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Abstract

The increasing penetration of smart devices with networking capability form novel networks. Such
networks, also referred as Pocket Switched Networks (PSNs), are intermittently connected and represent
a paradigm shift of forwarding data in an ad-hoc manner. The social structure and interaction of users of
such devices dictate the performance of routing protocols in PSNs. To that end, social information is an
essential metric for designing forwarding algorithms for such types of networks. Previous methods relied on
building and updating routing tables to cope with dynamic network conditions. On the downside it has been
shown that such approaches end up being cost ineffective due to the partial capture of the transient network
behavior. A more promising approach would be to capture the intrinsic characteristics of such networks and
utilize them in the design of routing algorithms.

In this paper, we exploit two social and structural metrics, namely centrality and community, using
real human mobility traces. The contributions of this paper are two-fold. First we design and evaluate
BUBBLE, a novel social-based forwarding algorithm, that utilizes the aforementioned metrics to enhance
delivery performance. Second we empirically show that BUBBLE can substantially improve forwarding
performance compared to a number of previously proposed algorithms including the benchmarking history-
based PROPHET algorithm, and social-based forwarding SimBet algorithm.

Index Terms

Social Networks, Forwarding Algorithms, Delay Tolerant Networks, Pocket Switched Networks, Central-
ity, Community Detection.
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1 INTRODUCTION

WE envision a future in which a multitude of devices carried l®pple are dynamically networked. We aim
to build Pocket Switched Networks (PSN) [1], a type of Delay TatérNetworks (DTN) [2] for such

environments. A PSN utilizes contact opportunities to allawnlans to communicate without network infrastruc-

ture.We propose an efficient data forwarding mechanism awes evolving graphs of the PSN [3], that copes

with dynamical, repeated disconnection and re-wiring.nvgiich scenarios, end-to-end delivery through traditional

routing algorithms is rarely applicable.

Many MANET and some DTN routing algorithms [4] [5] provide faavding by building and updating routing
tables whenever mobility occurs. We believe this approachat appropriate for a PSN, since mobility is often
unpredictable, and topology structure is highly dynamiathRr than exchange much control traffic to create
unreliable routing structures, which may only capture theise” of the network, we prefer to search for some
characteristics of the network which are less volatile thawbility. A PSN is formed by people. Hence, social
metrics are intrinsic properties to guide data forwardimgsuich kinds of human networks. Furthermore, if we can
detect these social mobility patterns online in a deceisgdlway, we can apply these algorithms in practice.

In this paper, we focus on two key social metrics: communitgt eentrality. Co-operation binds, but also divides
human society into communities. For an ecological commyuitiite idea of correlated interaction means that an
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organism of a given type is more likely to interact with arestiorganism of the same type than with a randomly
chosen member of the population [6]. This correlated intevaconcept also applies to human, so we can exploit
this kind of community information to select forwarding pat Within a community, some people are more popular,
and interact with more people than others (i.e., have loattrality); we call them hubs. In this paper, we will
exploit community and centrality for data forwarding in PSNs.

Methodologically, community detection [7] [8] can help wsuncover and understand local community structure
in both off-line mobile trace analysis and online appliocas, and is therefore helpful in designing good strategies
for information dissemination. Freeman [9] defined severatredity metrics to measure the importance of a node
in a network. Betweenness centrality measures the numbémes$ a node falls on the shortest path between two
other nodes. This concept is also valid in a DTN. In a PSN, it caresgmt the importance of a node as a potential
traffic relay for other nodes in the system. The main contrimgiof this paper are to answer these questions:

1) How does the variation in node popularity help us to fovar a PSN?

2) Are communities of nodes detectable in PSN traces?

3) How well does social based forwarding work, and how doeihpare to other forwarding schemes in a

real (emulated) environment?

4) Can we devise a fully decentralised way for such schemepdoate?

To preview our answers to the above questions, we evaluaienttact of community and centrality on forwarding,
and propos®UBBLE, a hybrid algorithm, that selects high centrality nodes emmhmunity members of destination
as relays. We demonstrate a significant improvement in fatwgrefficiency over a number of previously proposed
state-of-the-arts algorithms includirRROPHET algorithm [5], which uses patterns of movement, rather tthen
longer term social relationships on which oBUBBLE scheme rests, and the social-based forwardimgBet
algorithm [10]. In a PSN, there may be agriori information. By definition, we are also in a decentralisedld/or
without access to infrastructure. Therefore distributetect@n and dissemination of node popularity and node
communities, and the use of these for forwarding decisioasaicial. We verify that this is not only possible, but
works well in terms of message delivery performance and effiy compared to prior schemes.

The rest of this paper is structured as follows. We introdunee eéxperimental data sets in Section 2, describe
the contact graphs and inferring human communities in Se&idn Section 4, we examine the heterogeneity in
centrality. We show evaluation methodology in Section 5 aegllts including discussions from Section 6 to 9
followed by the related works in Section 10. Finally, we codehe paper with a brief summary of contributions
in Section 11.

2 EXPERIMENTAL DATASETS

In this paper, we use four experimental datasets gatherettiebyiaggle Projeétover two years, referred to as
Infocom05, HongKong, Cambridge, Infocom06; one dataset from the MIT Reality Mining Project [11], refsdr
to asReality. Previously, the characteristics of these datasets suchta@scontact and contact distribution have
been explored in several studies [12] [13] [14], to which wé&r the reader for further background information.
These five datasets cover a rich diversity of environmentsging from busy metropolitan cityHongKong) to
quiet university town Cambridge), with an experimental period from several daysf¢gcomO6) to almost one year
(Reality).

« In Infocom05, the devices were distributed to approximately fifty studeattending the Infocom student
workshop. Participants belong to different social commiagi(depending on their country of origin, research
topic, etc.).

« In Hong-Kong, the people carrying the wireless devices were chosen emdkmtly in a Hong-Kong bar, to
avoid any particular social relationship between them. &hsople have been invited to come back to the
same bar after a week. They are unlikely to see each othergdtivenexperiment.

o In Cambridge, the iMotes were distributed mainly to two groups of studeinbm University of Cambridge
Computer Laboratory, specifically undergraduate yearl amd2ystudents, and also some PhD and Masters
students. This dataset covers 11 days.

« In Infocom06, the scenario was very similar tafocom05 except that the scale is larger, with 80 participants.
Participants were selected so that 34 out of 80 form 4 sulpgrdy academic affiliations.

1. http://www.haggleproject.org



Experimental data set Infocom05 | Hong-Kong | Cambridge| Infocom06 | Reality
Device iMote iMote iMote iMote Phone
Network type Bluetooth | Bluetooth | Bluetooth | Bluetooth | Bluetooth

Duration (days) 3 5 11 3 246
Granularity (seconds) 120 120 600 120 300
Number of Experimental Device 41 37 54 98 97

Number of internal contacts 22,459 560 10,873 191,336 54,667

Average # Contacts/pair/day 4.6 0.084 0.345 6.7 0.024
Number of external devices 264 868 11,357 14,036 NA
Number of external contacts 1,173 2,507 30,714 63,244 NA

TABLE 1

Characteristics of the five experimental data sets

o In Reality, 100 smart phones were deployed to students and staff at MeT @& period of 9 months. These
phones were running software that logged contacts withrdhestooth enabled devices by doing Bluetooth
device discovery every five minutes.

The five experiments are summarised in Table 1. A remark abeutiatasets is that the experiments do not have
the same granularity and the finest granularity is limited 20 $econds. This is because of the trade-off between
the duration of the experiments and the accuracy of the sagwl

3 INFERRING HUMAN COMMUNITIES

In PSN, the social network could map to the computer networkespreople carry the computing devices. To answer
the question whether communities of nodes are detectal®Shh traces we need community detection algorithms.
In this section, we introduce and evaluate two centralisedrounity detection algorithmgx-CLIQUE by Pallaet

al. [15] and weighted network analysig/NA) by Newman [16]. We use these two centralised algorithm twouer

the community structures in the mobile traces. We believe emaluation of these algorithms can be useful for
future traces gathered by the research community.

Many centralised community detection methods have begrogeal and examined in the literature (see the recent
review papers by Newman [7] and Danenal. [8]). The criteria we use to select a centralised detectiothate
are the ability to uncover overlapping communities, andgh ldegree of automation (low manual involvement). In
real human societies, one person may belong to multiple aomties and hence it is important to be able to detect
this feature. The/{-CLIQUE method satisfies this requirement, but was designed forbigiaxphs, thus we must
threshold the edges of the contact graphs in our mobilityesao use this method, and it is difficult to choose an
optimum threshold manually [15]. On the other hanN@) can work on weighted graphs directly, and does not
need thresholding, but it cannot detect overlapping conitiesn16]. Thus we chose to use boiti-CLIQUE and
WNA; they each have useful features that complement onehanot

3.1 Contact Graphs

In order to help us to present the mobility traces and makasiee for further processing, we introduce the notion
of contact graph. The way we convert human mobility traces into weighted atng@aphs is based on the number
of contacts and the contact duration, although we could tiser onetrics. The nodes of the graphs are the physical
nodes from the traces, the edges are the contacts, and tgbtsvef the edges are the values based on the metrics
specified such as the number of contacts during the expeririidgtcan measure the relationship between two
people by how many times they meet each other and how longdfagywith each other. We naturally think that

if two people spend more time together or see each other nftemr, dhey are in a closer relationship.

First, we find the distribution of contact durations and numdfecontacts for the two conference scenarios are
quite similar. To prevent redundancy, in the later sectimesonly selectively show one example, in most cases
Infocom06, since it contains more participants.

Figure 1 and Figure 2 show the contact duration and number dfactndistribution for each pair in four
experiments. For thelongkong experiment we include the external device because of theonketsparseness, but
for the other three experiments we use only the internalcgsviThese contact graphs created are used for the
community detection in the following subsections.
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Fig. 1. The distribution of pair-wise contact durations

3.2 K-CLIQUE Community Detection

Pallaet al. [15] define ak-cligue community as a union of all-cliques (complete subgraphs of sikgthat can

be reached from each other through a series of adjdeetijues, where twd:-cliques are said to be adjacent if
they sharek — 1 nodes. Ask is increased, thé-cligue communities shrink, but on the other hand becomeemor
cohesive since their member nodes have to be part of at laagt-dique. We have applied this on all the datasets
above. Figure 3 shows thecligue communities in thénfocom06 dataset. More detailed descriptions about the
k-cligue communities on these datasets can be found in owigoie work [17] [18].

3.3 Weighted Network Analysis
In this section, we implement and apply Newman’s weightevaek analysis (WNA) for our data analysis [16].
This is an extension of the unweighteabdularity proposed in [19] to a weighted version, and use this as a
measurement of the fithess of the communities it detects.

For each community partitioning of a network, one can comphbe corresponding modularity value using the
following definition of modularity (Q):

A'Uw k'[)k'll)
Q= %U: [Q’m - (Qm)g] 6(cvsCw) 1)
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whereA,,, is the value of the weight of the edge between verticasdw, if such an edge exists, and 0 otherwise;
the -function §(i, j) is 1 if i = j and O otherwisem = 1> ~A,.; k. is the degree of vertex defined as

> w Avw; ande; denotes the community vertgéxbelongs to.Modularity is defined as the difference between this
fraction and, the fraction of the edges that would be exgetdefall within the communities if the edges were

assigned randomly, but we keep the degrees of the verticelsanged. The algorithm is essentially a genetic
algorithm, using the modularity as the measurement of fitnBssher than selecting and mutating current best
solutions, we enumerate all possible merges of any two camties in the current solution, and evaluate the
relative fitness of the resulting merges, and choose the bkgion as the seed for the next iteration.

Table 2 summarises the communities detected by applying \WiNthe four datasets. According to Newman [16],
nonzero( values indicate deviations from randomness; values arOuddr more usually indicate good divisions.
For the Infocom06 case, thel,,... value is low; this indicates that the community partitionnist very good in
this case. This also agrees with the fact that in a conferéameedmmunity boundary becomes blurred. For the
Reality case, the) value is high; this reflects the more diverse campus envirohnt®r theCambridge data, the
two groups spawned by WNA is exactly matched the two groupsy{éar and 2nd year) of students selected for
the experiment.

Dataset Info06 Camb | Reality HK

Qmax 0.2280 | 0.4227 | 0.5682 | 0.6439

Max. Community Size 13 18 23 139
No. Communities 4 2 8 19
Avg. Community Size | 8.000 | 16.500 9.875 | 45.684
No. Community Nodes 32 33 73 868
Total No. of Nodes 78 36 97 868

TABLE 2

Communities detected from the four datasets

These centralised community detection algorithms give cis imformation about the human social clustering
and are useful for offline data analysis on mobility tracesectéd. We can use them to explore structures in the
data and hence design useful forwarding strategies, $gceueaasures, and killer applications.

4 HETEROGENEITY IN CENTRALITY
In human society, people have different levels of populasalesmen and politicians meet customers frequently,
whereas computer scientists may only meet a few of theieaglies once a year [17]. Here, we want to employ
heterogeneity in popularity to help design more efficienwémding strategies: we prefer to choose popular hubs
as relays rather than unpopular ongsBetrouting algorithm [10] also uses the concept of centraliy dhoosing
relays. We will compare the performance of both algorithm$&ection 8

A temporal network or time evolving network is a kind of weigth network. The centrality measure in traditional
weighted networks may not work here since the edges are metsarily concurrent (i.e., the network is dynamic
and edges are time-dependent). Hence we need a differentoveglculate the centrality of each node in the
system. Our approach is as follows:

1) Carry out a large number of emulations of unlimited floodimgh different uniformly distributed traffic
patterns created using titaggleSm emulator(Section 5.1).

2) Count the number of times a node acts as a relay for othezsnod all the shortest delay deliveries. Here
the shortest delay delivery refers to the case when the sasssage is delivered to the destination through
different paths, where we only count the delivery with thersést delay.

We call the number calculated above thetweenness centrality of this node in this temporal graph. Of course,
it can be normalised to the highest value found. Here we u$ieited flooding since it can explore the largest
range of delivery alternatives with the shortest delay. Ta8nition captures the spirit of Freeman centrality [9].

Initially, we only consider a homogeneous communicatiottgoa, with equal likelihood of every destination,
and we do not weight the traffic matrix by locality. We then cédte the global centrality value for the whole
homogeneous system. Later, we will analyse the heterogers@tiem (Section 8).

Figure 4 shows the number of times a node falls on the shor&iss ppetween all other node pairs. We can treat
this simply as the centrality of a node in the system. We aleseery wide heterogeneity in each experiment. This



400 F T T T T T T T T T 7] T T T T T T T

350 - Reality | 250 - Cambridge | 1

300 1 200 b i

250 1

150 T
200 - 1

100 B

Number of times as relay nodes
Number of times as relay nodes

||||‘ || ||||||||
10 25 30

10 20 30 40 50 60 70 80 90 5 15 20 35
node ID node ID
250 T T T T T T T 100 T T T T T T T T
I nfocom 06 HK
8 200 - g 80 -
© o
o o
c c
g k9
Q 150 4 9 e0f 4
(%] %))
] ©
%] %]
Q (0]
£ £
o 100 |- 4 & 40 s
o o
et Nt
Q (O]
QO QO
€ £
> >
] ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | 7
0 |.|‘|||. mln‘ |‘ ”” ! | |||‘ I“ | ‘|| 1
10 20 30 40 50 60 70 0 100 200 300 400 500 600 700 800
node ID node ID

Fig. 4. Number of times a node as relays for others on four datasets

clearly shows that there is a small number of nodes which batremely high relaying ability, and a large number
of nodes that have moderate or low centrality values, acaissxperiments. One interesting point from the HK
data is that the node showing highest delivery power in thadigaiactually an external node. This node could be
some popular hub for the whole city, i.e., postman or a nepapaan in a popular underground station, which
relayed a certain amount of cross city traffic. The 30th, 70tfcgrgiles and the means of normalised individual
node centrality are shown in Table 3. These numbers sumnthgsstatistical property of the centrality values for
each system shown in Figure 4.

5 |INTERACTION AND FORWARDING

In the first half of this paper, we have shown the existence te#rbgeneity at the level of individuals and groups, in
all the mobility traces. This motivates us to consider a netefdogeneous model of human interaction and mobility.
Cliques and Community: we explored the community structures inside different aloenvironments, and found
these community structures match quite well with the reaeulying social structures.

Popularity Ranking: We observed the heterogeneity for node centralities in buthal and local scales. We shall
see that popular hubs are as useful in B$N context as they are in the wireline Internet and in the Web.



Experimental dataset 30th percentile] Mean | 70th percentile
Cambridge 0.052 0.220 0.194
Reality 0.005 0.070 0.050
Infocom06 0.121 0.188 0.221
Hong Kong 0.000 0.017 0.000
TABLE 3

Statistics about normalised node centrality in 4 experiments

From Section 6 to Section 9, we will look at how can we use thisrmégion to make smart forwarding
decisions. The following three pre-existing schemes pelidver and upper bounds in terms of cost and delivery
success. All of these schemes are inefficient because thesnass homogeneous environment. If the environment
is homogeneous then every nodestatistically equivalent (i.e., every node has the same likelihood of delivering
the messages to the destination). As we showed in the firstofiahis paper, the environments and nodes are
diverse, and hence all these naive schemes are doomed tpbav@erformance. We need to design algorithms
which make use of this rich heterogeneity.

o WAIT: Hold onto a message until the sender encounters the reciirectly, which represents the lower bound

for delivery costWAIT is the only single-copy algorithm in this paper.

o FLOOD: Messages are flooded throughout the entire system, whickesepis the upper bound for delivery
and cost.

o Multiple-Copy-multiple-hoP (MCP): Multiple copies are $eubject to a time-to-live hop count limit on the
propagation of messages. By exhaustive emulations, thepy4-hopMCP scheme is found to be the most
cost-effective scheme in terms of delivery ratio and costdib naive schemes among most of the datasets.
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Figure 5 shows the design space for the forwarding algorithirhe vertical axis represents the explicit social



structure. This is the social or human dimension. The two bata axes represent the network structural plane,
which can be inferred purely from observed contact pattefhge Structure-in-Cohesive Group axis indicates the
use of localised cohesive structure, and the Structureeigr€e axis indicates the use of node ranking and degree.
These are observable physical characteristics. In our mésighnework, it is not necessary that physical dimensions
are orthogonal to the social dimension, but since they sgmtetwo different design parameters, we would like to
separate them. The design philosophy here is to considerthbethocial and physical aspects of mobility.

We introduce four forwarding algorithms in this paper, n@meABEL, RANK, DEGREE and BUBBLE.

« LABEL: Explicit labels are used to identify forwarding nodes thdbhg to the same organisation. Optimisations
are examined by comparing label of the potential relay n@hesthe label of the destination node.This is in
the human dimension, although an analogous version can e lolp labelling ak-clique community in the
physical domain.

o RANK: The forwarding metric used in this algorithm is the node c#ityt A message is forwarded to nodes
with higher centrality values than the current node. It isdzhon observations in the network plane, although
it also reflects the hub popularity in the human dimension.

 DEGREE: The forwarding metric used in this algorithm is the node degraore specifically the observed
average of the degree of a node over a certain time intervileEihe last interval window (S-Window), or
a long-term cumulative estimate, (C-Window) is used to fte\a fully decentralised approximation for each
node’s centrality, and then that is used to select forwardiodes.

» BUBBLE: TheBUBBLE family of protocols combines the observed hierarchy of @ity of nodes and observed
community structure with explicit labels, to decide on thestoforwarding nodesBUBBLE is an example
algorithm which uses information from both human aspecis also the physically observable aspects of
mobility.

BUBBLE is a combination oL ABEL and RANK. It usesRANK to spread out the messages and USE3EL to

identify the destination community. For this algorithm, wake two assumptions:

« Each node belongs to at least one community. Here we allowesimafle communities to exist. o
o Each node has a global ranking (i.e., global centrality) im whole system and also a local ranking within

its community. It may belong to multiple communities and ¢emay have multiple local rankings.

5.1 HaggleSim Emulator
In order to evaluate different forwarding algorithms, wereleped an emulator calledaggleSm [20], which can
replay the mobility traces collected and emulate diffefentarding strategies on every contact event. This emulator
is driven by contact events. The original trace files are diioi¢o discrete sequential contact events, and fed into
the emulator as inputs.

In all the simulations in this work, we divided the tracesoimtiscrete contact events with granularity of 100
seconds. Our simulator reads the file line by line, treatinchdme as a discrete encounter event, and makes a
forwarding decision on this encounter based on the forwgrdigorithm under study.

5.2 Simulation Parameters
There are three parameters we used in our simulation to a&chmwrolled flooding irMCP strategy.
« Number of copies (m): The maximum number of duplicates of each message creatextlatr®de.
o Number of hops (Hop-TTL): The maximum number of hops, counted from the source, that ssage copy

can travel before reaching the destination; this is simiafTL value in the Internet.
o Time TTL: The maximum time a message can stay in the system after @afiame This is to prevent expired

messages from further circulation.
For all the emulations conducted to compare forwarding efficy in this paper, we have the following two
metrics.
« Delivery Ratio: The proportion of messages that have been delivered outdbthl unique messages created.
« Delivery Cost: The total number of messages (include duplicates) tratesingicross the air. To normalise this,
we divide it by the total number of unique messages created.
For some cases, we also compute the Hop-count distributiothé deliveries, which is the distribution of the
number of hops needed for all the deliveries, and which feuwba social distance between sources and destinations.
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In the following sections, we will introduce several fonaarg algorithms and evaluate their performances with
the above metrics. For each emulatior00 unique messages are created, with the source and destiratidomly
chosen or chosen based on specific grouping, which will beifsggbén each evaluation case. The creating time
of the messages is uniformly distributed within the simolatduration. Since the experimental durations for the
datasets we used for simulation are in the order of days am exeeks, so we ignore the transient period and
average the results thoughout the simulation periods.

6 GREEDY RANKING ALGORITHM
The contribution of this section is to introduB&NK algorithm in detail and evaluate its performance usingedéit
datasets.

RANK is similar to the greedy strategy introduced by Adamti@l. [21]. A PSNis not a static network like the
Internet: we do not know when a local maximum is reached siheenext encounter is unexpected. We cannot
employ precisely the same strategy as they proposed, dadriag up the hierarchy until reaching the maximum,
and then down a step. IRANK, we assume each node knows only its own ranking and the mgmkifithose it
encounters, but does not know the ranking of other nodeses$ amt encounter, and does not know which node
has the highest rank in the systeRANK is very simple: we keep pushing traffic on all paths to node<whiave
a higher ranking than the current node, until either theidason is reached, or the messages expire.

If a system is small enough, the global ranking of each nodetigally the local ranking. If we consider only the
Systems Research group (around 40 people), a subset of theridgenComputer Laboratory (235 people), this
is the ranking of each node inside the group. If we considenthole Computer Laboratory, we are considering
a larger system of many groups, but they all use the sameitgllédh homogeneous ranking can still work. But
when we consider the whole city of Cambridge, a homogeneanilsitg system would exclude many small scale
structures. In this section, we show that in relatively draad homogeneous systems, a simple greedy ranking
algorithm can achieve good performance.

1 T

16 p —— /

o RANK -

05 P —— 7 WAIT -
RANK --x--- /
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Fig. 6. Comparison of delivery ratio (left) and cost (right) of MCP and RANK on 4 copies and 4 hops case (Reality)

Figure 6(eft) shows thatRANK performs almost as well agCP for delivery. Figure Gfght) also shows that
the cost is at maximum of around 40% thatNe€P, which represents a marked improvement. The audiences may
notice that the difference in cost between these two algostis not constant. This is because they have different
spreading mechanisms which may affect their abilities to fiedessary number of relays within a certain time
TTL.

RANK appears to work in small and homogeneous systems, but whdooket a more diversified system, for
example theHong Kong dataset, it may work differently. In thelong Kong experiment, the 37 participants are
intentionally selected without any social correlation. yige and work throughout the whole city. With FLOOD,
we can deliver more than 40% of the total traffic across the @ity by using only the 37 iMotes and the
external devices detected by these iMotes. But in this greedy ranking can only deliver 10% of the messages,
although the cost is much lower as well. In terms of delivemg &ost, greedy ranking is still more cost-effective
than flooding, but clearly the delivery success rate is stdl low. One explanation for this low performance is that
since the participants have no social correlation, andrgeto different social communities, high global ranking
of a node may not represent a good choice of relay for somé tmramunities. Messages keep being pushed up
to some globally higher ranking nodes, and getting stucloatesmaxima, rather than then trickling down to some
local community.
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Figure 7(a) shows that the maximum number of hops for greedik Ra4 hops and after that the messages
get stuck. Figure 7(b) shows the rank distribution of the sesir destinations and dead-ends of all the undelivered
messages, indicating that message delivery has typicilgdfat highly-ranked nodes. This supports our hypothesis
concerning the dilemma of the messages getting stuck atmaaxi
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Fig. 7. The hop distribution of the delivered (left) and the rank distribution of undelivered (right) on HK data

Hierarchical organisation is a common feature of many cempglstems. The defining feature of a hierarchical
organisation is the existence of a hierarchical path cdimgeany two of its nodes. Trusing al. [22] address how
to detect and measure the extent of the hierarchy maniféstdte topology of a given complex network. They
defined the hierarchical path based on node degrees. A patiedretwo nodes in a network is called hierarchical
if it consists of anup path where one is allowed to step from nodéo node; only if their degreess;, k; satisfy
k; < k;, followed by adown path where only steps to nodes of lower or equal degree are alloigluer the up
or down path is allowed to have zero length. Because of thel gesults from the greedy ranking algorithm, we
analysed the percentage of hierarchical paths inside alstiortest paths. Table 4 summarises the results.

Experimental dataset % hierarchical paths
Cambridge 87.2 (-2.4,+4.3)
Reality 81.9 (-3.1,+3.3)
Infocom05 62.3 (-2.5,+2.5)
InfocomO06 69.5 (-4.1,+2.4)
Hong Kong 33.5 (-4.0,+4.0)
TABLE 4

Hierarchical paths analysis of all shortest paths

The percentage of hierarchical paths is calculated as thé&uaof hierarchical paths divided by the number of
non-direct deliveries. We can see that @ambridge data andReality, the percentage of hierarchical paths is very
high, so our strategy of pushing the messages up the ramdagéan find a lot of these paths, and the performance
of the ranking strategy here is not much different from thfakMeP. For Infocom06 and Infocom05, the percentage
of hierarchical paths is also high, hence the greRa)K strategy can as well discover many of the shortest paths.
However, for theHong Kong experiment, the network is too sparse and a lot of shortdsispgare hidden. (This
occurs because we could not know the devices detected byxtemal devices, and most of the resulting paths
used for delivery are actually not the shortest) We can saepiércentage of hierarchical paths controls the delivery
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success achieved by the gree”’gNK algorithm. We conclude from this that a high percentage ef ghortest
paths are actually hierarchical paths.

7 DIRECT LABELLING STRATEGY

In the LABEL strategy, each node is assumed to have a label that telisdthaffiliation, just like a name badge in a
conference. The dire¢tABEL strategy refers to the exclusively using of labels to fodvaressages to destinations:
next-hop nodes are selected if they belong to the same gsaupe(label) as the destination. It was demonstrated
that LABEL significantly improves forwarding efficiency over “obliviculorwarding usinglnfocom06 dataset [20].
This is a beginning of social based forwardingP8N The limitation of LABEL is the lack of mechanisms to move
messages away from the source when the destinations aedlsdar away (such afeality). The contribution of
this section is to demonstrate the limitationsL@BEL strategy, which motivates a new forwarding algorithm using
both community and centrality information.
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Fig. 8. Comparison of delivery ratio (left) and cost (right) of MCP and LABEL on 4 copies and 4 hops case (Reality)

We evaluate th& ABEL strategy on thdReality dataset. Here we use the community information detectewyusi
K-CLIQUE algorithm to label the nodes. We can see from Figure 8 tA&EL only achieves around 55% of the
delivery ratio of theMCP strategy and only 45% of the flooding delivery although thet é®salso much lower.
However, it is not an ideal scenario foABEL. In this environment, people do not mix as well as in a comfeee
A person in one group may not meet members in another groufieso, o waiting until the members of the other
group appear to do the transmission is not effective here.

Figure 9 shows the correlation of theh-hop relay nodes to the source and destination groups famtssages
on all the shortest paths, that is the percentage of the apthrélay nodes that are still in the same group as the
source or already in the same group as the destination. Wesemthat more than 50% of the nodes on the first
hops (from the S-Group plot) are still in the same group as thece group of the message and only around 5%
of the first hop nodes (from the D-Group plot) are in the sameigras the destination. We can also see that on
going to the 2nd hop, S-Group correlation drops to slightgsléhan 30%, and when going to 4th-hops, almost
all (90%) messages have escaped from this source group.ldulata the percentage for each hop we divide the
number of messages which belong to that group (S-Group ordysirby the total number of messages destined
beyond nodes at that particular hop, but not the total messageated. In the 4-hop case, there are perhaps only
100 messages to forward further, and only 10 out of these dla9 nodes belong to the source group. This explains
why LABEL is not effective, since it is far from discovering the shettpath. In the next section, we will talk
about how to use centrality to improve the delivery ratioL6BEL.

8 CENTRALITY MEETS COMMUNITY

The contribution of this section is to combine the knowledfbaih centralities of nodes and community structure,
to achieve further performance improvements in forwardivg show that this avoids the occurrence of the dead-
ends encountered with pure global ranking schemes. Welalptotocols her@UBBLE, to capture our intuition
about the social structure. Messages bubble up and dowrotha fierarchy, based on the observed community
structure and node centrality, together with explicit lath&ta. Bubbles represent a hybrid of social and physically
observable heterogeneity of mobility over time and over camity.
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8.1 Two-community Case

In order to make the study more systematic, we start withwleedommunity case. We use ti@gambridge dataset

for this study. By experimental design, and confirmed using ammmunity detection algorithm, we can clearly
divide the Cambridge data into two communities: the undergraduate year-one @&ada-tyo group. In order to
make the experiment more fair, we limit ourselves to justtthe 10-clique groups found with a number-of-contact
threshold of 9; that is where each node at least meet anothed@s frequently. Some students may skip lectures
and cause variations in the results, so this limitation maka analysis yet more plausible.
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Fig. 10. Node centrality in 2 groups in Cambridge data, see Section 4 for the method of calculating the centrality values.
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First we look at the simplest case, for the centrality of nodiésin each group. In this case, the traffic is created
only for members within the same community and only membeithé same community are chosen as relays for
messages. We can clearly see from Figures 10(a) and 10(binfd¢ a community, the centrality of each node
is different. In Group B, there are two nodes which are vergytar, and have relayed most of the traffic. All the
other nodes have low centrality value. Forwarding messtgéise popular nodes would make delivery more cost
effective for messages within the same community.

Then we consider traffic which is created within each group ang destined for members in another group. To
eliminate other outside factors, we use only members fraseliwo groups as relays. Figure 11 shows the individual
node centrality when traffic is created from one group to agro#nd the correlation of node centrality within an
individual group and inter-group (for data deliveries otdyother groups but not to its only group) centrality. We
can see that points lie more or less around the diagonalTime. means that the inter- and intra- group centralities
are quite well correlated. Active nodes in a group are aldsveacodes for inter-group communication. There are
some points on the left hand side of the graph which have ldva-group centrality but moderate inter-group
centrality. These are nodes which move across groups. Theyoarenportant for intra-group communication but
can perform certainly well when we need to move traffic from gneup to another.
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Fig. 11. Inter-group centrality (left) and correlation between intra- and inter-group centrality (right), Cambridge

We can show now why homogeneous global ranking in Section 6 doework perfectly. Figure 12 shows the
correlation of the local centrality of Group A and the gloloaintrality of the whole population. We can see that
quite a number of nodes from Group A lie along the diagona.lin this case the global ranking can help to push
the traffic toward Group A. However the problem is that someesodhich have very high global rankings are
actually not members of Group A, for example node D. Just asahsociety, a politician could be very popular in
the city of Cambridge, but not a member of the Computer Laboyaso may not be a very good relay to deliver
message to the member in the Computer Laboratory. Now we asthare is a message at node A to deliver to
another member of Group A. According to global ranking, weulddend to push the traffic toward B, C, D, and E
in the graph. If we pushed the traffic to node C, it would be finel @nnode B it would be perfect. But if it push
the traffic to node D and E, the traffic could get stuck there andbaabuted back to Group A. If it reaches node
B, that is the best relay for traffic within the group, but nod&&s a higher global ranking than B, and would tend
to forward the traffic to node D, where it would probably getc&tagain. Here we propose tiB&BBLE algorithm
to avoid these dead-ends.

Forwarding is carried out as follows. If a node has a messagéngd for another node, this node would first
bubble this message up the hierarchical ranking tree us$iagglobal ranking until it reaches a node which has
the same label (community) as the destination of this messHuen the local ranking system will be used instead
of the global ranking and continue to bubble up the messagrigh the local ranking tree until the destination
is reached or the message expired. This method does noteaegyery node to know the ranking of all other
nodes in the system, but just to be able to compare rankiny tvé node encountered, and to push the message
using a greedy approach. We call this algoritBwBBLE, since each world/community is like a bubble. Figure 13
illustrates theBUBBLE algorithm and the pseudo code can be found in our previouk Ji@&].

This fits our intuition in terms of real life. First you try to fomsd the data via people more popular than
you around you, and then bubble it up to well-known populaspbe in the society, such as a postman. When
the postman meets a member of the destination communityndesage will be passed to that community. This
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community member will try to identify the more popular membeithin the community and bubble the message
up again within the local hierarchy until the message raaghi very popular member, or the destination itself, or
the message expires.

A moadified version of this strategy is that whenever a messagdelivered to the community, the original carrier
can delete this message from its buffer to prevent it fronth&mrdissemination. This assumes that the community
member would be able to deliver this message. We call thitopob with deletion, strategUBBLE-B, and the
original algorithm introduced abov@UBBLE-A.
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Fig. 14. Comparisons of several algorithms on Cambridge dataset

We can see from Figure 14 that basvBBLE-A and BUBBLE-B achieve almost the same delivery success rate
as the 4-copy-4-homCP. Although BUBBLE-B has the message deletion mechanism, it achieves exhetlyaime
delivery asBUBBLE-A. BUBBLE-A only has 60% the cost afiICP and BUBBLE-B is even better, with only 45%
the cost ofMCP. Both have almost the same delivery success@s.

8.2 Multiple-community Cases

To study the multiple-community cases, we use Reality dataset. To evaluate the forwarding algorithm, we
extract a 3-week session during term time from the whole &tmaataset. Emulations are run over this dataset
with uniformly generated traffic.

There is a total of 8 groups within the whole dataset. Figure Hdws the node centrality in 4 groups, from
small-size to medium-size and large-size group. We canhsdenithin each group, almost every node has different
centrality.

In order to make our study easier, we first isolate the largestin Figure 15, consisting of 16 nodes. In
this case, all the nodes in the system create traffic for mesnbiethis group. We can see from Figure 16 that
BUBBLE-A and BUBBLE-B perform very similarly toMCP most of the time in the single group case, and even
outperformMCP when the timeTTL is set to be larger than 1 weeRUBBLE-A only has 70% and3UBBLE-B
only 55% of the cost oMCP. We can say that thBUBBLE algorithms are much more cost effective thdgP,
with high delivery ratio and low delivery cost.

After the single group case, we start looking at the case efyegroup creating traffic for other groups, but not
for its own members. We want to find the upper cost bound forBtBBLE algorithm, so we do not consider
local ranking (i.e., only global ranking); messages can hewsent to all members in the group. This is exactly a
combination of direcLABEL and greedyRANK, using greedyRANK to move the messages away from the source
group. We do not implement the mechanism to remove the @ligiessage after it has been delivered to the group
member, so the cost here will represent an upper bound foBWBSBLE algorithms.

From Figure 17, we can see that of course flooding achieves thepbdsrmance for delivery ratio, but the
cost is 2.5 times that ofMCP, and 5 times that o0BUBBLE. BUBBLE is very close in performance t®ICP in
multiple groups case as well, and even outperforms it whertithe TTL of the messages is allowed to be larger
than 2 weeks. However, the cost is only 50% that ®CP.Figure 18 shows the same performance evaluations
with the Infocom06 dataset. In this case, the delivery ratioRANK is approaching that afiCP but with less than

2. Two weeks seems to be very long, but as we have mentioned bfefReality network is very sparse. We choose it mainly because
it has long experimental period and hence more reliable community stesatan be inferred. The evaluations here can serve as a proof of
concept of the BUBBLE algorithm, although the delays are large in this elatas
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Fig. 16. Comparisons of several algorithms on Reality dataset, single group

half of the cost. The performance BUBBLE over RANK is not as significant as in thBeality case because in
a conference scenario the people are very mixing and hemceadimmunity factors are less dominating. We can
also see that even in this case, the delivery cosBigBBLE only increases slightly, which indicates that even in
a mixing environmentBUBBLE is still very robust towards the possible misleading of tbenmunity factors.

In order to further justify the significance of social basedvarding, we also compa®JUBBLE with a benchmark
‘non-oblivious’ forwarding algorithmPROPHET5], and another state-of-the-arts social-based forwgrdigorithm,
SimBet [10]. PROPHETuses the history of encounters and transitivity to caleuthe probability that a node can
deliver a message to a particular destinat@mBetis similar in concept aBUBBLE for leveraging social contexts.

It exploits the exchange of pre-estimate ‘betweennesdrakty metrics and locally determined social ‘similarity

to the destination node to guide the message delivery. $IRGPHEThas been evaluated against other algorithm
before andSimBetis another well-credited social-based algorithm, and Ihatve the same contact-based nature as
BUBBLE (i.e., does not need location information), they are goauliates to compare witBUBBLE.
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Fig. 18. Comparisons of several algorithms on Infocom06 dataset, all groups

PROPHEThas four parameters. We use the def@ROPHETparameters as recommended in [5]. However, one
parameter that should be noted is the time elapsed unit osadet the contact probabilities. The appropriate time
unit used differs depending on the application and the d@rgedelays in the network. Here, we age the contact
probabilities at every new contact. In a real applicatidms tvould be a more practical approach since we do not
want to continuously run a thread to monitor each node entthé table and age them separately at different time.
For SimBetrouting, we use the default values for tBanBet utility parameters as specified in the paper [10] (i.e.,
a = = 0.5) which assigns an equal importantce to the similarity ansvéenness utility. And sincBUBBLE is
a multi-copy algorithm, we also implement a multi-copiynBetfor better comparison. For all the comparisons, we
use the same settings of number of hops and number of copiedl fime algorithms, more particularly we show
the results of the 4-hop-4-copy case. The results are alé&b fealthe other combinations of number of hops and
number of copies in our simulations. As most of the traceseHamg experimental durations (i.e. in the order of
days or even weeks), we average the results throughoutrthdagion period and ignore the transient period.
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Fig. 19. Comparisons of BUBBLE, PROPHET, and SimBet on Reality dataset

Figures 19 shows the comparison of the delivery ratio andrelglicost ofBUBBLE, PROPHETand SimBet for
the 4-hop-4-copy caseHere, for the delivery cost, we only count the number of comigeated in the system for
each message as we have done before for the comparison wittolhivious” algorithms. We do not count the

3. For one more perspective on the data, here we show the 4-hopy4ease instead of the unlimited case in Figure 17. The trend is
very similar for the other case.
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control traffic created byPROPHETfor exchanging routing table during each encounter, whih loe huge if the
system is largeRROPHETuses flat addressing for each node and its routing table osngaitry for each known
node). We also do not count the message exchangniBetfor updating the similarity and betweenness values.
We can see that most of the timn@UBBLE achieves a similar delivery ratio teROPHETand aroundl0% better
than SimBet but with only half of the cost oPROPHETand 70% of the cost ofSimBet Considering thaBUBBLE
does not need to keep and update an routing table for eachpande the performance achievement is significant.

PROPHETrelies on encountering history and transient delivery jotadility to choose relays. This can efficiently
identify the routing paths to the destinations, but the dyicaenvironment may result in many nodes having a lot
of slightly fluctuation of probabilities. This results in maoredundant nodes being chosen as relays, which can be
reflected from the delivery cost. Instea®l)BBLE use social information and hence filter out these noises due to
the temporal fluctuations of the networgimBetcan successfully leverage social context, but it fails fmmitifying
the sequence of using betweenness and simil@8UWBBLE explicitly identify centrality and community, and first
use centrality metric to spread out the messages and thecomseunity metric to focus the messages to the
destinations. This approach effectively guarantee a hidiliesie ratio and a low delivery cost.

A remark here is that the centrality values used for BUBBLE simulations in this section are calculated
in a centralised way, whil®ROPHETand SimBet use mainly online estimation, but we will show that this can
be effectively approximated in a low-cost distributed mamim the next section. Overall, we evaluatedBBLE
againstwAIT, FLOOD, the optimisedVCP, LABEL, RANK, the benchmarlPROPHET and SimBet This provides
us a reasonable variety of samples to illustrate the pedno® ofBUBBLE.

9 MAKING CENTRALITY PRACTICAL
For practical applications, we want to look further into hBWBBLE can be implemented in a distributed way. To
achieve this, each device should be able to detect its ownmeonty and calculate its centrality values. In [23],
we have proposed three algorithms, nan®sIPLE, K-CLIQUE and MODULARITY, for distributed community
detection, and we have proved that detection accuracy caup lie 85% of the centralisell -CLIQUE algorithm.
The next step is to ask how can each node know its own centiiality decentralised way, and how well past
centrality can predict the future.

The final contribution of this paper is to provide answers tes¢hivo questions.

9.1 Approximating Centrality

We found that the total degree (unique nodes) seen by a naodegtout the experiment period is not a good
approximation for node centrality. Instead the degree pértime (for example the number of unique nodes seen
per 6 hours, started from midnight) and the node centradityeta high correlation value. We can see from Figure 20
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Fig. 20. Correlation of rank with total degree and rank with unit time degree (Reality)

that some nodes with a very high total degree are still notdgmoriers. It also shows that the per 6 hour degree is
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quite well correlated to the centrality value, with cortila coefficient as high as 0.9511. That means how many
people you know does not matter too much, but how frequertly ipteract with these people does matter.

In order to verify that the average unit-time degree is asdga® or close t(RANK, we run another sets of
emulations using greedy average unit-time degree (or welgiell it DEGREB instead of the pre-calculated
centrality. We find thaRANK and DEGREE perform almost the same with the delivery and cost lineslapping
each other. They not only have similar delivery but also simdost.

However, the average unit-time degree calculated throuigtihe whole experimental period is still difficult for
each node to calculate individually. We then consider thgreke for the previous unit-time slot (we call this the
slot window) such that when two nodes meet each other, theypace how many unique nodes they have met in
the previous unit-time slot (e.g. 6 hours). We call this aagh single window (S-Window). Another approach is
to calculate the average value on all previous windows, siscfrom yesterday to now, then calculate the average
degree for every 6 hours. We call this approach cumulativedeww (C-Window). This technique is similar to a
statistics technique called exponential smoothing [24] ae would like to do further theoretical investigation.

We can see from Figure 21 that the S-Window approach reflects recemt context, and achieves a maximum
of 4% improvement in delivery ratio ové®ANK, but at double the cost. The C-Window approach measures more
of the cumulative effect, and gives more stable statistloguathe average activeness of a node. However, its
cumulative measurement is not as good an estimatAaKK, which averages throughout the whole experimental
period. It does not achieve as good deliveryRa\K (not more than 10% less in term of delivery), but it also has
lower cost.
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9.2 Predictability of Centrality

In order to further verify whether the centrality measuradthie past is useful as a predictor for the future, we
extracted three temporally consecutive 3-week sessions fiheReality dataset and then run a set of gre@yNK
emulations on the last two data sessions, but using theatintvalues from first session.
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Fig. 22. Delivery ratio (left) and cost (right) of RANK algorithm on 2nd data session, all groups (Reality)

Figure 22 shows the delivery ratio and costRANK on the 2nd data session using the centrality values from
the 1st data session. It seems that the performanébK is not far fromMCP but with much lower cost, i.e.,
it is as good as running the emulation on the original datadéth the centrality values derived from. Similar
performance is also observed in the 3rd data session. Thesksrenply some level of predictability of human
mobility, and show empirically that past contact informatican be used in the future.
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All these approachesDEGREE S-Window, C-Window and predictability of human mobility)gwide us with a
decentralised way to approximate the centrality of nodethésystem, and hence help us to design appropriate
forwarding algorithms. Combining these approximate meshand the distributed community detection, we can
put BUBBLE into reality. We will briefly discuss how distributeBUBBLE works for a city wide environment, but
leave the evaluation details as future work when we can gatgel scale of dataset.

Suppose there is a network of mobile users, perhaps spanmiegtize city, each device can detect its own local
community or knowing its social graph from online socialwetks [25]. At the same time, it also counts its own
6-hour-averaged degree (i.e., C-Window). Its global ragktan be approximated as its 6-hour-averaged degree
for all nodes and its local ranking can be approximated a$-tiwur-averaged degree only for nodes inside its
community. With all these metrics, each node can forwardsamgss usin@UBBLE. Or we simply call itDiBuBB
algorithm, which uses labels from its social graph, affiiatior distributed community detection for community
information and C-Window to approximate its own global ancdl centrality values. Besides that, it operate exactly
like BUBBLE. Figure 23 shows the plotting of delivery ratio against thivdey cost forBUBBLE, DiBuBB, SimBet
and PROPHET Here, DiBuBB uses the 6-hour C-Window approach to approximate the diytv@lues and the
social graph information for the communities. In generag targer the slopes of the lines, the more efficient the
algorithm is, in term of delivery and cost. We can see thatpgbdormance oDiBuBB is very close toBUBBLE
and outperforms botlsimBet and PROPHET
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10 RELATED WORK
For distributed search for nodes and content in power-lawarks, Sarshagt al. [26] proposed using a probabilistic
broadcast approach: sending out a query message to an ettg@rabability just above the bofdpercolation

4. A percolation which considers the lattice edges as the relevant entities.
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threshold of the network. They show that if each node caclsediriéctory via a short random walk, then the total
number of accessible contents exhibits a first-order phasesition, ensuring very high hit rates just above the
percolation threshold.

For routing and forwarding iDTNs and mobile ad hoc networks, there is much existing liteeat\Mahdatet al.
proposed epidemic routing, which is similar to the “oblivéd flooding scheme we evaluated in this paper [27].
Spray and Wait is another “oblivious” flooding scheme but witke#-limited number of copies [28]. Grossglauser
et al. proposed the two-hop relay schemes to improve the capduitgrse ad hoc networks [29]. Many approaches
calculate the probability of delivery to the destinatiordapwhere the metrics are derived from the history of node
contacts, spatial information and so forth. The patterrebadobyspace Routing by Leguay al. [30], location-
based routing by Lebrust al. [31], context-based forwarding by Musolegial. [32] and PROPHETRouting [5]
fall into this categoryPROPHETuUses past encounters to predict the probability of futumenters. The transitive
nature of encounters is exploited, where indirectly entenmg the destination node is evaluated. Message Ferry
by Zhaoet al. [33] takes a different approach by controlling the movenmanéach node.

Recent attempts to uncover a hidden stable network steidgturDTNs such as social networks have been
emerged. For example, SimBet Routing [10] uses ego-cenémtrality and its social similarity. Messages are
forwarded towards the node with higher centrality to inseedhe possibility of finding the potential carrier to
the final destinationLABEL forwarding [20] uses affiliation information to help forwamg in PSNs based on
the simple intuition that people belonging to the same conitpuare likely to meet frequently, and thus act
as suitable forwarders for messages destined for membeirge afame community. We have compaidBBLE
with LABEL and SimBetin this paper, and demostrate that by the exploitation oh lmatmmunity and centrality
information,BUBBLE provide further improvement in forwarding efficiency. The niityp-assisted Island Hopping
forwarding [34] uses network partitions that arise due ®drstribution of nodes in space. Their clustering approach
is based on the significant locations for the nodes and notlfstaring nodes themselves. Clustering nodes is a
complex task to understand the network structure for aidoofdrding.

Finally, we emphasise that we take an experimental rather ttheoretical approach, which contrasts with other
work described above.

11 CONCLUSION
We have shown that it is possible to uncover important chearistic properties of social network from a diverse
set of real world human contact traces. We have demonstthsgdcommunity and centrality social metrics can
be effectively used in forwarding decisions. OBUBBLE algorithm is designed for a delay tolerant network
environment, built out of human-carried devices, and westghown that it has similar delivery ratio to, but much
lower resource utilisation than flooding, control floodiiROPHET and SimBet

BUBBLE is designed to work better with a hierarchical communitycinre. The limitation imposed by the
size of the datasets (each experiment is not large enoughsféo extract hierarchical structure) does not allow
us to optimally evaluate it. The current evaluation on a flat mamity structure did still provide us satisfactory
performance improvement. We will further verify our resulthen more mobility traces are available. Synthetic
mobility models can also be useful for further evaluating #ifigorithm, but currently there is no benchmark models.
Another aspect we want to look using our mobility traces i€dmpare them with the available mobility models
and find out the one which can represent most of real mobilénados. We believe that this approach represents
an early step in combining rich multi-level information afcsal structures and interactions to drive novel and
effective means for disseminating data in DTNs. A great dédlitnre research can follow.

ACKNOWLEDGMENTS

This research is funded in part by the SOCIALNETS projecZ12il. We would like also to acknowledge comments from
Steven Hand, Brad Karp, Frank Kelly, Richard Mortier, Ridtio, Andrew Moore, Nishanth Sastry, Derek Murray, Sid Chau
Andrea Passarella, Hamed Haddadi, and Georgios Smaragdaki SimBet source codes from Thrasyvoulos Spyropoulos.

REFERENCES

[1] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. DRacket switched networks and human mobility in conference
environments,” inProc. WDTN, 2005.
[2] K. Fall, “A delay-tolerant network architecture for challenged inats;’ in Proc. SGCOMM, 2003.



(3]
[4]
[5]
(6]

[7]
(8]

[9]
[10]

[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]
[19]

[20]
[21]

[22]
(23]

[24]
[25]

[26]
[27]
(28]
[29]

[30]
[31]

[32]
[33]

[34]

23

D. Kempe, J. Kleinberg, and A. Kumar, “Connectivity and infezerproblems for temporal networks]! Comput. Syst. Sci., vol. 64,
no. 4, pp. 820-842, 2002.

E. P. C. Jones, L. Li, and P. A. S. Ward, “Practical routing in detdgrant networks,” inrProc. WDTN, 2005.

A.Lindgren, A.Doria, and O.Schelen, “Probabilistic routing in intétently connected networks,” iRroc. SAPIR, 2004.

S. Okasha, “Altruism, group selection and correlated interactiBnitish Journal for the Philosophy of Science, vol. 56, no. 4, pp.
703-725, December 2005.

M. E. J. Newman, “Detecting community structure in network&Jt. Phys. J. B, vol. 38, pp. 321-330, 2004.

L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas, “Comparog@nmunity structure identification,). Sat. Mech., p. P09008, Oct
2005.

L. C. Freeman, “A set of measuring centrality based on betwessjingociometry, vol. 40, pp. 35-41, 1977.

E. Daly and M. Haahr, “Social network analysis for routing in diswected delay-tolerant manets,” Bnoceedings of ACM MobiHoc,
2007.

N. Eagle and A. Pentland, “Reality mining: sensing complex socisiesys,”Personal and Ubiquitous Computing, vol. V10, no. 4,
pp. 255-268, May 2006.

A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and JttSdmpact of human mobility on the design of opportunistic forwarding
algorithms,” inProc. INFOCOM, April 2006.

T. Karagiannis, J.-Y. Le Boudec, and M. Vojnoyi‘Power law and exponential decay of inter contact times between middiiees,”

in ACM MobiCom '07, 2007.

J. Leguay, A. Lindgren, J. Scott, T. Friedman, and J. Croftict®pportunistic content distribution in an urban setting,” ACM
CHANTS, 2006, pp. 205-212.

G. Palla, I. Deenyi, |. Farkas, and T. Vicsek, “Uncovering the overlapping comitgustructure of complex networks in nature and
society,” Nature, vol. 435, no. 7043, pp. 814-818, 2005. [Online]. Available: http:dldkorg/10.1038/nature03607

M. E. J. Newman, “Analysis of weighted network&hysical Review E, vol. 70, p. 056131, 2004.

P. Hui and J. Crowcroft, “Human mobility models and opportunistenmunications system desigrPhilosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 366, no. 1872, pp. 2005-2016, June 2008.

P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-bagemvarding in delay tolerant networks,” iMobiHoc '08: Proceedings

of the 9th ACM international symposium on Mobile ad hoc networking & computing, May 2008.

M. E. J. Newman and M. Girvan, “Finding and evaluating communitucture in networks,Physical Review E, vol. 69, February
2004. [Online]. Available: http://arxiv.org/abs/cond-mat/0308217

P. Hui and J. Crowcroft, “How small labels create big improvetagrin Proc. |IEEE ICMAN, March 2007.

L. A. Adamic, B. A. Huberman, R. M. Lukose, and A. R. Puniydi$earch in power law networksPhysical Review E, vol. 64, pp.
46 135-46 143, October 2001.

A. Trusina, S. Maslov, P. Minnhagen, and K. Sneppen, “H@rameasures in complex network&hysical Review Letters, vol. 92,

p. 178702, 2004. [Online]. Available: doi:10.1103/PhysRevLettB27D2

P. Hui, E. Yoneki, S.-Y. Chan, and J. Crowcroft, “Distributedrzaunity detection in delay tolerant networks,” igcomm Workshop
MobiArch '07, August 2007.

P. Winters, “Forecasting sales by exponentially weighted movingages,”Management Science, vol. 6, pp. 324-342, 1960.

P. Hui and N. Sastry, “Real world routing using virtual world infation,” in CSE ' 09: Proceedings of the 2009 International Conference

on Computational Science and Engineering. Washington, DC, USA: IEEE Computer Society, 2009, pp. 1103-1108

N. Sarshart al., “Scalable percolation search in power law networks,” June 2004lir{€n Available: http://arxiv.org/abs/cond-mat/
0406152

A. Vahdat and D. Becker, “Epidemic routing for partially connelcéel hoc networks,” Duke University, Tech. Rep. CS-200006, April
2000.

T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spralyveait: An efficient routing scheme for intermittently connected mobile
networks,” inProc. WDTN, 2005.

M. Grossglauser and D. Tse, “Mobility increases the capacity éi@dwireless networksEEE/ACM Trans. on Networking, vol. 10,
pp. 477-486, 2002.

J. Leguay, T. Friedman, and V. Conan, “Evaluating mobility patsgace routing for DTNSs,” irfProc. INFOCOM, 2006.

J. Lebrun, C.-N. Chuah, D. Ghosal, and M. Zhang, “Knowkthgsed opportunistic forwarding in vehicular wireless ad hoc netyorks
IEEE VTC, vol. 4, pp. 2289-2293, 2005.

M. Musolesi, S. Hailesgt al., “Adaptive routing for intermittently connected mobile ad hoc networks,Pinc. WOWMOM, 2005.

W. Zhao, M. Ammar, and E. Zegura, “A message ferrying apph for data delivery in sparse mobile ad hoc networksPrisceedings

of the MobiCom 2004, 2004.

M. P. N. Sarafijanovic-Djukic and M. Grossglauser, “Island iog: Efficient mobility-assisted forwarding in partitioned networks,”
in IEEE SECON, 2006.





