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Abstract—The increasing penetration of smart devices with networking capability form novel networks. Such networks, also referred

as pocket switched networks (PSNs), are intermittently connected and represent a paradigm shift of forwarding data in an ad hoc

manner. The social structure and interaction of users of such devices dictate the performance of routing protocols in PSNs. To that

end, social information is an essential metric for designing forwarding algorithms for such types of networks. Previous methods relied

on building and updating routing tables to cope with dynamic network conditions. On the downside, it has been shown that such

approaches end up being cost ineffective due to the partial capture of the transient network behavior. A more promising approach

would be to capture the intrinsic characteristics of such networks and utilize them in the design of routing algorithms. In this paper, we

exploit two social and structural metrics, namely centrality and community, using real human mobility traces. The contributions of this

paper are two-fold. First, we design and evaluate BUBBLE, a novel social-based forwarding algorithm, that utilizes the aforementioned

metrics to enhance delivery performance. Second, we empirically show that BUBBLE can substantially improve forwarding

performance compared to a number of previously proposed algorithms including the benchmarking history-based PROPHET

algorithm, and social-based forwarding SimBet algorithm.

Index Terms—Social networks, forwarding algorithms, delay-tolerant networks, pocket-switched networks, centrality, community

detection.
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1 INTRODUCTION

WE envision a future in which a multitude of devices
carried by people are dynamically networked. We

aim to build pocket switched networks (PSN) [1], a type of
delay-tolerant networks (DTN) [2] for such environments. A
PSN utilizes contact opportunities to allow humans to
communicate without network infrastructure. We propose
an efficient data forwarding mechanism over time evolving
graphs of the PSN [3], that copes with dynamical, repeated
disconnection, and rewiring. With such scenarios, end-to-
end delivery through traditional routing algorithms is
rarely applicable.

Many MANETs and some DTN routing algorithms [4],
[5] provide forwarding by building and updating routing
tables whenever mobility occurs. We believe this approach
is not appropriate for a PSN, since mobility is often
unpredictable and topology structure is highly dynamic.
Rather than exchange much control traffic to create
unreliable routing structures, which may only capture the
“noise” of the network, we prefer to search for some
characteristics of the network, which are less volatile than
mobility. A PSN is formed by people. Hence, social metrics
are intrinsic properties to guide data forwarding in such
kinds of human networks. Furthermore, if we can detect
these social mobility patterns online in a decentralized way,
we can apply these algorithms in practice.

In this paper, we focus on two key social metrics:
community and centrality. Cooperation binds, but also
divides human society into communities. For an ecological
community, the idea of correlated interaction means that an
organism of a given type is more likely to interact with
another organism of the same type than with a randomly
chosen member of the population [6]. This correlated
interaction concept also applies to human, so we can exploit
this kind of community information to select forwarding
paths. Within a community, some people are more popular,
and interact with more people than others (i.e., have high
centrality); we call them hubs. In this paper, we will exploit
community and centrality for data forwarding in PSNs.

Methodologically, community detection [7], [8] can help
us to uncover and understand local community structure in
both offline mobile trace analysis and online applications,
and is therefore helpful in designing good strategies for
information dissemination. Freeman [9] defined several
centrality metrics to measure the importance of a node in a
network. Betweenness centrality measures the number of
times a node falls on the shortest path between two other
nodes. This concept is also valid in a DTN. In a PSN, it can
represent the importance of a node as a potential traffic
relay for other nodes in the system. The main contributions
of this paper are to answer following questions:

1. How does the variation in node popularity help us
to forward in a PSN?

2. Are communities of nodes detectable in PSN traces?
3. How well does social-based forwarding work, and

how does it compare to other forwarding schemes in
a real (emulated) environment?

4. Can we devise a fully decentralized way for such
schemes to operate?
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To preview our answers to the above questions, we
evaluate the impact of community and centrality on
forwarding, and propose BUBBLE, a hybrid algorithm, that
selects high centrality nodes and community members of
destination as relays. We demonstrate a significant im-
provement in forwarding efficiency over a number of
previously proposed state-of-the-arts algorithms including
PROPHET algorithm [5], which uses patterns of movement,
rather than the longer term social relationships on which
our BUBBLE scheme rests, and the social-based forwarding
SimBet algorithm [10]. In a PSN, there may be no a priori
information. By definition, we are also in a decentralized
world without access to infrastructure. Therefore, distrib-
uted detection and dissemination of node popularity and
node communities, and the use of these for forwarding
decisions are crucial. We verify that this is not only possible,
but works well in terms of message delivery performance
and efficiency compared to prior schemes.

The rest of this paper is structured as follows: We
introduce the experimental data sets in Section 2, describe
the contact graphs and inferring human communities in
Section 3. In Section 4, we examine the heterogeneity in
centrality. We show evaluation methodology in Section 5,
and results including discussions from Section 6 to 9,
followed by the related works in Section 10. Finally, we
conclude the paper with a brief summary of contributions
in Section 11.

2 EXPERIMENTAL DATA SETS

In this paper, we use four experimental data sets gathered
by the Haggle Project1 over two years, referred to as
Infocom05, HongKong, Cambridge, Infocom06; one data set
from the MIT Reality Mining Project [11], referred to as
Reality. Previously, the characteristics of these data sets,
such as intercontact and contact distribution, have been
explored in several studies [12], [13], [14], to which we refer
the reader for further background information. These five
data sets cover a rich diversity of environments, ranging
from busy metropolitan city (HongKong) to quiet university
town (Cambridge), with an experimental period from several
days (Infocom06) to almost one year (Reality).

. In Infocom05, the devices were distributed to
approximately 50 students attending the Infocom
student workshop. Participants belong to different
social communities (depending on their country of
origin, research topic, etc.).

. In Hong-Kong, the people carrying the wireless
devices were chosen independently in a Hong-Kong
bar, to avoid any particular social relationship
between them. These people have been invited to
come back to the same bar after a week. They are
unlikely to see each other during the experiment.

. In Cambridge, the iMotes were distributed mainly to
two groups of students from the University of
Cambridge Computer Laboratory, specifically un-
dergraduate year1 and year2 students, and also
some PhD and masters’ students. This data set
covers 11 days.

. In Infocom06, the scenario was very similar to
Infocom05 except that the scale is larger, with 80
participants. Participants were selected so that 34 out
of 80 form 4 subgroups by academic affiliations.

. In Reality, 100 smart phones were deployed to
students and staff at MIT over a period of nine
months. These phones were running software that
logged contacts with other Bluetooth-enabled de-
vices by doing Bluetooth device discovery every
five minutes.

The five experiments are summarised in Table 1. A
remark about the data sets is that the experiments do not
have the same granularity and the finest granularity is
limited to 120 seconds. This is because of the trade-off
between the duration of the experiments and the accuracy
of the samplings.

3 INFERRING HUMAN COMMUNITIES

In PSN, the social network could map to the computer
network since people carry the computing devices. To
answer the question whether communities of nodes are
detectable in PSN traces we need community detection
algorithms. In this section, we introduce and evaluate two
centralized community detection algorithms: K-CLIQUE by
Palla et al. [15] and weighted network analysis (WNA) by
Newman [16]. We use these two centralized algorithm to
uncover the community structures in the mobile traces. We
believe our evaluation of these algorithms can be useful for
future traces gathered by the research community.

Many centralized community detection methods have
been proposed and examined in the literature (see the recent
review papers by Newman [7] and Danon et al. [8]). The
criteria we use to select a centralized detection method are
the ability to uncover overlapping communities, and a high
degree of automation (low manual involvement). In real
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human societies, one person may belong to multiple
communities and, hence, it is important to be able to detect
this feature. The K-CLIQUE method satisfies this require-
ment, but was designed for binary graphs, thus we must
threshold the edges of the contact graphs in our mobility
traces to use this method, and it is difficult to choose an
optimum threshold manually [15]. On the other hand, WNA
can work on weighted graphs directly, and does not need
thresholding, but it cannot detect overlapping communities
[16]. Thus, we chose to use both K-CLIQUE and WNA; they
each have useful features that complement one another.

3.1 Contact Graphs

In order to help us to present the mobility traces and make
it easier for further processing, we introduce the notion of
contact graph. The way we convert human mobility traces
into weighted contact graphs is based on the number of
contacts and the contact duration, although we could use
other metrics. The nodes of the graphs are the physical
nodes from the traces, the edges are the contacts, and the
weights of the edges are the values based on the metrics
specified such as the number of contacts during the
experiment. We can measure the relationship between two
people by how many times they meet each other, and how
long they stay with each other. We naturally think that if
two people spend more time together or see each other
more often, they are in a closer relationship.

First, we find the distribution of contact durations and
number of contacts for the two conference scenarios are
quite similar. To prevent redundancy, in the later sections
we only selectively show one example, in most cases
Infocom06, since it contains more participants.

Figs. 1 and 2 show the contact duration and number of
contacts distribution for each pair in four experiments. For
the HongKong experiment, we include the external device
because of the network sparseness, but for the other three
experiments we use only the internal devices. These contact
graphs created are used for the community detection in the
following sections.

3.2 K-CLIQUE Community Detection

Palla et al. [15] define a k-clique community as a union of all

k-cliques (complete subgraphs of size k) that can be reached

from each other through a series of adjacent k-cliques,

where two k-cliques are said to be adjacent if they share

k� 1 nodes. As k is increased, the k-clique communities

shrink, but on the other hand become more cohesive since

their member nodes have to be part of at least one k-clique.

We have applied this on all the data sets above. Fig. 3 shows

the 3-clique communities in the Infocom06 data set. More

detailed descriptions about the k-clique communities on

these data sets can be found in our previous work [17], [18].

3.3 Weighted Network Analysis

In this section, we implement and apply Newman’s

weighted network analysis (WNA) for our data analysis

[16]. This is an extension of the unweighted modularity

proposed in [19] to a weighted version, and use this as a

measurement of the fitness of the communities it detects.
For each community partitioning of a network, one can

compute the corresponding modularity value using the

following definition of modularity (Q):
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Fig. 1. The distribution of pair-wise contact durations. Fig. 2. The distribution of pair-wise number of contacts.

Fig. 3. 3-clique communities based on contact durations with weight
threshold that equals 20,000 s (Infocom06; circles, Barcelona group;
squares, Paris group A; triangles, Paris group B; diamonds, Lausanne
group).
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denotes the community vertex i belongs to. Modularity is
defined as the difference between this fraction and, the
fraction of the edges that would be expected to fall within
the communities if the edges were assigned randomly, but
we keep the degrees of the vertices unchanged. The
algorithm is essentially a genetic algorithm, using the
modularity as the measurement of fitness. Rather than
selecting and mutating current best solutions, we enumer-
ate all possible merges of any two communities in the
current solution, and evaluate the relative fitness of the
resulting merges, and choose the best solution as the seed
for the next iteration.

Table 2 summarizes the communities detected by
applying WNA on the four data sets. According to
Newman [16], nonzero Q values indicate deviations from
randomness; values around 0.3 or more usually indicate
good divisions. For the Infocom06 case, the Qmax value is
low; this indicates that the community partition is not
very good in this case. This also agrees with the fact that
in a conference the community boundary becomes
blurred. For the Reality case, the Q value is high; this
reflects the more diverse campus environment. For the
Cambridge data, the two groups spawned by WNA is
exactly matched the two groups (1st year and 2nd year) of
students selected for the experiment.

These centralized community detection algorithms give
us rich information about the human social clustering and
are useful for offline data analysis on mobility traces
collected. We can use them to explore structures in the
data and, hence, design useful forwarding strategies,
security measures, and killer applications.

4 HETEROGENEITY IN CENTRALITY

In human society, people have different levels of popular-
ity: salesmen and politicians meet customers frequently,
whereas computer scientists may only meet a few of their
colleagues once a year [17]. Here, we want to employ
heterogeneity in popularity to help design more efficient
forwarding strategies: we prefer to choose popular hubs as
relays rather than unpopular ones. SimBet routing algo-
rithm [10] also uses the concept of centrality for choosing
relays. We will compare the performance of both algorithms
in Section 8.

A temporal network or time evolving network is a kind
of weighted network. The centrality measure in traditional
weighted networks may not work here, since the edges are
not necessarily concurrent (i.e., the network is dynamic and
edges are time-dependent). Hence, we need a different way
to calculate the centrality of each node in the system. Our
approach is as follows:

1. Carry out a large number of emulations of un-
limited flooding with different uniformly distribu-
ted traffic patterns created using the HaggleSim
emulator (Section 5.1).

2. Count the number of times a node acts as a relay for
other nodes on all the shortest delay deliveries. Here
the shortest delay delivery refers to the case when
the same message is delivered to the destination
through different paths, where we only count the
delivery with the shortest delay.

We call the number calculated above the betweenness
centrality of this node in this temporal graph. Of course, it
can be normalized to the highest value found. Here we use
unlimited flooding since it can explore the largest range of
delivery alternatives with the shortest delay. This definition
captures the spirit of Freeman centrality [9].

Initially, we only consider a homogeneous communica-
tion pattern, with equal likelihood of every destination, and
we do not weight the traffic matrix by locality. We then
calculate the global centrality value for the whole homo-
geneous system. Later, we will analyse the heterogeneous
system (Section 8).

Fig. 4 shows the number of times a node falls on the
shortest paths between all other node pairs. We can treat
this simply as the centrality of a node in the system. We
observe very wide heterogeneity in each experiment. This
clearly shows that there is a small number of nodes which
have extremely high relaying ability, and a large number of
nodes that have moderate or low centrality values, across
all experiments. One interesting point from the HK data is
that the node showing highest delivery power in the figure
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TABLE 2
Communities Detected from the Four Data Sets

Fig. 4. Number of times a node as relays for others on four data sets.



is actually an external node. This node could be some
popular hub for the whole city, i.e., postman or a news-
paper man in a popular underground station, which
relayed a certain amount of cross city traffic. The 30th,
70th percentiles, and the means of normalized individual
node centrality are shown in Table 3. These numbers
summarize the statistical property of the centrality values
for each system shown in Fig. 4.

5 INTERACTION AND FORWARDING

In the first half of this paper, we have shown the existence
of heterogeneity at the level of individuals and groups, in
all the mobility traces. This motivates us to consider a new
heterogeneous model of human interaction and mobility.

Cliques and Community. We explored the community
structures inside different social environments, and found
these community structures match quite well with the real
underlying social structures.

Popularity Ranking. We observed the heterogeneity for
node centralities in both global and local scales. We shall
see that popular hubs are as useful in the PSN context as
they are in the wireline Internet and in the web.

From Section 6 to Section 9, we will look at how we can
use this information to make smart forwarding decisions.
The following three preexisting schemes provide lower and
upper bounds in terms of cost and delivery success. All of
these schemes are inefficient because they assume a
homogeneous environment. If the environment is homo-
geneous then every node is statistically equivalent (i.e., every
node has the same likelihood of delivering the messages to
the destination). As we showed in the first half of this
paper, the environments and nodes are diverse and, hence,
all these naive schemes are doomed to have poor
performance. We need to design algorithms which make
use of this rich heterogeneity.

. WAIT: Hold onto a message until the sender
encounters the recipient directly, which represents
the lower bound for delivery cost. WAIT is the only
single-copy algorithm in this paper.

. FLOOD: Messages are flooded throughout the entire
system, which represents the upper bound for
delivery and cost.

. Multiple-Copy-multiple-hoP (MCP): Multiple copies
are sent subject to a time-to-live hop count limit on
the propagation of messages. By exhaustive emula-
tions, the 4-copy-4-hop MCP scheme is found to be
the most cost-effective scheme in terms of delivery
ratio and cost for all naive schemes among most of
the data sets. Hence, for fair comparison, we would

like to evaluate our algorithms and the comparison
algorithms (e.g., PROPHET and SimBet) against the
4-copy-4-hop MCP scheme in most of the cases.

Fig. 5 shows the design space for the forwarding
algorithms. The vertical axis represents the explicit social
structure. This is the social or human dimension. The two
horizontal axes represent the network structural plane,
which can be inferred purely from observed contact
patterns. The Structure-in-Cohesive Group axis indicates
the use of localized cohesive structure, and the Structure-in-
Degree axis indicates the use of node ranking and degree.
These are observable physical characteristics. In our design
framework, it is not necessary that physical dimensions are
orthogonal to the social dimension, but since they represent
two different design parameters, we would like to separate
them. The design philosophy here is to consider both the
social and physical aspects of mobility.

We introduce four forwarding algorithms in this paper,
namely LABEL, RANK, DEGREE, and BUBBLE.

. LABEL: Explicit labels are used to identify forwarding
nodes that belong to the same organization. Optimi-
zations are examined by comparing label of the
potential relay nodes and the label of the destination
node. This is in the human dimension, although an
analogous version can be done by labeling a k-clique
community in the physical domain.

. RANK: The forwarding metric used in this algo-
rithm is the node centrality. A message is forwarded
to nodes with higher centrality values than the
current node. It is based on observations in the
network plane, although it also reflects the hub
popularity in the human dimension.

. DEGREE: The forwarding metric used in this
algorithm is the node degree, more specifically the
observed average of the degree of a node over a
certain time interval. Either the last interval window
(S-Window), or a long-term cumulative estimate,
(C-Window) is used to provide a fully decentralized
approximation for each node’s centrality, and then
that is used to select forwarding nodes.

. BUBBLE: The BUBBLE family of protocols combines
the observed hierarchy of centrality of nodes and
observed community structure with explicit labels,
to decide on the best forwarding nodes. BUBBLE is
an example algorithm that uses information from
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TABLE 3
Statistics about Normalized Node

Centrality in Four Experiments

Fig. 5. Design space for forwarding algorithms.



both human aspects and also the physically obser-
vable aspects of mobility.

BUBBLE is a combination of LABEL and RANK. It uses
RANK to spread out the messages and uses LABEL to
identify the destination community. For this algorithm, we
make two assumptions:

. Each node belongs to at least one community. Here,
we allow single node communities to exist.

. Each node has a global ranking (i.e., global centrality)
in the whole system and also a local ranking within its
community. It may belong to multiple communities
and, hence, may have multiple local rankings.

5.1 HaggleSim Emulator

In order to evaluate different forwarding algorithms, we
developed an emulator called HaggleSim [20], which can
replay the mobility traces collected and emulate different
forwarding strategies on every contact event. This emulator
is driven by contact events. The original trace files are
divided into discrete sequential contact events, and fed into
the emulator as inputs.

In all the simulations in this work, we divided the traces
into discrete contact events with granularity of 100 s. Our
simulator reads the file line by line, treating each line as a
discrete encounter event, and makes a forwarding decision
on this encounter based on the forwarding algorithm
under study.

5.2 Simulation Parameters

There are three parameters we used in our simulation to
achieve controlled flooding in MCP strategy.

. Number of Copies (m). The maximum number of
duplicates of each message created at each node.

. Number of Hops (Hop-TTL). The maximum number of
hops, counted from the source, that a message copy
can travel before reaching the destination; this is
similar to TTL value in the Internet.

. Time TTL. The maximum time a message can stay in
the system after its creation. This is to prevent
expired messages from further circulation.

For all the emulations conducted to compare forwarding
efficiency in this paper, we have the following two metrics.

. Delivery Ratio. The proportion of messages that have
been delivered out of the total unique messages
created.

. Delivery Cost. The total number of messages (include
duplicates) transmitted across the air. To normalize
this, we divide it by the total number of unique
messages created.

For some cases, we also compute the hop-count distribu-
tion for the deliveries, which is the distribution of the
number of hops needed for all the deliveries, and which
reveals the social distance between sources and destinations.

In the following sections, we will introduce several
forwarding algorithms and evaluate their performances
with the above metrics. For each emulation, 1,000 unique
messages are created, with the source and destination
randomly chosen or chosen based on specific grouping,

which will be specified in each evaluation case. The creating
time of the messages is uniformly distributed within the
simulation duration. Since the experimental durations for
the data sets we used for simulation are in the order of days
or even weeks, so we ignore the transient period and
average the results throughout the simulation periods.

6 GREEDY RANKING ALGORITHM

The contribution of this section is to introduce RANK
algorithm in detail and evaluate its performance using
different data sets.

RANK is similar to the greedy strategy introduced by
Adamic et al. [21]. A PSN is not a static network like the
Internet; we do not know when a local maximum is reached
since the next encounter is unexpected. We cannot employ
precisely the same strategy as they proposed, of traversing
up the hierarchy until reaching the maximum, and then
down a step. In RANK, we assume each node knows only
its own ranking and the rankings of those it encounters, but
does not know the ranking of other nodes it does not
encounter, and does not know which node has the highest
rank in the system. RANK is very simple: We keep pushing
traffic on all paths to nodes which have a higher ranking
than the current node, until either the destination is
reached, or the messages expire.

If a system is small enough, the global ranking of each
node is actually the local ranking. If we consider only the
Systems Research Group (around 40 people), a subset of the
Cambridge Computer Laboratory (235 people), this is
the ranking of each node inside the group. If we consider
the whole Computer Laboratory, we are considering a
larger system of many groups, but they all use the same
building. A homogeneous ranking can still work. But when
we consider the whole city of Cambridge, a homogeneous
ranking system would exclude many small scale structures.
In this section, we show that in relatively small and
homogeneous systems, a simple greedy ranking algorithm
can achieve good performance.

Fig. 6 (left) shows that RANK performs almost as well as
MCP for delivery. Fig. 6 (right) also shows that the cost is at
maximum of around 40 percent that of MCP, which
represents a marked improvement. The audiences may
notice that the difference in cost between these two
algorithms is not constant. This is because they have different
spreading mechanisms which may affect their abilities to
find necessary number of relays within a certain time TTL.

RANK appears to work in small and homogeneous
systems, but when we look at a more diversified system, for
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Fig. 6. Comparison of delivery ratio (left) and cost (right) of MCP and
RANK on 4-copies and 4-hops case (Reality).



example the Hong Kong data set, it may work differently. In
the Hong Kong experiment, the 37 participants are intention-
ally selected without any social correlation. They live and
work throughout the whole city. With FLOOD, we can deliver
more than 40 percent of the total traffic across the whole city
by using only the 37 iMotes and the external devices detected
by these iMotes. But in this case, greedy ranking can only
deliver 10 percent of the messages, although the cost is much
lower as well. In terms of delivery and cost, greedy ranking is
still more cost-effective than flooding, but clearly the delivery
success rate is still too low. One explanation for this low
performance is that since the participants have no social
correlation, and belong to different social communities, high
global ranking of a node may not represent a good choice of
relay for some local communities. Messages keep being
pushed up to some globally higher ranking nodes, and
getting stuck at some maxima, rather than then trickling
down to some local community.

Fig. 7a (left) shows that the maximum number of hops for
greedy Rank is 4-hops and after that the messages get stuck.
Fig. 7b (right) shows the rank distribution of the sources,
destinations and dead ends of all the undelivered messages,
indicating that message delivery has typically failed at
highly-ranked nodes. This supports our hypothesis concern-
ing the dilemma of the messages getting stuck at maxima.

Hierarchical organization is a common feature of many
complex systems. The defining feature of a hierarchical
organization is the existence of a hierarchical path connect-
ing any two of its nodes. Trusina et al. [22] address how to
detect and measure the extent of the hierarchy manifested
in the topology of a given complex network. They defined
the hierarchical path based on node degrees. A path
between two nodes in a network is called hierarchical if it
consists of an up path, where one is allowed to step from
node i to node j only if their degrees ki, kj satisfy ki � kj,
followed by a down path where only steps to nodes of lower
or equal degree are allowed. Either the up or down path is
allowed to have zero length. Because of the good results
from the greedy ranking algorithm, we analyzed the
percentage of hierarchical paths inside all the shortest
paths. Table 4 summarizes the results.

The percentage of hierarchical paths is calculated as the
number of hierarchical paths divided by the number of
nondirect deliveries. We can see that for Cambridge data and
Reality, the percentage of hierarchical paths is very high, so
our strategy of pushing the messages up the ranking tree
can find a lot of these paths, and the performance of the

ranking strategy here is not much different from that of
MCP. For Infocom06 and Infocom05, the percentage of
hierarchical paths is also high, hence the greedy RANK
strategy can as well discover many of the shortest paths.
However, for the Hong Kong experiment, the network is too
sparse and a lot of shortest paths are hidden. (This occurs
because we could not know the devices detected by the
external devices, and most of the resulting paths used for
delivery are actually not the shortest.) We can see that
percentage of hierarchical paths controls the delivery
success achieved by the greedy RANK algorithm. We
conclude from this that a high percentage of the shortest
paths are actually hierarchical paths.

7 DIRECT LABELLING STRATEGY

In the LABEL strategy, each node is assumed to have a label
that tells others its affiliation, just like a name badge in a
conference. The direct LABEL strategy refers to the
exclusively using of labels to forward messages to destina-
tions: Next-hop nodes are selected if they belong to the same
group (same label) as the destination. It was demonstrated
that LABEL significantly improves forwarding efficiency
over “oblivious” forwarding using Infocom06 data set [20].
This is a beginning of social-based forwarding in PSN. The
limitation of LABEL is the lack of mechanisms to move
messages away from the source when the destinations are
socially far away (such as Reality). The contribution of this
section is to demonstrate the limitations of LABEL strategy,
which motivates a new forwarding algorithm using both
community and centrality information.

We evaluate the LABEL strategy on the Reality data set.
Here, we use the community information detected using
K-CLIQUE algorithm to label the nodes. We can see from
Fig. 8 that LABEL only achieves around 55 percent of the
delivery ratio of the MCP strategy and only 45 percent of
the flooding delivery although the cost is also much lower.
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Fig. 7. The hop distribution of the delivered (left) and the rank distribution
of undelivered (right) on HK data.

TABLE 4
Hierarchical Paths Analysis of All Shortest Paths

Fig. 8. Comparison of delivery ratio (left) and cost (right) of MCP and
LABEL on 4-copies and 4-hops case (Reality).



However, it is not an ideal scenario for LABEL. In this
environment, people do not mix as well as in a conference.
A person in one group may not meet members in another
group so often, so waiting until the members of the other
group appear to do the transmission is not effective here.

Fig. 9 shows the correlation of the nth-hop relay nodes to
the source and destination groups for the messages on all
the shortest paths, that is the percentage of the nth-hop
relay nodes that are still in the same group as the source or
already in the same group as the destination. We can see
that more than 50 percent of the nodes on the first hops
(from the S-Group plot) are still in the same group as the
source group of the message and only around 5 percent of
the first hop nodes (from the D-Group plot) are in the same
group as the destination. We can also see that on going to
the 2nd hop, S-Group correlation drops to slightly less
than 30 percent, and when going to 4th-hops, almost all
(90 percent) messages have escaped from this source group.
To calculate the percentage for each hop, we divide the
number of messages which belong to that group (S-Group
or D-Group) by the total number of messages destined
beyond nodes at that particular hop, but not the total
messages created. In the 4-hop case, there are perhaps only
100 messages to forward further, and only 10 out of these
100 relay nodes belong to the source group. This explains
why LABEL is not effective, since it is far from discovering
the shortest path. In the next section, we will talk about how
to use centrality to improve the delivery ratio of LABEL.

8 CENTRALITY MEETS COMMUNITY

The contribution of this section is to combine the knowledge
of both centralities of nodes and community structure, to
achieve further performance improvements in forwarding.
We show that this avoids the occurrence of the dead ends
encountered with pure global ranking schemes. We call the
protocols here BUBBLE, to capture our intuition about the
social structure. Messages bubble up and down the social
hierarchy, based on the observed community structure and
node centrality, together with explicit label data. Bubbles
represent a hybrid of social and physically observable
heterogeneity of mobility over time and over community.

8.1 Two-Community Case

In order to make the study more systematic, we start with
the two-community case. We use the Cambridge data set for

this study. By experimental design, and confirmed using
our community detection algorithm, we can clearly divide
the Cambridge data into two communities—the under-
graduate year-one and year-two group. In order to make
the experiment more fair, we limit ourselves to just the two
10-clique groups found with a number-of-contact threshold
of nine, that is, where each node at least meet another nine
nodes frequently. Some students may skip lectures and
cause variations in the results, so this limitation makes our
analysis yet more plausible.

First we look at the simplest case, for the centrality of
nodes within each group. In this case, the traffic is created
only for members within the same community and only
members in the same community are chosen as relays for
messages. We can clearly see from Figs. 10a and 10b that
inside a community, the centrality of each node is different.
In Group B, there are two nodes which are very popular,
and have relayed most of the traffic. All the other nodes
have low centrality value. Forwarding messages to the
popular nodes would make delivery more cost effective for
messages within the same community.

Then we consider traffic which is created within each
group and only destined for members in another group. To
eliminate other outside factors, we use only members from
these two groups as relays. Fig. 11 shows the individual
node centrality when traffic is created from one group to
another and the correlation of node centrality within an
individual group and intergroup (for data deliveries only to
other groups but not to its only group) centrality. We can
see that points lie more or less around the diagonal line.
This means that the inter- and intragroup centralities are
quite well correlated. Active nodes in a group are also
active nodes for intergroup communication. There are some
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Fig. 9. Correlation of nth-hop nodes with the source group and
destination group (Reality).

Fig. 10. Node centrality in 2 groups in Cambridge data (see Section 4 for
the method of calculating the centrality values). (a) Group A. (b) Group B.

Fig. 11. Intergroup centrality (left) and correlation between intra- and
intergroup centrality (right), Cambridge.



points on the left hand side of the graph which have low
intragroup centrality but moderate intergroup centrality.
These are nodes which move across groups. They are not
important for intragroup communication but can perform
certainly well when we need to move traffic from one group
to another.

We can show now why homogeneous global ranking in
Section 6 does not work perfectly. Fig. 12 shows the
correlation of the local centrality of Group A and the global
centrality of the whole population. We can see that quite a
number of nodes from Group A lie along the diagonal line.
In this case, the global ranking can help to push the traffic
toward Group A. However, the problem is that some nodes
which have very high global rankings are actually not
members of Group A, for example node D. Just as in real
society, a politician could be very popular in the city of
Cambridge, but not a member of the Computer Laboratory,
so may not be a very good relay to deliver message to the
member in the Computer Laboratory. Now we assume
there is a message at node A to deliver to another member
of Group A. According to global ranking, we would tend to
push the traffic toward B, C, D, and E in the graph. If we
pushed the traffic to node C, it would be fine, and to node B
it would be perfect. But if it pushed the traffic to node D and
E, the traffic could get stuck there and not be routed back to
Group A. If it reaches node B, that is the best relay for traffic
within the group, but node D has a higher global ranking
than B, and would tend to forward the traffic to node D,
where it would probably get stuck again. Here, we propose
the BUBBLE algorithm to avoid these dead ends.

Forwarding is carried out as follows: If a node has a
message destined for another node, this node would first
bubble this message up the hierarchical ranking tree using
the global ranking until it reaches a node which has the
same label (community) as the destination of this message.
Then the local ranking system will be used instead of the
global ranking and continue to bubble up the message
through the local ranking tree until the destination is
reached or the message expired. This method does not
require every node to know the ranking of all other nodes in
the system, but just to be able to compare ranking with the
node encountered, and to push the message using a greedy
approach. We call this algorithm BUBBLE, since each
world/community is like a bubble. Fig. 13 illustrates the

BUBBLE algorithm and the pseudocode can be found in our
previous work [18].

This fits our intuition in terms of real life. First you try to
forward the data via people more popular than you around
you, and then bubble it up to well-known popular people in
the society, such as a postman. When the postman meets a
member of the destination community, the message will be
passed to that community. This community member will
try to identify the more popular members within the
community and bubble the message up again within the
local hierarchy until the message reaching a very popular
member, or the destination itself, or the message expires.

A modified version of this strategy is that whenever a
message is delivered to the community, the original carrier
can delete this message from its buffer to prevent it from
further dissemination. This assumes that the community
member would be able to deliver this message. We call this
protocol with deletion, strategy BUBBLE-B, and the original
algorithm introduced above BUBBLE-A.

We can see from Fig. 14 that both BUBBLE-A and
BUBBLE-B achieve almost the same delivery success rate
as the 4-copy-4-hop MCP. Although BUBBLE-B has the
message deletion mechanism, it achieves exactly the same
delivery as BUBBLE-A. BUBBLE-A only has 60 percent
the cost of MCP and BUBBLE-B is even better, with only
45 percent the cost of MCP. Both have almost the same
delivery success as MCP.

8.2 Multiple-Community Cases

To study the multiple-community cases, we use the Reality
data set. To evaluate the forwarding algorithm, we extract
a three-week session during term time from the whole
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Fig. 12. Correlation of local centrality of Group A and the global centrality
(Cambridge).

Fig. 13. Illustration of the BUBBLE forwarding algorithm.

Fig. 14. Comparisons of several algorithms on Cambridge data set.



nine-month data set. Emulations are run over this data set
with uniformly generated traffic.

There is a total of eight groups within the whole data set.
Fig. 15 shows the node centrality in four groups, from small-
size to medium-size and large-size group. We can see that
within each group, almost every node has different centrality.

In order to make our study easier, we first isolate the
largest group in Fig. 15, consisting of 16 nodes. In this case,
all the nodes in the system create traffic for members of this
group. We can see from Fig. 16 that BUBBLE-A and
BUBBLE-B perform very similarly to MCP most of the time
in the single group case, and even outperform MCP when
the time TTL is set to be larger than one week. BUBBLE-A
only has 70 percent and BUBBLE-B only 55 percent of the
cost of MCP. We can say that the BUBBLE algorithms are
much more cost effective than MCP, with high delivery
ratio and low delivery cost.

After the single group case, we start looking at the case of
every group creating traffic for other groups, but not for its
own members. We want to find the upper cost bound for the
BUBBLE algorithm, so we do not consider local ranking (i.e.,
only global ranking); messages can now be sent to all
members in the group. This is exactly a combination of direct
LABEL and greedy RANK, using greedy RANK to move the
messages away from the source group. We do not implement
the mechanism to remove the original message after it has
been delivered to the group member, so the cost here will
represent an upper bound for the BUBBLE algorithms.

From Fig. 17, we can see that of course flooding achieves
the best performance for delivery ratio, but the cost is
2.5 times that of MCP, and 5 times that of BUBBLE. BUBBLE

is very close in performance to MCP in multiple groups case
as well, and even outperforms it when the time TTL of the
messages is allowed to be larger than two weeks.2 However,
the cost is only 50 percent that of MCP.Fig. 18 shows the
same performance evaluations with the Infocom06 data set.
In this case, the delivery ratio of RANK is approaching that
of MCP but with less than half of the cost. The performance
of BUBBLE over RANK is not as significant as in the Reality
case because in a conference scenario the people are very
mixing and, hence, the community factors are less dominat-
ing. We can also see that even in this case, the delivery cost
for BUBBLE only increases slightly, which indicates that
even in a mixing environment, BUBBLE is still very robust
toward the possible misleading of the community factors.

In order to further justify the significance of social-based
forwarding, we also compare BUBBLE with a benchmark
“nonoblivious” forwarding algorithm, PROPHET [5], and
another state-of-the-arts social-based forwarding algorithm,
SimBet [10]. PROPHET uses the history of encounters and
transitivity to calculate the probability that a node can
deliver a message to a particular destination. SimBet is
similar in concept as BUBBLE for leveraging social contexts.
It exploits the exchange of preestimate “betweenness”
centrality metrics and locally determined social “similarity”
to the destination node to guide the message delivery. Since
PROPHET has been evaluated against other algorithm
before and SimBet is another well-credited social-based
algorithm, and both have the same contact-based nature as
BUBBLE (i.e., does not need location information), they are
good candidates to compare with BUBBLE.
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Fig. 15. Node centrality in several individual groups (Reality).

Fig. 16. Comparisons of several algorithms on Reality data set, single
group.

Fig. 17. Comparisons of several algorithms on Reality data set, all
groups.

Fig. 18. Comparisons of several algorithms on Infocom06 data set, all
groups.

2. Two weeks seems to be very long, but as we have mentioned before,
the Reality network is very sparse. We choose it mainly because it has long
experimental period and hence more reliable community structures can be
inferred. The evaluations here can serve as a proof of concept of the
BUBBLE algorithm, although the delays are large in this data set.



PROPHET has four parameters. We use the default
PROPHET parameters as recommended in [5]. However,
one parameter that should be noted is the time elapsed unit
used to age the contact probabilities. The appropriate time
unit used differs depending on the application and the
expected delays in the network. Here, we age the contact
probabilities at every new contact. In a real application, this
would be a more practical approach since we do not want to
continuously run a thread to monitor each node entry in the
table and age them separately at different time. For SimBet
routing, we use the default values for the SimBet utility
parameters as specified in the paper [10] (i.e., � ¼ � ¼ 0:5),
which assigns an equal importance to the similarity and
betweenness utility. And since BUBBLE is a multicopy
algorithm, we also implement a multicopy SimBet for better
comparison. For all the comparisons, we use the same
settings of number of hops and number of copies for all the
algorithms, more particularly we show the results of the 4-
hop-4-copy case. The results are also valid for the other
combinations of number of hops and number of copies in
our simulations. As most of the traces have long experi-
mental durations (i.e., in the order of days or even weeks),
we average the results throughout the simulation period
and ignore the transient period.

Fig. 19 shows the comparison of the delivery ratio
and delivery cost of BUBBLE, PROPHET, and SimBet for
the 4-hop-4-copy case.3 Here, for the delivery cost, we only
count the number of copies created in the system for each
message, as we have done before for the comparison with
the “oblivious” algorithms. We do not count the control
traffic created by PROPHET for exchanging routing table
during each encounter, which can be huge if the system is
large (PROPHET uses flat addressing for each node and its
routing table contains entry for each known node). We also
do not count the message exchange in SimBet for updating
the similarity and betweenness values. We can see that
most of the time, BUBBLE achieves a similar delivery ratio
to PROPHET and around 10 percent better than SimBet, but
with only half of the cost of PROPHET and 70 percent of the
cost of SimBet. Considering that BUBBLE does not need to
keep and update an routing table for each node pairs, the
performance achievement is significant.

PROPHET relies on encountering history and transient
delivery predictability to choose relays. This can efficiently
identify the routing paths to the destinations, but the
dynamic environment may result in many nodes having a

lot of slightly fluctuation of probabilities. This results in
more redundant nodes being chosen as relays, which can be
reflected from the delivery cost. Instead, BUBBLE uses
social information and, hence, filters out these noises due to
the temporal fluctuations of the network. SimBet can
successfully leverage social context, but it fails in identify-
ing the sequence of using betweenness and similarity.
BUBBLE explicitly identifies centrality and community, and
first uses centrality metric to spread out the messages and
then uses community metric to focus the messages to the
destinations. This approach effectively guarantees a high
delivery ratio and a low delivery cost.

A remark here is that the centrality values used for the
BUBBLE simulations in this section are calculated in a
centralized way, while PROPHET and SimBet use mainly
online estimation, but we will show that this can be
effectively approximated in a low-cost distributed manner
in the next section. Overall, we evaluated BUBBLE against
WAIT, FLOOD, the optimized MCP, LABEL, RANK, the
benchmark PROPHET, and SimBet. This provides us a
reasonable variety of samples to illustrate the performance
of BUBBLE.

9 MAKING CENTRALITY PRACTICAL

For practical applications, we want to look further into how
BUBBLE can be implemented in a distributed way. To
achieve this, each device should be able to detect its own
community and calculate its centrality values. In [23], we
have proposed three algorithms, named SIMPLE, K-CLI-
QUE, and MODULARITY for distributed community detec-
tion, and we have proved that detection accuracy can be up
to 85 percent of the centralized K-CLIQUE algorithm. The
next step is to ask how each node can know its own centrality
in a decentralized way, and how well past centrality can
predict the future.

The final contribution of this paper is to provide answers
to these two questions.

9.1 Approximating Centrality

We found that the total degree (unique nodes) seen by a
node throughout the experiment period is not a good
approximation for node centrality. Instead, the degree per
unit time (for example the number of unique nodes seen per
6 hours, started from midnight) and the node centrality
have a high correlation value. We can see from Fig. 20 that
some nodes with a very high total degree are still not good
carriers. It also shows that the per 6 hour degree is quite
well correlated to the centrality value, with correlation
coefficient as high as 0.9511. That means how many people
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3. For one more perspective on the data, here we show the 4-hop-4-copy
case instead of the unlimited case in Fig. 17. The trend is very similar for the
other case.

Fig. 19. Comparisons of BUBBLE, PROPHET, and SimBet on Reality
data set.

Fig. 20. Correlation of rank with total degree and rank with unit time
degree (Reality).



you know does not matter too much, but how frequently
you interact with these people does matter.

In order to verify that the average unit-time degree is as
good as or close to RANK, we run another set of emulations
using greedy average unit-time degree (or we simply call it
DEGREE) instead of the precalculated centrality. We find
that RANK and DEGREE perform almost the same with the
delivery and cost lines overlapping each other. They not
only have similar delivery but also similar cost.

However, the average unit-time degree calculated
throughout the whole experimental period is still difficult
for each node to calculate individually. We then consider
the degree for the previous unit-time slot (we call this the
slot window) such that when two nodes meet each other,
they compare how many unique nodes they have met in the
previous unit-time slot (e.g., 6 hours). We call this approach
single window (S-Window). Another approach is to
calculate the average value on all previous windows, such
as from yesterday to now, then calculate the average degree
for every 6 hours. We call this approach cumulative
window (C-Window). This technique is similar to a
statistics technique called exponential smoothing [24] and
we would like to do further theoretical investigation.

We can see from Fig. 21 that the S-Window approach
reflects more recent context, and achieves a maximum of
4 percent improvement in delivery ratio over RANK, but at
double the cost. The C-Window approach measures more of
the cumulative effect, and gives more stable statistics about
the average activeness of a node. However, its cumulative
measurement is not as good an estimate as RANK, which
averages throughout the whole experimental period. It does
not achieve as good delivery as RANK (not more than
10 percent less in term of delivery), but it also has lower cost.

9.2 Predictability of Centrality

In order to further verify whether the centrality measured
in the past is useful as a predictor for the future, we
extracted three temporally consecutive three-week sessions
from the Reality data set and then run a set of greedy RANK
emulations on the last two data sessions, but using the
centrality values from first session.

Fig. 22 shows the delivery ratio and cost of RANK on the
second data session using the centrality values from the first
data session. It seems that the performance of RANK is not
far from MCP but with much lower cost, i.e., it is as good as
running the emulation on the original data set, which the
centrality values derived from. Similar performance is also
observed in the third data session. These results imply some

level of predictability of human mobility, and show
empirically that past contact information can be used in
the future.

All these approaches, (DEGREE, S-Window, C-Window
and predictability of human mobility) provide us with a
decentralized way to approximate the centrality of nodes in
the system, and hence help us to design appropriate
forwarding algorithms. Combining these approximate
methods and the distributed community detection, we can
put BUBBLE into reality. We will briefly discuss how
distributed BUBBLE works for a citywide environment, but
leave the evaluation details as future work when we can get
a larger scale of data set.

Suppose there is a network of mobile users, perhaps
spanning an entire city, each device can detect its own
local community or knowing its social graph from online
social networks [25]. At the same time, it also counts its
own 6-hour-averaged degree (i.e., C-Window). Its global
ranking can be approximated as its 6-hour-averaged
degree for all nodes and its local ranking can be
approximated as its 6-hour-averaged degree only for nodes
inside its community. With all these metrics, each node can
forward messages using BUBBLE. Or, we simply call it
DiBuBB algorithm, which uses labels from its social graph,
affiliation, or distributed community detection for commu-
nity information and C-Window to approximate its own
global and local centrality values. Besides that, it operates
exactly like BUBBLE. Fig. 23 shows the plotting of delivery
ratio against the delivery cost for BUBBLE, DiBuBB,
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Fig. 21. Comparisons of delivery (left) and cost (right) of RANK,
S-Window and C-Window (Reality).

Fig. 22. Delivery ratio (left) and cost (right) of RANK algorithm on second
data session, all groups (Reality).

Fig. 23. Delivery ratio against cost for several algorithms (Reality).



SimBet, and PROPHET. Here, DiBuBB uses the 6-hour
C-Window approach to approximate the centrality values
and the social graph information for the communities. In
general, the larger the slopes of the lines, the more efficient
the algorithm is, in term of delivery and cost. We can see
that the performance of DiBuBB is very close to BUBBLE
and outperforms both SimBet, and PROPHET.

10 RELATED WORK

For distributed search for nodes and content in power-law
networks, Sarshar et al. [26] proposed using a probabilistic
broadcast approach: sending out a query message to an
edge with probability just above the bond4 percolation
threshold of the network. They show that if each node
caches its directory via a short random walk, then the total
number of accessible contents exhibits a first-order phase
transition, ensuring very high hit rates just above the
percolation threshold.

For routing and forwarding in DTNs and mobile ad hoc
networks, there is much existing literature. Vahdat et al.
proposed epidemic routing, which is similar to the
“oblivious” flooding scheme we evaluated in this paper
[27]. Spray and Wait is another “oblivious” flooding scheme
but with a self-limited number of copies [28]. Grossglauser
et al. proposed the two-hop relay schemes to improve the
capacity of dense ad hoc networks [29]. Many approaches
calculate the probability of delivery to the destination node,
where the metrics are derived from the history of node
contacts, spatial information and so forth. The pattern-
based Mobyspace Routing by Leguay et al. [30], location-
based routing by Lebrun et al. [31], context-based forward-
ing by Musolesi et al. [32] and PROPHET Routing [5] fall
into this category. PROPHET uses past encounters to
predict the probability of future encounters. The transitive
nature of encounters is exploited, where indirectly encoun-
tering the destination node is evaluated. Message Ferry by
Zhao et al. [33] takes a different approach by controlling the
movement of each node.

Recent attempts to uncover a hidden stable network
structure in DTNs such as social networks have been
emerged. For example, SimBet Routing [10] uses egocentric
centrality and its social similarity. Messages are forwarded
toward the node with higher centrality to increase the
possibility of finding the potential carrier to the final
destination. LABEL forwarding [20] uses affiliation informa-
tion to help forwarding in PSNs based on the simple
intuition that people belonging to the same community are
likely to meet frequently, and thus act as suitable forwarders
for messages destined for members of the same community.
We have compared BUBBLE with LABEL and SimBet in this
paper, and demonstrated that by the exploitation of both
community and centrality information, BUBBLE provided
further improvement in forwarding efficiency. The mobility-
assisted Island Hopping forwarding [34] uses network
partitions that arise due to the distribution of nodes in
space. Their clustering approach is based on the significant
locations for the nodes and not for clustering nodes

themselves. Clustering nodes is a complex task to under-
stand the network structure for aid of forwarding.

Finally, we emphasize that we take an experimental
rather than theoretical approach, which contrasts with other
work described above.

11 CONCLUSION

We have shown that it is possible to uncover important
characteristic properties of social network from a diverse set
of real world human contact traces. We have demonstrated
that community and centrality social metrics can be
effectively used in forwarding decisions. Our BUBBLE
algorithm is designed for a delay-tolerant network environ-
ment, built out of human-carried devices, and we have
shown that it has similar delivery ratio to, but much lower
resource utilization than flooding, control flooding, PRO-
PHET, and SimBet.

BUBBLE is designed to work better with a hierarchical
community structure. The limitation imposed by the size of
the data sets (each experiment is not large enough for us to
extract hierarchical structure) does not allow us to
optimally evaluate it. The current evaluation on a flat
community structure did still provide us satisfactory
performance improvement. We will further verify our
results when more mobility traces are available. Synthetic
mobility models can also be useful for further evaluating
the algorithm, but currently there is no benchmark models.
Another aspect we want to look using our mobility traces is
to compare them with the available mobility models and
find out the one which can represent most of real mobility
scenarios. We believe that this approach represents an early
step in combining rich multilevel information of social
structures and interactions to drive novel and effective
means for disseminating data in DTNs. A great deal of
future research can follow.
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