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Abstract. The structure of human contact networks in the real world is time de-
pendent and it is a complex task to describe its dynamics. This paper aims to
identify dynamics of meeting groups in human connectivity traces, wheremeet-
ing groups are expected to be a group interacting among the nodes in physical
space. Thus, we define ‘meeting group’ differently from ‘community’. We ex-
ploit statistical approach that provides quantitative attributes to uncover meeting
groups. We identify the power law behavior of meetings that is important for sup-
porting to understanding dynamics of information flow between meeting groups
and building group oriented communication protocol.

1 Introduction
One of future visions of communications in the pervasive environment is called the
Pocket Switched Network (PSN) [2]. A PSN provides intermittent communication
based on physical proximity among dynamically connected mobile phones. We have
demonstrated such communication paradigm in our previous work [5]. Efficient for-
warding algorithms for such networks are emerging, mainly based on epidemic proto-
cols where messages are simply flooded when a node encountersanother node. Epi-
demic information diffusion is highly robust against disconnection, mobility and node
failures, and it is simple, decentralized and fast. To reduce the overhead of epidemic
routing, we have previously reported an approach that uses alogical connection topol-
ogy, and that uncovers hidden stable network structures, such as social networks. In
order to study social networks we have deployed a series of data collection and analysis
from the human connectivity traces [8] [12]. We have shown improved performance by
applying these extracted social contexts to a controlled epidemic strategy [7]. During
this work, we have realized that further understanding of network models is essential,
because the properties of human contact networks – such as community and weight of
interactions – are important aspects of epidemic spread.

In our previous work, we have exploited community detectionfrom the human con-
nectivity traces by constructing weighted networks using characteristics of pair con-
nections such as the duration of contact time and frequency of contacts also exploited
spectral properties of the graph as well as Laplacian matrix[11]. Mostly, the approach
we took is based on empirical and heuristic and the focus is finding a single aggregated
logical network structure called ‘community’. For dynamicgraph mining, Berger-Wolf
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et. al. show the study of community evolution based on node overlapping [1]. The evo-
lution of subgraphs over time in biological networks has been discussed, however, these
studies are based on static network setting and fairly smallscale. The traces described
in the next section are more complex with thousands of updates per day.

We define ‘meeting group’ differently from ‘community’. Actual meeting among
the member of the community may occur at certain time or location for possibly pre-
dictable duration. The number of participating members maynot be 100% of the com-
munity members. Thus, it is important that the concept of community differs from
‘meeting group’. Meeting groups can be the base of inferringthe community. Track-
ing the dynamics of the meeting should show the inter-relationship of members within
the community. Our goal is inferring dynamics of meetings inhuman connectivity net-
works based on the traces collected human connectivity by sensors and the work is in
preliminary stage. We claim our contribution in this paper is two-fold: 1) our novel al-
gorithm ‘Cluster and Track (CAT)’ to identify the significance of meeting groups, 2)
as preliminary result, we show the power law behavior of meetings. This demonstrates
duration of meetings for predicting network capacity or thelimit of synchronisation
mechanism. Even with noisy data, we believe that the result can lead to understanding
dynamics of information flow between meeting groups.

The rest of this paper is structured as follows. We briefly introduce the expermental
data collection process in Section 2. In Section 3, we analyse the duration of meetings.
Finally, we conclude the paper with a brief discussion and future works in Section 4.

2 Human Connectivity Traces
The quantitative understanding of human dynamics is difficult and has not yet been
explored in depth. The emergence of human interaction traces from online and perva-
sive environments allows us to understand details of human activities. For example, the
Reality Mining project [4] collected proximity, location and activity information, with
nearby nodes being discovered through periodic Bluetooth scans and location informa-
tion from cell tower IDs. Several other groups have performed similar studies. Most of
these [4] [5] use Bluetooth to measure device connectivity,while others [6] rely on
WiFi. The duration of experiments varies from 2 days to over one year, and the numbers
of participants vary. We have analysed various traces from the Crawdad database [3]
and in this paper, we show the results using the following traces.
MIT: in the MIT Reality Mining project [4], 97 smart phones were deployed to stu-
dents and staff at MIT over a period of 9 months.
CAM: in the Cambridge Haggle project [9], 36 iMotes (see Section 2.1) were deployed
to 1st year and 2nd year undergraduate students for 11 days. iMotes detect proximity
using Bluetooth.
INFC06: 78 iMotes were deployed at the Infocom 2006 conference for 4 days [2].

2.1 Proximity Detection with Bluetooth
Bluetooth is a low-power open standard for Personal Area Networks (PANs) and has
gained its popularity due to its emphasis on short-range, low-power and easy integration
into devices. The platform used in the Haggle experiments isthe Intel Mote ISN100-BA
(known as the iMote). The iMote runs TinyOS and is equipped with an ARM7TDMI
processor operating at 12MHz, with 64kB of SRAM, 512kB of flash storage, and a
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Fig. 1. Distribution of Meeting Times - Aggregated all K results

multi-colored LED, and a Bluetooth 1.1 radio. The specifications lists the radio range
to be 30 meters.

It is a complex task to collect accurate connectivity tracesusing Bluetooth commu-
nication, as the device discovery protocol may limit detection of all the devices nearby.
Bluetooth uses a special physical channel for devices to discover each other. A device
becomes discoverable by entering the inquiry substate where it can respond to inquiry
requests. The inquiry scan substate is used to discover other devices. The discovering
device iterates (hops) through all possible inquiry scan physical channel frequencies in
a pseudo-random fashion. The power consumption of Bluetooth also limits the scanning
interval, if devices have limited recharging capability. The iMote connectivity traces in
Haggle use a scanning interval of approximately 2 minutes, while the Reality Mining
project uses 5 minutes. The ratio of devices with Bluetooth enabled to the total number
of devices is around only an average 15% of population.

3 Inferring Significance of Meeting Time
It is important to make the distinction between the dynamicsof meetings and the evo-
lution of social networks. While the dynamics of meetings govern the physical connec-
tivity over time as meetings are formed and dissolved, whereas the evolution of social
networks involves changes to the social connectivity between people over time across
multiple meetings. So the former operates at the timescale within a meeting and be-
tween consecutive meetings, the latter operates over the timescale of many recurrences
of meetings. In this section, we show results for the analysis of meeting dynamics from
duration of meeting time. We have used various community detection algorithms in our
previous work [7] and found K-CLIQUE [10] shows stable results for different types
of human contact traces. Thus, we demonstrate inferring physical group meetings using
K-CLIQUE algorithm in this paper. The inter-contact time isthe time interval between
two contacts. Inter-contact time is the duration from when one contact finishes and the
next one begins, it determines how often a communication is possible. Shorter inter-
contact time means that the two people see each other quite often. The number of such
contacts and the distribution of contact durations is an important factor in determining
the capacity of PSNs. It gives insight on how much data can be transferred at each op-
portunity. This concept of pair node relationship can applyon the relationship between
meeting groups, which helps building group oriented communication protocols.

3.1 K-CLIQUE
Palla et al. define a k-clique community as a union of all k-cliques (complete subgraphs
of size k) that can be reached from each other through a seriesof adjacent k-cliques
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Fig. 2. Distribution of Meeting Time without duplication

[10]. Two k-cliques are said to be adjacent if they share k - 1 nodes. This definition is
based on their observation that an essential feature of a community is that its members
can be reached through well-connected subsets of nodes, andthat there could be other
parts of the whole network that are not reachable from a particular k-clique, but they
potentially contain further k-clique communities.

A problem with using k-cliques for detecting meetings is that of uniqueness. A
cluster of nodes might have more than one overlapping k-clique embedded in it. For
example, the largest k-clique size in a cluster might be five,but there can still be two
overlapping 5-cliques, and by definition, each of those 5-cliques has embedded within
it 5 overlapping 4-cliques and so on. Thus one must not only becareful about counting
only one of the two 5-cliques, but also not to count the 4-cliques and 3-cliques that are
subsets as well.

The figures 1-3 demonstrate how the overlapping problem affects the statistical
analysis. In Fig.1 shows the CDF distribution of meeting times, where detected meet-
ings from K=3 to K=max are aggregated. These thus include overlaps of each clique,
thus a 5-clique would also be counted five times as a 4-clique,and so on. The dis-
tribution is then for the sum of these K-clique counts. In more detail, Fig.3 shows the
individual distribution with all clique of size k=4 including overlaps. We note that larger
cliques exhibit more power-law behaviour in the MIT dataset, whilst for the INFC06
dataset it is more power-law in behaviour for lower clique sizes. Fig.2 shows the dis-
tribution, where overlapping cliques are removed. We try toremove overlapping sub-
cliques by working backwards from a high-clique base and removing all sub-cliques
from the results. For example, when the base K=7, in CAM data,all subgraphs in K=6
to K=3 are removed for the duration of a 7-clique meeting. This ensures that cliques
of size k are only counted once as size k. The figure shows a moreclear power law
distribution with a reduced rms error in the fit. We note however that, in the presence of
noise, removing subgraphs is not a straightforward processwithout knowing the detec-
tion failure rate. For example, nodes a-b-c may form a 3-clique from times 1-10, then a
4-clique a-b-c-d from times 11-15, then b-c-d from times 10-20. The clique elimination
used here was to count higher cliques as having precedence. Thus the duration of the
cliques in this example detects times 11-15 as a 4-clique, and separately detects times
1-10 and 15-20 as 3-cliques.

3.2 Cluster and Track (CAT)

In this section we introduce our novel algorithm called ‘CAT’ (Cluster and Track),
which builds clusters at each time slice based on the edge connectivity. The algorithm
works iteratively and greedily by growing a cluster. Fig.4 helps illustrate the algorithm.
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Fig. 3. Distribution of Meeting Time - Case K=4

Let the cluster C denote the set of nodes in the cluster. Let B be the set of nodes that
are immediate neighbours of the cluster C. Let R be the set of remaining nodes. For
each node in B, it compares the number of edges to C to the number of edges in R. If
there are more edges to C, it adds the node to the next version of the cluster. In Fig.(4a)
only the black node in the boundary region B satisfies this criteria and is added to the
cluster. The process is repeated until the cluster cannot grow any further. The end result
of the cluster growth is seen in Fig.(4b) - notice how the number of nodes in the cluster
has grown to eight. By trying each node as a seed node, this greedy growth algorithm
generates candidate clusters around each node.

(a) (b)
Fig. 4. CAT Algorithm

The next stage of the algorithm then greedily selects a smallest covering set of clus-
ters. Determining the smallest covering set is helped by utilising dominance relations
between clusters. This is where a candidate clusters can be eliminated because there
is typically another larger cluster candidate than fully contains them thus dominating
them. The clusters in the covering set are assigned an ID at each time slice. Each cluster
is compared against the covering set of clusters from the preceding time-slice. If half
or more of the nodes from the previous slice’s cluster is seenin a current cluster then
the ID is preserved in this cluster. When two clusters merge, the cluster ID from the
larger number of preserved nodes is kept. When clusters split, again the cluster with
the largest number of preserved nodes retains the ID and the rest are assigned a new
ID. This, then, comprises a simple scheme for determining clusters and tracking them
through time. This approach allows one to estimate meetingsin the form of clusters,
and track their duration. Such meetings are considered their own separate entity, and it
is interesting to see if they exhibit any interest statistical behaviour. Fig.5 depicts the
distribution of meeting time using the CAT algorithm, whichexhibit more significant
power law characteristics.
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Fig. 5. Distribution of Meeting Time - CAT

4 Conclusions and Future Works
In this paper, we have shown the dynamics of meeting and the presented work has wide
future extensions. Uncovering temporal and dynamics of meeting groups can be used as
a signature for constructing synthetic network generationwith the information of sub-
graph structure and dynamics. Most importantly extracted model must be validated in
some way of real experiments. The iteration of modelling andexperiments will uncover
further understanding of time-dependent complex human connectivity networks. Future
works include: identifying the significance of meeting using transitivity, classifying be-
havior of nodes in the core/transient meetings, and dynamics of flow between meetings.

Acknowledgments

The research is part funded by the EU grants for the Haggle project, IST-4-027918, the
SOCIALNETS project, 217141, and the EPSRC DDEPI Project, EP/H003959.

References

1. T. Berger-Wolf and J. Saia. A framework for analysis of dynamic social network. InProc.
KDD, 2006.

2. A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott. Impact of human mobility
on the design of opportunistic forwarding algorithms. InProc. INFOCOM, April 2006.

3. Dartmouth College. A community resource for archiving wireless dataat dartmouth,
http://crawdad.cs.dartmouth.edu/index.php, 2007.

4. N. Eagle and A. Pentland. Reality mining: sensing complex social systems. Personal and
Ubiquitous Computing, V10(4):255–268, May 2006.

5. EU FP6 Haggle Project. http://www.haggleproject.org, 2010.
6. T. Henderson, D. Kotz, and I. Abyzov. The changing usage of a mature campus-wide wireless

network. InProc. Mobicom, 2004.
7. P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE Rap: Social Based Forwarding in Delay

Tolerant Networks. InMobiHoc, 2008.
8. P. Hui, E.Yoneki, S. Chan, and J. Crowcroft. Distributed community detection in delay

tolerant networks. InProc. MobiArch, 2007.
9. J. Leguay, A. Lindgren, J. Scott, T. Friedman, and J. Crowcroft.Opportunistic content dis-

tribution in an urban setting. InACM CHANTS, 2006.
10. G. Palla, I. Dereny, I. Farkas, and R. Vicsek. Uncovering the overlapping community struc-

ture of complex networks in nature and society.Nature, 435(7043):814–818, 2005.
11. E. Yoneki. Visualizing Communities and Centralities from Encounter Traces. InACM Mo-

biCom - CHANTS, 2008.
12. E. Yoneki, P. Hui, S. Chan, and J. Crowcroft. A socio-aware overlay for multi-point asyn-

chronous communication in delay tolerant networks. InProc. MSWiM, 2007.


