
Pocket Backup Storage System with Cloud Integration

Karthik Nilakant and Eiko Yoneki
University of Cambridge, Computer Laboratory

Cambridge CB3 0FD, United Kingdom

{karthik.nilakant}{eiko.yoneki}@cl.cam.ac.uk

ABSTRACT

A variety of personal backup services now allow users to
synchronise their files across multiple devices such as lap-
tops and smartphones. These applications typically operate
by synchronising each device with a centralised storage ser-
vice across the Internet. However, access to the Internet
may occasionally not be available, leaving any unsynchro-
nised content in a vulnerable state. To address this, we
introduce a cooperative backup storage system that could
alternatively make use of storage capacity provided by other
devices within close proximity, using ad-hoc or local network
connectivity. Such devices can provide a secondary storage
tier in case of Internet connectivity issues, and could also be
used to forward files to central storage at a later time.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Computer
Communication Networks – Distributed Systems

General Terms

Measurement, Experimentation

Keywords

Pocket Switched Networks, Storage System

1. INTRODUCTION
Centralised, hosted file storage services are now widely used,
and for many users have begun to supplant external stor-
age devices as a means of backing up personal documents
and other files. These services enable file synchronisation
amongst multiple devices, allow documents to be accessed
from any Internet-connected machine, and facilitate sharing
and collaboration of stored content. Typically, the services
utilise large clusters of servers to facilitate high availability
and low latency. Popular examples include Google Drive,
Dropbox, Microsoft’s SkyDrive and Apple’s iCloud.
However, there are a range of special circumstances where

lack of connectivity restricts the functionality of these ser-
vices. For example, a group of tourists may be taking pho-
tographs on their smartphones while on vacation. One per-
son’s photographs may be initially stored on flash memory
within the phone, and synchronised with a centralised stor-
age service such as those described above. However, while
the tourists are “roaming”, data access may not be available
or may be prohibitively expensive. If the tourists lose or

Copyright is held by the author/owner(s).
CHANTS’12, August 22, 2012, Istanbul, Turkey.
ACM 978-1-4503-1284-4/12/08.

damage their phones, then all of their unsynchronised pho-
tographs will also be lost. This could be avoided if the smart-
phones were able to cooperatively back up locally stored
files, using peer-to-peer wireless networking. Such network-
ing capabilities are available on most mobile smartphone
platforms today.

Although it may be possible to construct decentralised
storage services that operate using opportunistic short-range
communication between devices, the costs are often thought
to outweigh any possible benefits of such an approach. Wire-
less Internet connectivity is widely available throughout the
developed world, through WiFi access points and cellular
data networks. Conversely, opportunistic routing in net-
works of mobile agents is an inefficient process usually re-
quiring redundant replication of data bundles.

In our proposed solution, a centralised service should be
utilised whenever possible due to the increased efficiency and
reliability of that approach. However, when access to the
centralised service is unavailable, the backup service could
temporarily switch to a decentralised mode of operation. If
“cloud storage” refers to centralised services accessed over
the Internet, one might coin the term“mist storage” to refer
to these temporary decentralised storage systems. We intro-
duce the design and operation of a mist-based cooperative
backup service called“Mistify”, which takes advantage of the
data storage capabilities of other participating clients in a
local area, by distributing encrypted content for safekeeping.

2. SYSTEM DESIGN
Mistify makes use of the Haggle framework for opportunis-
tic communication [1]. Haggle provides two key features.
Firstly, its content-centric “search based” API allows Mist-
ify to interact with a virtual content repository, by publish-
ing tagged content, and subscribing to those tags. Secondly,
Haggle arranges for opportunistic, delay-tolerant forward-
ing of content between publishers and subscribers, using any
available networking interface such as WiFi or Bluetooth.

2.1 Strategy
By making use of Haggle, Mistify behaves as a topology
independent system, and does not track other devices on the
network; instead, it discovers the attributes of content held
in the mist. It then develops interests in specific content,
based on relationships between the user and the content’s
owners. Mistify’s replication strategy attempts to minimise
over-replication of data, and prioritises certain content based
on social relationships between users and their files.



Figure 1: Diagram showing a conceptual overview
of the Mistify architecture. The mist service, im-
plemented in a virtualised testbed, is arbitrated by
the Haggle client on each peer. Mistify also utilises
cloud storage (implemented using an Amazon EC2
instance) if available.

Mistify has two basic constructs that are mapped to Hag-
gle’s “data objects”: “Chunks” and “Entitlements”. Chunks
are bundles of encrypted data and associated metadata,
which correspond to files within a user’s replicated filesys-
tem. A Chunk’s owner is the original user that published the
Chunk. It is envisaged that Chunks could also be used to ag-
gregate smaller files, or disaggregate larger files into manage-
able bundles. Entitlements are used to advertise Chunks for
retrieval by other peers. Private entitlements allow groups
of users (other than the content owner) to access a bundle of
encrypted Chunks, whereas public entitlements are used to
advertise Chunks for replication to other possibly untrusted
peers. The architecture is illustrated in figure 1. To assess
the safety of a Chunk, clients check the public Entitlements
published by other peers in the network. All Chunks are
encrypted before publication. Private entitlements can be
used to grant access to this encrypted content.
Replication is a two step process. Each peer subscribes to

public Entitlements that are published to the mist by other
peers, resulting in this low-volume metadata being flooded
through the network (similar to routing updates in a link
state routing protocol). Each Entitlement contains one or
more “seeds”, that advertises Chunks that are available for
retrieval from that user. In order to subsequently retrieve
a Chunk that has been advertised, Mistify registers an ex-
plicit interest in that Chunk with Haggle. Haggle will then
arrange for the Chunk and its encrypted content to be for-
warded to the requester. Whenever a peer retrieves a recent
Entitlement, this has the effect of refreshing the availability
of those seeds. Each Mistify peer makes an independent as-
sessment of the safety of each Chunk, by keeping track of
the number of replicas advertised by other users in the same
locality.

2.2 Safety calculation
In general terms, a Chunk’s “safety” is an estimate of the
likelihood that a replica can be obtained from the mist
within a pre-defined time interval. Since this calculation
depends on a number of variables, these are combined into
a single formula:

S =
1

R

∑ T − tp

T

Where T is the maximum time threshold to regard a peer

as available, tp is the amount of elapsed time since a public
Entitlement containing the Chunk was received from peer
p, and R is the targeted number of replicas for each Chunk.
Only peers that have been contacted within the time window
specified by T are considered for each Chunk. After perform-
ing this calculation on each Chunk, those with a safety value
exceeding 1 are regarded as safe (that is, enough replica ad-
vertisements within the safety window have been witnessed
in the repository).

3. RUNNING MISTIFY IN HAGGLE
The trials were performed using a Haggle testbed [1], which
is built on a PC with an 8-core CPU and 24GB RAM run-
ning Debian Squeeze, and installed with the Xen hypervisor.
An array of virtual nodes was instantiated on the testbed
system. Each of the nodes run a basic Debian-based oper-
ating system, and also feature a Java runtime environment
(for running Mistify). The virtual nodes are each allocated
with 128 megabytes of RAM, and a 1 gigabyte local disk.
To drive each trial, a test scenario runner initialises the en-
vironment, starts the application on each node, and models
changes in topology by analysing events in a pre-collected
network trace [2]. The original trace files contain records
of connectivity between nodes, which can be translated into
scripts by the scenario runner that block or allow traffic
between the corresponding virtual nodes over the virtual
network bridge.

The connectivity trace was used to activate firewall rules
on the host for the testbed’s virtual network. For instance,
when a period of connectivity between two nodes began,
a corresponding command would be executed on the host,
enabling network traffic between the matching virtual in-
stances in the testbed. The trace data from the study spans
several days, however for this trial a period of three consec-
utive days from the trace was used. Time was accelerated
in the trials, such that one day of trace activity passed in
approximately five minutes. This has the effect of reducing
intra-contact time, which means that data throttling rates
must be set aggressively to allow effective replication. The
participants had varying characteristics in the contact net-
work. We define “aggregate degree” as the total number of
unique nodes that were in contact with a particular node
throughout the period, and “average degree” as the mean
number of contacts that a node had at each time interval.

4. CONCLUSIONS
In our evaluation of the prototype, we have found that in
a simulated network of locally-connected peers, the proto-
type was able to achieve a high level of availability for stored
content, without resorting to flooding. Furthermore, Mistify
was able to deliver a high proportion of content to the cloud,
even when only a small proportion of nodes were given In-
ternet connectivity.

Acknowledgement. This research is part-funded by the
EPSRC DDEPI Project, EP/H003959.

5. REFERENCES
[1] Haggle. http://www.haggleproject.org.

[2] P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE Rap:
Social-based Forwarding in Delay Tolerant Networks.
In MobiHoc, 2008.


