Uncovering Multi-Modal Spread Modes using Joint Diagonalization in Dynamic Human Contact Networks

Damien Fay, Jérôme Kunegis, Eiko Yoneki
University of Cambridge, University of Koblenz-Landau, University of Cambridge

Email: eiko.yoneki@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~ey204

CENTRALITY MEASURES
- Think about spread of messages, infectious disease, and gossip
- Understand flow and control: important to uncover centrality nodes
- Most centrality measures are dependent on the number of spanning trees that include a link
 - High link centrality: many spanning trees pass through this link
- Implicit assumption:
 - Every spanning tree is equally likely
 - Real network generates traffic proportional to spanning trees

Typical approach: Cluster nodes to build single network or multiple networks within the sliced time windows
- Ignores correlation between links
- Ignores time

A Contact network: real-world network of time dependent contacts
- Aggregate the number of contacts
- Ignores time
- Ignores correlation between links

Solution: Use spanning tree based samples of a network
- Order of infection retains time and contact information (i.e. link appearance correlation).
- Define an eigen-space average across these trees
- The distribution of deviations gives the required groups

APPLY JOINT DIAGONALIZATION
- Combine many of sampled trees using joint diagonalization
- Ex: Cambridge student contact data: 36 users; 2 weeks; 60 second intervals
- Eigenvalue decomposition of a matrix may be expressed as: $A = U \Lambda U^T$
 - Where, eigenvectors are a special basis relative to A such that A is diagonal
- Given N square matrices $A_1, ..., A_N$, we seek a basis such that: $A_j = U \Lambda_j U^T$
 - Where the off-diagonal elements of the projections are minimised
- Find a basis giving an average eigen-structure of the matrices

DEVITION and JOINT DIAGONALIZATION
- Simply define the deviation from the average eigen-space as the sum of off-diagonal elements
- Each eigenvalue divides the data set in two equally weighted groups
 - \Rightarrow hierarchical segmentation
- Calculate the deviation from the average \Rightarrow Average Graph of Interaction

EXAMINE EMPIRICAL DISTRIBUTION of DEVIATION VALUE
- Multi-modal: each mode represents a different behaviour in the contact network
- Examine the distribution of modes over time
- Modes need not necessarily correspond with time
- Allows a social network to be defined in time including its duration

APPLICATIONS
- Constructing time dependent routing in mobile opportunistic networks
- Modelling realistic spread of disease
- Social network clustering
- Advantages:
 - Directly tracking communities via the eigen-space
 - Spanning tree construction is easy to implement and may be decentralised