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Abstract—Opportunistic networks are formed among mobile
wireless devices based on spontaneous connectivity such as
mobile phone networks using short range radio. Different setting
of social structure in such networks gives significant impact
on the feasibility and performance. In this paper we aim at
understanding how social structure affects forwarding algorithm
in various opportunistic network configurations. Having human
mobility traces from the real world, we focus on the social
structure in terms of centrality and community. We exploit
different community detection and centrality calculation from
the trace to present the features of such networks. We study
a collection of Social-based Forwarding algorithms, such as
LABEL, RANK, and BUBBLE [10]. Furthermore, we implement
those forwarding algorithms over a Xen-based Haggle testbed [9].
We investigate the impact of community structure and centrality
on performance and demonstrate that social structure influences
the performance of the social-based Forwarding algorithms. Our
result demonstrates that it is important to find appropriate
centrality and communities for social networks with complex
structure in the design of the social-based data dissemination
algorithms.

I. INTRODUCTION

Human society can be characterized by diverse social struc-

tures, which are likely to be identified by many factors,

such as geographical separation, population density, or spacial

distribution. In this paper, we concentrate on two specific

aspects of social metrics: community and centrality. The fact

that people inherently form groups creates the concept of

community, which is defined as partitions of network nodes

into densely connected subgroups [15]. Community detection

in complex networks has been investigated for a long time

[17]. And numerous methods to detect community structures

has been proposed and evaluated in centralized [16] and

distributed [11] ways. Centrality is another notable pattern in

social networks. Within a community, some people might have

high centrality, which indicates that they appear to be more

popular, and thus influence more people than others. Centrality

defines the significance of a node in a network [8], and can

be assessed by various metrics which may based on degree,

betweenness, and closeness, etc.

With increasing number of mobile users carrying portable

devices (e.g. smart phone, tablet computer), communication

in future tend to be more pervasive and autonomous in the

presence of opportunistic connectivity. This provides us a

chance to construct Pocket Switched Networks (PSNs)[10]

known as a subclass of Delay Tolerant Networks (DTNs) [12].

PSNs use opportunistic data dissemination to facilitate human-

to-human communication in a dynamical and repeatedly dis-

connected network environment. The traditional networks are

based on infrastructure-based networking, while there is no

such infrastructure in PSNs. Thus, major challenge in PSNs

lies in how to design routing protocols without end-to end

path. The nodes in PSNs makes use of store-and-forward

mechanism to carry data to the destination. Given that social

characteristics are more stable than routing structures in such

kinds of human networks, it is inspired to use social metrics to

design forwarding algorithms. It has been proved that knowl-

edge on social structure can help us to design good strategies

for forwarding algorithm [10]. In our previous work, we have

proposed various Social-based Forwarding algorithms, such

as LABEL, RANK [10], and ultimately BUBBLE forwarding

design space [10].

All of them are able to exploit social characteristics to

facilitate data delivery to members of a specific community.

We foresee that the communication in PSNs is community-

oriented, and encompasses diverse approaches, such as many-

to-many, any-to-many and one-to-any. However, the Social-

based Forwarding algorithms focus primarily on the end-to-

end communication. Thus, we proposed Socio-Aware Overlay

mainly focusing on multi-point communication in [20]. The

Socio-Aware Overlay operates by creating a overlay with

broker nodes based on centrality and community. The broker

nodes apply multicast over the physical topology graph within

communities in response to changes in the topology, and

forward data between communities which are connected by the

backbone for content sharing in disconnected environments.

In this way, data dissemination is performed over the Socio-

Aware Overlay in a publish/subscribe fashion.

There are numerous papers which have investigated the way

to design discover social structure in human networks [16].

The performance of the Social-based Forwarding algorithms

relies on how to choose suitable community structure and

centrality. So there is a need to uncover optimized social struc-

ture from human encounter traces and study impact of social

structure on various Social-based Forwarding algorithms. The

contribution of this paper is as follows. The contribution of

this paper is as follows. First, we perform analysis of the

comparison of effects of different community detection on



the performance of the Social-based Forwarding algorithms.

Second, we study the performance of the Socio-Aware Overlay

under different community detections and centralities.

The remainder of the paper is organized as follows. Sec-

tion 2 describes related work in the area of forwarding and

community detection in opportunistic networks. Section 3

introduces real-world human traces. Section 4 presents the

Social-based Forwarding algorithms. Section 5 reviews social

structure in terms of centrality and community detection. Sec-

tion 6 presents the Socio-Aware Overlay. Section 7 gives the

overview of implementation of the Social-based Forwarding

algorithm and Haggle testbed. In Section 8, we perform an

evaluation of the Social-based Forwarding algorithm and the

Socio-Aware Overlay under different social structure configu-

rations, which is followed by Conclusion Section.

II. RELATED WORK

Several community detection techniques have been proposed

and examined in the literatures.The recent reviews [17] has

given as introductory reading in numerous centralized methods

which are beneficial for offline data analysis on mobility traces

collected to explore structures. Authors in [13] have reviewed,

and compared the benefits of various definitions of centralities

in contemporary social networks. Graphs have been proved as

a powerful tool to represent social relations in a quantified

and measurable manner [16]. [4] has introduced a proposal for

a standard benchmark test of community detection methods,

and uncovered that the most accurate methods tend to be more

computationally expensive, and that both aspects need to be

considered when choosing a method for practical purposes.

[2] has defined a measure of local community structures

and an algorithm that infers the hierarchy of communities

by enclosing a given vertex by exploring the graph at a

time. Hui et al. [11] have studied the area of distributed

community detection for self-organizing networks, where the

mobile devices are able to sense and detect their own local

communities instead of relying on a centralized server.

Forwarding algorithms for DTNs and opportunistic net-

works have been extensive researched in recent years.[21]

has overviewed a variety of routing strategies in DTNs, and

utilized some extent of calculations to cope with complexity

of network semantics such as location tracking or mobility.

[14] has studied propose a probabilistic routing protocol for

such networks. Unfortunately none of them use the derived

forwarding from in-depth understanding of social structures.

Several Social-based Forwarding algorithms for PSNs have

been proposed. For example, LABEL algorithm [10] has

presented a simple LABEL forwarding based on communities.

[10] has demonstrated the RANK and the BUBBLE algo-

rithms, which has used community structures and centrality

for further improvement of forwarding algorithms.

There are many papers attempt to uncover social structure in

PSNs from real world human connectivity traces. Community

detection has been studied in centralized [16] and distributed

[11] manners. [19] shows visualization of detected commu-

nity structures uncovered by different community detection

algorithms from human encounter traces. Nevertheless, there

are not yet an in-depth study of how social characteristics

detected in the real world human connectivity traces impacts

the performance of forwarding algorithms and overlays. This

is necessary because in PSNs the performance is not only

determined by networking conditions but also by human

activities. We take an empirical approach and work directly

with the real world connectivity traces to investigate this issue.

III. REAL-WORLD HUMAN TRACES

In this paper, we choose traces from different sources: two

experimental datasets collected by the Haggle [9] Project,

known to as CAM, INFC06; one dataset from the MIT Reality

Mining Project [5], referred to as MIT. These traces can

be obtained from CRAWDAD [3]. These datasets have been

extensively analyzed. Here we just refer the reader for further

background information, which are listed below.

• MIT: in the MIT Reality Mining project [5], 97 smart

phones were deployed to students and staff at MIT over a

period of 9 months. These phones were running software

that logged contacts.

• CAM: In the Haggle project, 36 iMotes were deployed

to 1st year and 2nd year undergraduate students at the

University of Cambridge for 10 days [10]. iMotes are

sensor boards equipped Bluetooth for detecting proximity

devices.

• INFC06: 78 iMotes were deployed at the Infocom 2006

conference for 4 days [10].

In order to make it easier for processing, we convert human

mobility traces into weighted contact graphs [10] is based

on the number of contacts. The nodes of the graphs are the

physical nodes from the traces, the edges are the contacts, and

the weights of the edges are the values based on the number

of contacts during the experiment.

IV. SOCIAL-BASED FORWARDING

Social-based forwarding largely benefits from the social at-

tributes such as community and centrality. In order to use the

Social-based Forwarding, we assume that each node belongs to

at least one community and has a ranking known as centrality.

Nodes may belong to multiple communities and hence may

have multiple rankings.

In this paper, we use 3 forwarding algorithms, namely

LABEL, RANK, and BUBBLE [10].

• LABEL is a straightforward Social-based Forwarding

scheme. It is assumed that every node possesses a label

informing others about its affiliation/organization. With

this, it compares label of the potential relay nodes and

the label of the destination node, and consequently for-

wards the data objects to nodes that belong to the same

community as the destinations. The problem for LABEL

is obvious, i.e. , the source is probably not accessible to

a member of the community of the destination in some

scenarios where multiple communities are far away. More

information about LABEL can be found in [10].



• RANK use node centrality as forwarding metric to for-

ward data objects. It is assumed that each node knows

only its own ranking and the rankings of those it encoun-

ters. So RANK simply forwards the data objects to nodes

which have a higher ranking than the current node, until

either the destination is reached, or the messages expire.

• BUBBLE is a family of approaches that combines the

observed hierarchy of centrality of nodes and observed

community structure with explicit labels [10]. Explicitly

in this paper we combine both LABEL and RANK, i.e.,

we use RANK to disseminate the data objects and uses

LABEL to reach the destination community.

BUBBLE could have many variances. In this paper BUB-

BLE operates as follows. If a node has a data object destined

for node in the same community, BUBBLE will send it using

normal forwarding. If a node has a data object destined for

node in another community, this node would first send this data

object up the hierarchical ranking tree using the ranking until

it reaches a node which has the same label (community) as the

destination of this message. Then the local forwarding system

will be used to forward the data object until the destination is

reached or the message expired.

V. SOCIAL STRUCTURE

Social structures can be determined by many features. Two

specific aspects of social metrics, i.e. centrality and com-

munity, are chosen to develop the Social-based Forwarding

algorithm and the Socio-Aware Overlay.

A. Centrality

Centrality indicates the significance of a node in accordance

with graph theory. In this section, we present three well-

recognized centrality measures: Degree, Betweenness, and

Closeness Centrality.

• Degree centrality implies the total number of connects

incident upon a node. Higher degree means that the node

may be more popular and thus more important than others

in the design of forwarding algorighms. [1] demonstrates

that the degree distribution usually follows a power-law

in social interaction graphs of movie actor collaboration,

science collaboration, phone calls or graphs of sexual

contacts.

• Betweenness centrality is the percentage of the number

of shortest-paths that a node is part of, over all graph

shortest-paths [8]. Nodes with high betweenness bridge

two nonadjacent nodes and may impact on data flow

between two communities. Thus, betweenness centrality

is a key metric to investigate the data flow over different

communities.

• Closeness centrality is defined as the average of the

distance between node and all other nodes. It exhibits

how many hops it will take data to spread the others

in the community. The node with less closeness has the

shortest path to all others and thus the best visibility in

the network and sub-network (i.e. community).

B. Community Detection

There are several novel community detection approaches

with great potential to detect both static and temporal com-

munities [17]. Two centralized algorithms are used to discover

the community structures in the real-world traces, namely, K-

Clique [18] and Fiedler [7]. See [19] for details of community

detection with the contact network traces.
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Fig. 1: K-Clique Community Detection for the CAM dataset
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Fig. 2: Fiedler Community Detection for the CAM dataset

• K-Clique define a community as a union of all k-cliques

(complete sub-graphs of size k) that can be reached from

each other through a series of adjacent k-cliques, where

two k-cliques are said to be adjacent if they share k-1

nodes [18]. An advantage of this approach is that it allows

overlapping communities, which is useful as, in human

society, one person may belong to multiple communities.

• Fiedler Clustering use Fiedler vector, which is the eigen-

vector for the nonzero smallest eigenvalue of a Laplacian

matrix [7]. This vector can be used for decomposing

graphs into structural components.

Figure 1 and 2 depicts connection maps in the CAM dataset

for different algorithms of community definition. The nodes

are colored with their respective communities found by K-

Clique and Fiedler. Furthermore, we can observe that there are

some devices that do not belong to any communities, named

Loners.

VI. SOCIO-AWARE OVERLAY

The Socio-Aware Overlay is a publish/subscribe system for

multi-point dissemination introduced in [20]. The fundamental

idea of the Socio-Aware Overlay is to take advantage of

the prevailing social structures to construct an overlay based

upon centrality and community detection rather than various



Fig. 4: A generic sequential procedure for Haggle testbed

contexts (e.g. location, group mobility). Figure 3 depicts a

publish/subscribe broker overlay, which is constructed through

the community detection and centrality nodes.

The Socio-Aware Overlay employs the concept of com-

munity and centrality. It operates as follows. First, commu-

nity detection is used to divide whole networks into several

communities, which is in turn mapped to the overlay. This

is because people within the community are more likely to

same data with each other, and similar subscriptions may

coexist within the same community. Thus performance of such

system can be improved. Second, centrality nodes, namely

brokers, are identified to exchange data between communities.

We currently select closeness centrality nodes for the broker

node as closeness centrality implies the best visibility inside

the community [20]. So each node has a local view of the

community. In this way, once the broker receives the message,

it will forward it to any member of the community with

reliability. Thanks to the characteristics of human networks

(i.e. scale-free networks), many nodes within a community

are tightly connected and multiple closeness centrality nodes

can coexist. Thus multiple brokers can exist in the same

community, which provides a potential load balance for data

forwarding.Our Socio-Aware Overlay is mapped over detected

communities, which gives a certain level of stable network

topology. Communication between broker nodes might have

two modes: Unicast and Direct. Unicast is dependent on

the underlying unicast algorithms, which might end up with

epidemic routing. Direct offers a more direct communication

mechanism, which gives increased performance of message

delivery sacrificed with some computing costs. Our Socio-

Aware Overlay operates in direct mode, i.e.,the nodes within

the community sends data object to the broker node. On receipt

of data object, the broker node employs LABEL forwarding

algorithm by matching the LABEL of target to the LABEL

of other brokers to efficient deliver data object to the member

within other communities. Therefore, the performance of this

approach is determined not only by the real mapping between
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Fig. 3: Overlay over Communities

the overlay network but also by the broker nodes.

VII. IMPLEMENTATION

A. Forwarding Algorithm on Haggle Platform

Haggle [9] is a data-centric communication architecture for

opportunistic networks. It is comprised of six independent

Managers including data manager, naming manager, forward-

ing manager, resource manager, connectivity manager, and

protocol manager.

Since forwarding manager is responsible for delivering data

object to the destinations, we have implemented three new

Social-based Forwarding managers, namely, ForwarderLa-

bel, ForwarderRank, and ForwarderBubble, and Socio-Aware

Overlay manager, ForwarderOverlay on Haggle platform. In

this section, we mainly introduce the implementation of For-

warderBubble in Haggle framework because it combines the

features of both LABEL and Rank.

The ForwarderBubble class inherited from the

ForwarderAsynchronous class, is responsible for forwarding

the routing information and data objects. It operates as

follows. Whenever a new data object has been created by the

data manager or may has been received from other nodes,

the ForwarderBubble verifies if the target is the node which

is currently a neighbor (i.e., reachable at least through one

of the available interfaces). If this the case, the data object

is forwarded to it. Otherwise, it use _generateDelegatesFor()

method to locate the ideal delegates according to BUBBLE

algorithm and set them as relay nodes for the data objects.

The mechanism to exchange social-based routing informa-

tion has been developed in the ForwarderBubble class. Two

new fields in the routing information are defined as Label and

Rank to contain social-based metrics in routing information .

All nodes exchange their routing information as a exclusive

type of data objects immediately after they encounter each

others. Every node needs to maintain a forwarding list to

map encountered node_id to forwarding metrics. As soon as

receiving new routing information, the nodes have to add the

new node_id and its metrics to its forwarding list.

B. Haggle testbed

The Haggle testbed is based on Xen emulator, which is built

on a PC with an 8-core CPU and 24GB RAM running Debian

Squeeze. It can be used to simulate a number of virtual nodes

running dependently with small amounts of RAM. The settings

of the testbed is customized by predetermined scenario file,

which specifies the comprehensive behaviors of simulation, i.e.

number of nodes, change of topology, and applications running



on each node. It generates a huge selection of results, usually

demonstrating the entire distribution of possible outcomes.

The changes of topology in the Haggle testbed can be

modeled as a series of discrete sequential contact events.

The original trace files can be converted into configuration

files, which contain the events that determine the statue of

link between two nodes and the order where these events

occur along with the time. The testbed is fed up with these

events as a sequence of activities in preprocess procedure, and

perform these activities, in between which it waits in queue

for durations which are normally predefined by user before

simulation.

VIII. RESULT AND EVALUATION

The evaluations in this paper mainly focus on: 1) the com-

parison of effects of different community detection on the

performance of the Social-based Forwarding algorithms, 2) the

performance of the Socio-Aware Overlay under different com-

munity detection and centrality. The evaluation is performed

on the Haggle testbed. The experiment is performed with the

CAM, the INFC06, and the MIT traces. We extract a 2 week

session during term time from the whole dataset in order to

reduce simulation time. Since social contacts in our trace are

highly variable, we average the results with 5 iterations of the

experiments.

A. Performance Metrics

We utilize several metrics for the above evaluation:

• Hop Counts are calculated as the number of hops the data

objects take from source to destination.

• Delivery Success Ratio is calculated as the number of

successfully received data objects divided by the total

number of sent data objects over all nodes in the net-

works.

B. Social-based Forwarding

In this section, we evaluate the impact of social structure on

the performance of the Social-based Forwarding algorithms.

We use K-Clique and Fiedler to detect community against

different connectivity traces, and examine the LABEL, the

RANK and the BUBBLE forwarding algorithms.
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Figure 5 presents the CDF of hop counts for the Social-

based Forwarding in the CAM dataset. It illustrates that

BUBBLE with Fielder delivers the better performance with

50% of hop counts within less than 2 hops. It also reveals

that for CAM dataset K-Clique performs almost as well as

Fiedler. This is due to that CAM trace has relatively simple

community structure and the impact of community structure

on performance of forwarding is reasonably minor.
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(INFC06 dataset)

We use the INFC06 dataset to study more complicated

community structure. Figure 6 shows the CDF graph of hop

counts for the INFC06 trace. K-Clique has detected 6 com-

munities, while Fiedler has detected 8 communities. We can

see from Figure 6 that Fiedler community detection performs

very similarly to K-Clique, and Fielder with BUBBLE gives

a slightly better performance (80% of hop counts within less

than 2 hops) than the others.
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Figure 7 shows the CDF of hop counts at the time data are

delivered to the destinations for the MIT trace. There is a total

8 communities detected by both K-Clique and Fielder in the

MIT trace. It can be seen that BUBBLE with Fiedler gives the

best performance in terms of hop counts, i.e., there are 90%

of data objects delivered with 2 hop counts for BUBBLE with

Fiedler. In addition, LABEL with Fiedler tend to be delivered

80% within 2 hop counts. We can see that Fiedler community



detection outperforms K-Clique in the MIT dataset.
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Figure 8 presents the delivery success ratio comparing

Fiedler and K-Clique community detection. We can see that

the BUBBLE algorithms gives higher delivery ratio and thus

are much more efficient than RANK and LABEL. It demon-

strates that the most of the time Fiedler community detection

can improve the performance when combine with BUBBLE.

Even the difference of the performance between K-Clique

based communities and Fiedler clustering based communities

is less than 10% range, it indicates the difference will be

amplified when the scale of experiments gets larger.

C. Socio-Aware Overlay

In this section we evaluate the performance of the Socio-

Aware Overlay in comparison of different communities and

centralities detected in real-world human traces. We have

chosen two different methods to extract centrality nodes. The

first one is based on the concept of closeness proposed in [8].

This represents the node with the shortest path to all others

and the best visibility in the network (i.e. community). We

have calculated the closeness CC(a) for a vertex a is inverse

sum of distances to other nodes b:

CC(a) = 1 /
∑

b

dab (1)

The second method (J-Algorithm) is based on the technique

called Joint diagonalization (JD), which is a technique used to

estimate an average eigenspace of a set of matrices. The aver-

age eigenspace is used to construct a graph which represents

the average spanning tree of the network or a representation

of the most common propagation paths. We then examine

the distribution of deviations from the average and find that

this distribution in real-world contact networks is multi-modal;

thus indicating several modes in the underlying network. These

modes are identified and are found to correspond to particular

times. Thus JD may be used to decompose the behaviour, in

time, of contact networks and produce average static graphs

for each time. See [6] for further information of this technique.

We exploit the above two methods and employ K-Clique

and Fiedler to detect community against different connectivity

traces.

Figure 9 depicts the CDF of hop counts for the Socio-

Aware in the CAM trace. It reveals that in the CAM dataset
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the performance of K-Clique gives a similar performance of

hop counts to Fiedler. This is due to the fact community

structure in the CAM are fairly simply ( only 2 communities).

On the other hand, J-Algorithm provides better performance

with 80% of hop counts less than 3 hops. We can discover

that the impact of centrality on performance of forwarding is

reasonably significant in the dataset where simple community

structure can be observed.
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Figure 10 exhibits the the CDF of hop counts for the

Socio-Aware Overlay in the INFC06 dataset. One interesting

observation is that Fiedler gives better performance than K-

Clique, whilst J-Algorithm and closeness present almost the

same performance. This implies that in the INF06 dataset

community gives more significant impact on the performance

in terms of hop counts, and the centrality nodes has less

impact on overall performance. Because there are maximum

8 communities in the INF06 trace and the largest community

only has 8 members. As a result, the community members

number is relatively small so that centrality nodes is easier to

achieve less hop counts by spreading data within community.

Figure 11 presents the CDF of hop counts for the Socio-

Aware Overlay in the MIT dataset. We can view that the

Fiedler with closeness centrality gives best performance in

hop counts by delivering more than 90% within 2 hops.

It is noticed that in the MIT dataset closeness and Fiedler
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performs better than J-Algorithm and K-Clique. The plot

also clearly conveys that different community structures and

centralities gives distinctive performance. This is due to that

8 communities are detected in the MIT trace, and the largest

community contains 21 members. We conclude that centrality

plays a vital role for maintaining the performance of the Socio-

Aware Overlay in terms of hop counts for the dataset with large

community members.
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We assess the delivery success ratio for Socio-Aware Over-

lay in Figure 12. It is observed that the MIT trace gives highest

delivery success ratio with closeness centrality being higher

than J-Algorithm. We can also see that for all three dataset,

Fielder performs better than K-Clique.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have investigated the impact of social

structure on forwarding algorithms in opportunistic networks

by exploiting the real-network trace of human contacts. We

have reviewed a collection of the Social-based Forwarding

algorithms, such as LABEL, RANK and BUBBLE and also

investigated the Socio-Aware Overlay. The implementation

and experiments have been done over Xen-based Haggle

testbed. The Social-based Forwarding algorithms have been in-

tegrated with the Haggle platform. We have revealed that social

structures influence the performance of the the Social-based

Forwarding. We have observed that BUBBLE combined with

Fielder community detection delivers better performance in

terms of hop counts and delivery ratio. The result demonstrated

in this paper deals with fairly small scale networks, but it is

consistent. Thus, we expect that larger scale experiments will

result in significant performance improvement. The Fiedler

community structure is based on hierarchical structure and the

result indicates spreading information in hierarchical manner

in the real society. We also express that the centrality nodes

plays a vital role for maintaining the performance of the

Socio-Aware Overlay for the dataset. Finally we come to

the conclusion that it is crucial to choose appropriate social

structures (centrality and communities), which will in turn

improve the performance of the Social-based Forwarding and

the Socio-Aware Overlay for social networks with complex

structure. We are working on running experiments in a larger

scale including synthetic dynamic network traces based on the

extracted characteristics of real world traces.
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