 of the modes (Figure 4). However, mode
3 incorporates both generator 3 and generator 4. This occurs
as generator 3 and 4 are quite similar (both based on GLP).
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Fig. 5. Distribution of δi; submode. (Synthetic).
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The samples in mode 3 may be examined separately using
JD to produce the submodes seen in Figure 5 occurring at
the times seen in Figure 5. As can be seen these submodes
are generators 3 and 4. Thus the algorithm has successfully
recovered the modes in the data. At this point we make a
note on the transition between the modes. It is interesting that
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Fig. 8. A typical flooding tree; as seen from node 20.

this transition is not crisp even though the switching between
modes is. This is because a spanning tree may begin in one
mode but the message may end in the next mode.

IV. DATA SET DETAILS

In this paper, we use three experimental datasets gathered
by the Haggle Project [5], referred to as Cambridge, Info-
com06; one dataset from the MIT Reality Mining Project [4],
referred to as MIT. Previously, the characteristics of these
datasets such as inter-contact and contact distribution have
been explored in several studies [6], to which we refer the
reader for further background information. These three datasets
cover a rich diversity of environments, ranging from a quiet
university town (Cambridge), with an experimental period
from a few days (Infocom06) to one month (MIT).

V. RESULTS

A. Cambridge data

Figure 8 shows a typical sampling tree for the Cambridge
data set. Node 20 initiates a message and it is passed around the
contact network; first to nodes 16 and 6 and from there to the
rest of the network. For this experiment we use M = 10, 000 6.
H̄ (Equation 6), for this data set is represented in Figure 11(a).
This representation shows all links in the weighted shortest
paths of H̄7. As can be seen the nodes split into two groups
which correspond with those reported in [22]. fδi is shown in
Figure 10. As can be seen there are K = 5 modes which also
correspond to different time periods. This is particularly
useful as it allows the network to be characterized by different
modes of behaviour at different times.

B. INFOCOM ’06 data

The Infocom data is summarised in Figure 12 and follows
the behaviour typically expected at a conference. Four modes
are identified (Figure 12(a)) which correspond to four periods
in time (Figure 12(b)). The first mode to occur is mode 3

6A large sample size is used here to negate random effects. However, similar
results are found for much smaller sample sizes.

7We found this to be the clearest means of representing these complete
weighted graphs.
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showing much mixing between the delegates (Figure 12(e)).
This is probably the delegates meeting for coffee before the
conference begins. This is then followed by two periods of
structured graphs (i.e. presentations; Figures 12(c,d)) ending
with a period of mixing (Figures 12(f)).

C. MIT data

The results from the MIT data set show a different type of
behaviour. The graph of H̄ clearly shows that there are two
main communities in the network (Figure 13). fδi is bi-modal
(Figure 14) leading to two main modes. The MIT data set
spans a month of data and again the modes correspond with
periods in time but they are also recurring (Figure 15). This
is particularly interesting as it implies that for this network
we may be able to predict the mode in advance and act
accordingly. To test this hypothesis we designed a marketing
experiment which we run on the network in software.

The experiment consists of offering a discount to a group
via an influential individual in the network for a period of 2
hours (one might imagine a lunch voucher for the individual



Fig. 11. Graph of shortest paths in H̄ for overall and 5 modes. (Cambridge data set; the size of a node is proportional to the sum of weights incident on that
node)
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Fig. 13. Graph of shortest paths in H̄; overall. (MIT).

and his friends for example). A person coming into contact
with the group is convinced to join with probability ρ. Thus,
this experiment is similar to spreading a disease but with
a fixed expiry time. Individuals are chosen to be the seed
nodes with probability proportional to their centrality. The
experiment is averaged over 50 runs and the average number
of customers touched is recorded. First we note the difference
between the centralities according to a static graph, those based
on barH and those based on the two modes; H̄C1 and H̄C2,
Figure 16. The 45◦line shows the static centrality versus itself.
As can be seen the centralities according to barH , H̄C1,
and H̄C2 are all similar but they deviate significantly from
the static centralities especially for the most central nodes
who’s centrality is under estimated by the static representation.
Figure 17 shows the number of customers touched in the
simulation as a function of rho (summed over all time). As
can be seen the centralities based on the sampling graphs are
superior to those of the static graph. There is little difference
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between the graph based on H̄ and that based on the two
modes. For rho = 1, the centralities based on H̄ give a 3.2 %
improvement while those based on H̄C1 combined with H̄C2

improve on this figure to give a 3.8 % improvement. This result
shows that the sampling centrality is a better measure of the
centrality of a node with respect to the simulated scheme laid
out above.

VI. CONCLUSIONS

This paper presented a method for extracting different
modes of operation for contact networks. In the real-world
contact networks examined, several interesting features where
extracted including detection of a modes in time in the
Cambridge data set. The MIT data set in contrast, showed a
repetitive behaviour which is useful for prediction of network
behaviour; a feature which simulations show may be useful in
targetted advertising. The INFOCOM data set clearly showed
the behaviour typical of a conference. In producing an average
graph based on samples of a network, the order of contacts
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has been preserved and in addition the correlation between
contacts has been preserved. For example aggregation based
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Fig. 16. The centrality of nodes according to the static representation, H̄ ,
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and ¯HC2
drawn against the static representation centrality. (MIT)

purely on counting the number of times a link is present does
not take into account the fact that links may typically be
present together; i.e. the time based correlation between links.
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By using spanning trees the methodology takes advantage of
a sampling mechanism present in many real-world networks;
it might not be possible to record all contacts but it is often
possible to flood a message in a network and record the paths
taken. Here we concentrated on the eigenvector centrality and
the adjacency matrix but extensions to other centralities and
matrices is an avenue for future work.
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