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ABSTRACT

We introduce and motivate crowd computing, which combines mo-
bile devices and social interactions to achieve large-scale distributed
computation. An opportunistic network of mobile devices offers
substantial aggregate bandwidth and processing power. In this pa-
per, we analyse encounter traces to place an upper bound on the
amount of computation that is possible in such networks. We also
investigate a practical task-farming algorithm that approaches this
upper bound, and show that exploiting social structure can dramat-
ically increase its performance.
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C.1.4 [Processor Architectures]: Parallel Architectures—mobile
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1. INTRODUCTION
Today’s smartphone is a powerful computer. It is equipped with

a range of sensors, a gigahertz-range CPU and high-bandwidth
wireless networking capabilities [5]. Inspired by the increasing
prevalence of smartphones, and research into opportunistic net-
working [4, 19], we have evaluated the potential of using these
devices to carry out large-scale distributed computations. In this
paper, we introduce crowd computing, in which opportunistic net-
works can be used to spread computation and collect results.

A crowd computation spreads opportunistically through a net-
work, using ad-hoc wireless connections that form as devices come
into proximity. The devices can exchange input data and interme-
diate results. In parallel work, we are developing programming
languages that enable developers to implement a crowd computa-
tion [17, 25]; this paper focuses on the aggregate utility of such a
computation, in terms of how much work each device can carry out.
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Why is crowd computing attractive? Previous work has shown
that people will voluntarily contribute their desktop computer re-
sources for running scientific workloads [6]. We could imagine a
similar application for mobile devices that provides free content or
functionality in exchange for volunteered cycles. Furthermore, un-
usual devices such as graphics cards [20] and games consoles [3]
have been used to perform high-throughput computing. A modern
smartphone has several special-purpose cores (such as DSPs and
A/V codecs) [5], which could similarly be applied to large-scale
problems. Moreover, opportunistic networks in which the nodes
are mobile offer potentially huge bandwidth [10], turning a collec-
tion of smartphones into a mobile supercomputer.

Alternatively, we can use crowd computing as a means of dis-
tributing human interaction tasks to mobile devices. For example,
Amazon Mechanical Turk has created a marketplace for carrying
out work that is difficult for computers to process, but relatively
simple for humans [1]. For example, many qualitative classification
tasks are much easier for humans than computers, such as “What
is the best Sushi restaurant in San Francisco?” By combining this
model with crowd computing, it would be possible to exploit geo-
graphic locality in the respondents.

We begin by seeking an upper bound for the computational ca-
pacity of an opportunistic network (Section 2). We contrive an ide-
alised distributed computation that can spread epidemically with
negligible data exchange, and simulate its execution on a variety of
human encounter traces. By positing that each person in the trace
possesses a smartphone, we can measure the total work done by
simulation.

Of course, few realistic computations fit our ideal model. We
therefore consider the common task farming approach, and evalu-
ate its performance on the same traces (Section 3). We find that, on
average, it achieves 40% of the performance of our ideal computa-
tion. Switching to a concrete model introduces more variables, so
we consider the effect of master choice, task size and node capacity
on the overall utility of the system.

We build on previous work that has shown how social network
analysis can greatly improve the efficiency of message forwarding
in opportunistic networks [7, 11]. We investigate how a similar
technique can be used to improve the performance of task farming
(Section 4). In particular, we observe that dividing an opportunistic
network into communities, and running a separate task farm within
each community, improves the throughput of task farming by an
average of 50%.

In this paper, we aim to show that an opportunistic network of
mobile devices is an interesting platform for distributed computa-
tion. Our results demonstrate that such networks can provide a high
degree of parallelism. We are currently developing the first crowd
computing applications that exploit this approach.
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Figure 1: The progress of a computation in a network of five

nodes. Each arrow corresponds to an encounter between nodes.

Bold black lines correspond to useful computation, and bold

gray lines correspond to wasted computation.

Algorithm 1 Algorithm for computing αi

A← {0}
α0 ← start time
for (i, j, t) ∈ trace do

if i ∈ A ∧ j /∈ A then

αj ← t, A← A ∪ {j}
else if j ∈ A ∧ i /∈ A then

αi ← t,A← A ∪ {i}
end if

end for

2. BEST CASE SCENARIO
We first determine an upper bound for the amount of computa-

tion achievable in an opportunistic network. The goal of a crowd
computation is to have long periods of useful parallelism. This
means that a device must not only receive a message that causes it
to join the computation, but it must send a message containing its
result that eventually reaches the initiator (Figure 1). In this sec-
tion, we first define our model of an ideal distributed computation
(§2.1), and then evaluate it on real-world encounter traces (§2.2).

2.1 Definitions
We assume a set of n identical mobile devices that participate in

the computation. Device zero is the initiator, and starts computing
(becomes active) at time α0.

For optimal delivery, coordination and result messages spread by
flooding. All devices listen for radio transmissions at all times; all
active devices continually broadcast a probe message to discover
nearby devices1 .

When an active device meets another device, they exchange a
sequence of messages. First, the active device sends a message de-
scribing the computation. On receiving this message, an inactive
device becomes active: thus the computation floods throughout the
network. Each active device stores a partial result that includes
the result of its computation, and any partial results received from
other devices. When two devices meet, they exchange their cur-
rent partial result: this ensures that the results also flood through
the network, which maximises the probability that they reach the
initiator.

1In practice, power considerations and wireless MAC protocols
will limit the ability of devices to broadcast continually.
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Figure 2: Achievable parallelism for an ideal distributed com-

putation running on the Cambridge trace.

Finally, at time ω0, the initiator ends the computation2, and com-
putes the final result from the messages that it has received.

Now consider device i. It starts computing at αi. At ωi, it sends
the last message that (in one or more hops) reaches the initiator
before ω0. An encounter is a tuple (i, j, t), indicating that nodes
i and j meet at time t. Given a chronologically-ordered sequence
of encounters, we compute αi using Algorithm 1. We compute ωi

by reversing the order of the encounter trace, and rerunning Algo-
rithm 1 (substituting ω for α).

Device i is useful for duration τi, defined as follows:

τi =



ωi − αi if αi < ωi

0 otherwise
(1)

In the ideal case, each cycle spent on the computation has constant
utility. Therefore the utility of a device, ui = τi, and the overall
utility, U =

P

i
ui. In order to achieve this, each device must

be given enough work to occupy it fully between αi and ωi. This
requires either an omniscient scheduler or a computation that can
be repeated ad infinitum. Monte Carlo simulation is an example of
the latter case. We evaluate a simple scheduler design in Section 3.

2.2 Real-world traces
We now evaluate the upper bound for several real-world scenar-

ios, by applying the above algorithm to several human encounter
traces. In this and the following sections, we use traces from vari-
ous sources. These traces can be obtained from CRAWDAD [2]:

MIT In the MIT Reality Mining project, 97 smart phones were
deployed to students and staff at MIT over a period of 9
months [9].

Cambridge In the Haggle project, 36 iMotes were deployed to 1st
year and 2nd year undergraduate students at the University
of Cambridge for 10 days [4].

Infocom 78 iMotes were deployed at the Infocom 2006 conference
for 3 days.

In our first experiment, we consider the lifespan of a single com-
putation. We simulate the execution of an ideal computation on the
whole Cambridge trace, choosing each device in turn as the initia-
tor. We record two metrics: the number of useful devices at time

2The initiator may broadcast ω0 with the initial announcement in
order to reduce the amount of wasted computation: however, this
requires synchronised clocks.
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Figure 4: Relative utility for an hour-long job in the Cambridge

trace, depending on the hour of the day.

t, P (t), and the total utility of the computation, U =
R ω0

α0

P (t) dt.

Figure 2 shows how P (t) changes throughout the simulation, for
the best, worst and average case. Note that the best case has at least
26 devices doing useful work until shortly before the end of the
computation, whereas in the worst case, the initiator does not see
any other devices after the halfway point of the computation. The
average case achieves 93% of the best case total utility.

We now investigate the properties of different traces. Since each
trace has a different duration and number of devices, we must nor-
malise U in order to compare traces. Figure 3 shows CDFs of
utility for the Cambridge, MIT and Infocom traces, normalised by
the length of the trace and number of devices. Each trace exhibits
different performance. The MIT trace has the worst performance,
which we suspect is due to the relatively infrequent encounters be-
tween devices in a diverse group of participants [9]. By contrast,
the participants in the Cambridge and Infocom traces were more
homogeneous (all computer science undergraduates or conference
attendees), and hence more likely to occupy the same space.

The amount of useful computation depends greatly on the choice
of the initiator, which we investigate further in Section 4. The
choice of start time (α0) and finish time (ω0) also have a predictable
effect: running a computation at night or at the weekend, when en-
counters are rarer, leads to less parallelism and less utility. We ran
one million simulated computations each lasting one-hour, with the
start time and initiator chosen uniformly at random, using the Cam-
bridge trace. Figure 4 shows the average utility of these computa-
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Figure 5: CDF of task farming efficiency for the Cambridge,

MIT and Infocom traces.

tions, binned into hours of the day. There is a period of approxi-
mately 10 hours each day when the utility is dramatically greater,
including two hours of very high utility, which correspond to the
peak lecture hours when most participants would be colocated.

3. TASK FARMING
In order to build a practical system for mobile distributed com-

putation, we require a realistic scheme for achieving parallelism.
In this section, we consider task farming as one possible scheme.
We simulate the effect of task farming on several encounter traces,
and evaluate its performance with respect to the upper bounds es-
tablished in the previous section.

Task farming is the basis of many distributed computing systems,
including Condor [22], BOINC [6], MapReduce [8] and Dryad [13].
In all of these systems, a single master process manages a queue of
tasks, and distributes these amongst an ensemble of worker pro-
cesses. When a worker completes a task, it requests another from
the master. The algorithm naturally handles worker failure and load
balancing [21]. Task farming is therefore an obvious candidate for
distributing work in our crowd computing system.

Wemodify our model of distributed computation as follows. The
overall job can be decomposed into a large number of atomic, in-
dependent tasks, which have a constant duration, d. The initiator
acts as the master, which maintains a (potentially infinite) queue of
tasks to be executed. All other devices are workers, which maintain
a local queue of length c, and can process a task every d seconds.
When the master meets a worker, it fills the worker’s queue with
up to c new tasks and collects the results of completed tasks. A
successful task is one that has been processed by the worker and
the result of which has been communicated to the master. (N.B.
We assume that a useful result can be obtained from any subset of
task results: however tasks may be lost, in which case task replica-
tion [6] or encoding [16] techniques may be appropriate.)

We simulated the execution of a task farming computation for the
Cambridge, MIT and Infocom traces, choosing each node in turn as
master. In these experiments, we set d = 100 seconds and c =∞,
which is the optimal configuration as no node will ever be idle once
activated. We will discuss the effect of varying c and d later in this
section. The utility of the task farming computation is simply the
number of successful tasks multiplied by d. We can therefore com-
pute the ratio of the task farming utility to the best-case utility for
each configuration, which gives us a measure of efficiency. Figure 5
shows the CDFs of efficiency for the Cambridge, MIT and Infocom
traces. Note that, as in Figure 3, the Cambridge and Infocom traces
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Figure 6: Effect of varying worker queue length (c) and task

duration (d) on total successful work done. (Work done is nor-

malised to make the optimal case equal to 1.0.)

outperform the MIT trace. The average efficiency across all con-
figurations is 40.2%. We investigate methods of improving this
performance in Section 4.

Realistically, our devices will have finite capacity (c), and the
duration of tasks (d) may be longer than 100 seconds. There are
two main challenges when setting these parameters. A short queue
may lead to a device becoming idle if it exhausts all of its tasks
before meeting the master again. We can partly address this by
increasing d, but note that a task duration that is much longer than
the master-worker inter-contact time means that opportunities to
retrieve task results will be missed.

Figure 6 shows how varying c and d affects the overall amount
of successful work in the Cambridge trace. The optimal utility is
achieved with c = 104 and d = 100, which is equivalent to c =
∞, since it would take longer than the trace duration to exhaust
such a queue. Setting c = 1 never yields more than 45% of the
optimal utility. However, the configuration c = 10, d = 105 gives
92% of the optimal utility, while offering much greater flexibility
and consuming fewer resources. We note that this is a large and
complicated parameter space, and further investigation is required
to set the parameters optimally.

4. SOCIAL-AWARE TASK FARMING
We can improve the efficiency of distributed computation by ex-

ploiting the social network formed by human interaction. Previous
work has looked at the influence of graph structure [7] and commu-
nity detection [11] on the efficiency of opportunistic networks used
for communication. In this section, we investigate the use of com-
munity structure to improve the overall utility of a computation.

In the model of Section 3, the master communicates directly
with the workers, so it must encounter them. Therefore, we nat-
urally prefer to choose a master that meets a large number of other
devices. If we had a single master, we might choose the device
that meets the greatest number of devices in the most recent time
period. However, human interaction exhibits community struc-
ture: the set of devices can be partitioned into groups that are
highly connected, while having relatively few connections between
groups [18]. Therefore, our naïve approach would achieve many
successful task results from nodes in the same community as the
master, but few from other communities.

If we knew the community structure, we could exploit it by as-
signing one master node to each community. We would also mod-
ify the task farming algorithm slightly so that workers only accept
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tasks from a master if it is in the same community. We expect that
this would improve the overall utility of the system, because the
community structure makes it more likely that a master will meet
its worker again to collect the results3.

The Cambridge data set has two communities: each is a different
class of undergraduate students [24]. We divided the devices into
their respective communities, and simulated task farming (i) using
all nodes as workers, and (ii) using only nodes in the same commu-
nity as the master. In both cases, c = ∞ and d = 100 seconds.
Figure 7 shows the total utility in both cases, for each possible
master. We see that, on average, 78% of the successful tasks are
computed by nodes in the same community.

Our improved algorithm would choose one master from each
community. We simulate this by computing the number of success-
ful tasks for each pair of nodes in different communities. Figure 8
shows that we should expect two randomly-chosen per-community
masters to outperform a randomly-chosen global master. On aver-
age, per-community masters complete 49% more tasks than a sin-
gle master, and 62% of the community-aware configurations out-
perform the best global master.

The main limitation of this scheme is that there are now twomas-
ters that collect partial results, and we have not specified a way for
them to communicate—indeed, they might never meet. We there-
fore require a protocol that enables the collection of a single, global

3This would also reduce the number of unsuccessful tasks: i.e.
those that are processed without the master being notified.



result. One approach is to rely on a deus ex machina: we could give
the master nodes access to some infrastructure—such as a satellite
telephone—that enables them to communicate; or, if it is available,
we could allow the masters to communicate over the cellular net-
work. A more intellectually-satisfying approach would be to use
opportunistic forwarding to exchange synchronising messages be-
tween the masters [19]. Both these solutions are costly (either in
real money or extra bandwidth), and the cost increases with the
number of masters, so this gives a natural trade-off between the
performance of the system and its cost.

In this section, we have considered only simple task farming
policies, and several enhancements are possible. For example, we
could allow worker nodes to act as masters for other devices that
they meet, and thereby build a spanning tree through the entire net-
work. We could run an adaptive algorithm that selects the optimal
nodes as masters and migrates the state as necessary. Indeed, if
the computation decomposes spatially [21], or into a dependency
graph (as in Dryad [13]), we could attempt to embed the problem
domain into the encounter graph itself [25].

5. RELATED WORK
The idea of using mobile devices for parallel computation is rel-

atively new. However, we draw on several related areas of research,
which we summarise in this section.

As noted earlier, several systems achieve distribution and paral-
lelism through task farming. Condor harnesses the idle cycles from
a network of desktop workstations, and uses these to run batch-
submitted tasks [22]. The BOINC project allows volunteers from
around the world to process tasks on their desktop computers, for
projects such as SETI@home, Folding@home and Climatepredic-
tion.net [6]. Task farming is also used in the data center. Google’s
MapReduce [8] and Microsoft’s Dryad [13] both use task farming
to schedule parallel processing on large (multi-terabyte) data sets.
Each of these programming models could be implemented on top
of a task scheduler for crowd computing.

We recently became aware of Hyrax, which includes a port of
MapReduce to the Android operating system [15]. Hyrax assumes
a relatively static cluster and treats device mobility as a problem of
fault tolerance; by contrast, we show that it is often advantageous
to assume that nodes will meet again in the future.

The use of network analysis in Section 4 is inspired by previous
work in mobile routing. PRoPHET routing uses the history of past
encounters in order to make probabilistic decisions about message
forwarding [14]. SimBet routes messages via nodes that are “sim-
ilar” to the destination, based on their connectivity [7]. The BUB-
BLE Rap algorithm uses community structure to improve message
forwarding efficiency in a delay-tolerant (i.e. disconnected) net-
work [11]. BUBBLE Rap also includes a simple distributed algo-
rithm for community detection, which could be applied to selecting
masters in our social-aware task farming system.

Wireless sensor networks also use mobile devices to perform dis-
tributed computation. Directed diffusion combines routing, caching
and aggregation for data in a sensor network [12]. Welsh and Main-
land describe a programming model for in-network processing of
sensor data in order to reduce the bandwidth consumption [23]. We
anticipate potential synergies between a sensor network that col-
lects data, and a crowd computing system that analyses it.

6. CONCLUSIONS
In this paper, we have shown preliminary results that indicate

the potential for crowd computing. Human interaction can be used
to spread computation through an opportunistic network, and col-

lect results. Furthermore, a simple task farming model can achieve
reasonable performance in such a network, and dramatically better
performance when community detection is used.

Due to the lack of space, this paper leaves several questions
open. Power consumption is an important consideration: we must
ensure that the crowd computation does not drain the mobile de-
vices’ batteries. A crowd computation should be energy-efficient,
so the amount of wasted work (the results of which never reach
the initiator) must be small. We must consider an efficient repli-
cation or encoding scheme that compensates for the loss of some
results without reducing performance unduly. We intend to investi-
gate these in future work.

Finally, we have presented only one realistic model for crowd
computing: static task farming. Opportunistic networks are highly
dynamic, and so we expect that an adaptive system will perform
even better. For example, we rely on direct master-worker encoun-
ters in order to relay results, but it would be possible to do better
by using opportunistic forwarding. In conjunction with the D3N
project, we are investigating programming models that directly ex-
ploit social structure [25]. Some programming frameworks, such as
MapReduce [8] and Dryad [13], allow users to specify dependen-
cies between tasks. This creates an opportunity for new scheduling
algorithms that take execution order into account when assigning
tasks to workers. We have recently ported our Skywriting run-
time [17] to the Android operating system, and we are investigating
how to make it exploit the unique characteristics of mobile devices.
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