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Abstract. The structure of human contact networks in the real world is time de-
pendent and it is a complex task to describe its dynamics. This paper aims to
identify dynamics of meeting groups in human connectivity traces, winest-

ing groups are expected to be a group interacting among the nodes ieghhys
space. Thus, we define ‘meeting group’ differently from ‘communitye ex-

ploit statistical approach that provides quantitative attributes to uncovetinge
groups. We identify the power law behavior of meetings that is importastio-
porting to understanding dynamics of information flow between meetingpgro

and building group oriented communication protocol.

1 Introduction

One of future visions of communications in the pervasiveiremment is called the
Pocket Switched Network (PSN) [2]. A PSN provides interatitt communication
based on physical proximity among dynamically connectetileg@hones. We have
demonstrated such communication paradigm in our previcu \6]. Efficient for-
warding algorithms for such networks are emerging, maimlydal on epidemic proto-
cols where messages are simply flooded when a node encoantater node. Epi-
demic information diffusion is highly robust against disoection, mobility and node
failures, and it is simple, decentralized and fast. To redihe overhead of epidemic
routing, we have previously reported an approach that uksg@al connection topol-
ogy, and that uncovers hidden stable network structuredy as social networks. In
order to study social networks we have deployed a seriestafadélection and analysis
from the human connectivity traces [8] [12]. We have showpriored performance by
applying these extracted social contexts to a controlledespic strategy [7]. During
this work, we have realized that further understanding dofvogk models is essential,
because the properties of human contact networks — suchraswoity and weight of
interactions — are important aspects of epidemic spread.

In our previous work, we have exploited community detectiom the human con-
nectivity traces by constructing weighted networks usihgracteristics of pair con-
nections such as the duration of contact time and frequehcgrdacts also exploited
spectral properties of the graph as well as Laplacian mHtiik Mostly, the approach
we took is based on empirical and heuristic and the focusdéniina single aggregated
logical network structure called ‘community’. For dynangiaph mining, Berger-Wolf
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et. al. show the study of community evolution based on no@elapping [1]. The evo-
lution of subgraphs over time in biological networks hasbgiscussed, however, these
studies are based on static network setting and fairly segale. The traces described
in the next section are more complex with thousands of updageday.

We define ‘meeting group’ differently from ‘community’. Acal meeting among
the member of the community may occur at certain time or londor possibly pre-
dictable duration. The number of participating members maybe 100% of the com-
munity members. Thus, it is important that the concept of momity differs from
‘meeting group’. Meeting groups can be the base of infertirggcommunity. Track-
ing the dynamics of the meeting should show the inter-i@tatiip of members within
the community. Our goal is inferring dynamics of meetinghuiman connectivity net-
works based on the traces collected human connectivity hiogs and the work is in
preliminary stage. We claim our contribution in this paygetwo-fold: 1) our novel al-
gorithm ‘Cluster and Track (CAT)’ to identify the significe@ of meeting groups, 2)
as preliminary result, we show the power law behavior of ingst This demonstrates
duration of meetings for predicting network capacity or lingit of synchronisation
mechanism. Even with noisy data, we believe that the reanliead to understanding
dynamics of information flow between meeting groups.

The rest of this paper is structured as follows. We brieflyoidtice the expermental
data collection process in Section 2. In Section 3, we aralys duration of meetings.
Finally, we conclude the paper with a brief discussion arndreuworks in Section 4.

2 Human Connectivity Traces

The quantitative understanding of human dynamics is diffiand has not yet been
explored in depth. The emergence of human interactiongrixoen online and perva-
sive environments allows us to understand details of hurotawitees. For example, the
Reality Mining project [4] collected proximity, locatiomd activity information, with
nearby nodes being discovered through periodic Bluetamhsand location informa-
tion from cell tower IDs. Several other groups have perfatrsienilar studies. Most of
these [4] [5] use Bluetooth to measure device connectiwtyle others [6] rely on
WiFi. The duration of experiments varies from 2 days to ovex gear, and the numbers
of participants vary. We have analysed various traces flmrawdad database [3]
and in this paper, we show the results using the followingetsa

MIT: in the MIT Reality Mining project [4], 97 smart phones wereplbsyed to stu-
dents and staff at MIT over a period of 9 months.

CAM: inthe Cambridge Haggle project [9], 36 iMotes (see Secti@pRere deployed
to 1st year and 2nd year undergraduate students for 11 ddgtes detect proximity
using Bluetooth.

INFCO6: 78 iMotes were deployed at the Infocom 2006 conference fay4 ).

2.1 Proximity Detection with Bluetooth

Bluetooth is a low-power open standard for Personal Areavbidss (PANS) and has
gained its popularity due to its emphasis on short-rangepower and easy integration
into devices. The platform used in the Haggle experimeriteisntel Mote ISN100-BA
(known as the iMote). The iMote runs TinyOS and is equippeith\ah ARM7TDMI
processor operating at 12MHz, with 64kB of SRAM, 512kB of lilagorage, and a
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Fig. 1. Distribution of Meeting Times - Aggregated all K results

multi-colored LED, and a Bluetooth 1.1 radio. The specifaa lists the radio range
to be 30 meters.

It is a complex task to collect accurate connectivity tracsiag Bluetooth commu-
nication, as the device discovery protocol may limit detecof all the devices nearby.
Bluetooth uses a special physical channel for devices twdés each other. A device
becomes discoverable by entering the inquiry substateenihean respond to inquiry
requests. The inquiry scan substate is used to discover d¢heces. The discovering
device iterates (hops) through all possible inquiry scaysiglal channel frequencies in
a pseudo-random fashion. The power consumption of Bluetleb limits the scanning
interval, if devices have limited recharging capabilitheliMote connectivity traces in
Haggle use a scanning interval of approximately 2 minutéslevthe Reality Mining
project uses 5 minutes. The ratio of devices with Bluetootibéed to the total number
of devices is around only an average 15% of population.

3 Inferring Significance of Meeting Time

It is important to make the distinction between the dynarmicsieetings and the evo-
lution of social networks. While the dynamics of meetingseyomhe physical connec-
tivity over time as meetings are formed and dissolved, wdmetbe evolution of social
networks involves changes to the social connectivity betwgeople over time across
multiple meetings. So the former operates at the timescalénna meeting and be-
tween consecutive meetings, the latter operates oventtestiale of many recurrences
of meetings. In this section, we show results for the analgmeeting dynamics from
duration of meeting time. We have used various communitgalen algorithms in our
previous work [7] and found K-CLIQUE [10] shows stable reésubr different types
of human contact traces. Thus, we demonstrate inferringipalygroup meetings using
K-CLIQUE algorithm in this paper. The inter-contact timelh time interval between
two contacts. Inter-contact time is the duration from whaa oontact finishes and the
next one begins, it determines how often a communicatiorossiple. Shorter inter-
contact time means that the two people see each other gtéte dhe number of such
contacts and the distribution of contact durations is anoirigmt factor in determining
the capacity of PSNs. It gives insight on how much data camaresterred at each op-
portunity. This concept of pair node relationship can ampiythe relationship between
meeting groups, which helps building group oriented comigation protocols.

3.1 K-CLIQUE

Palla et al. define a k-clique community as a union of all knodis (complete subgraphs
of size k) that can be reached from each other through a safri@djacent k-cliques
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[10]. Two k-cliques are said to be adjacent if they share k edes. This definition is
based on their observation that an essential feature of ancmiity is that its members
can be reached through well-connected subsets of nodesharthere could be other
parts of the whole network that are not reachable from aqaati k-clique, but they
potentially contain further k-clique communities.

A problem with using k-cliques for detecting meetings isttbhuniqueness. A
cluster of nodes might have more than one overlapping k:eligmbedded in it. For
example, the largest k-clique size in a cluster might be five there can still be two
overlapping 5-cliques, and by definition, each of thosei§uels has embedded within
it 5 overlapping 4-cliqgues and so on. Thus one must not onigalbeful about counting
only one of the two 5-cliques, but also not to count the 4t@igand 3-cliques that are
subsets as well.

The figures 1-3 demonstrate how the overlapping problentisffdne statistical
analysis. In Fig.1 shows the CDF distribution of meetingetsnwhere detected meet-
ings from K=3 to K=max are aggregated. These thus includdap® of each clique,
thus a 5-clique would also be counted five times as a 4-clignd,so on. The dis-
tribution is then for the sum of these K-clique counts. In endetail, Fig.3 shows the
individual distribution with all clique of size k=4 includg overlaps. We note that larger
cliques exhibit more power-law behaviour in the MIT datasdtilst for the INFC06
dataset it is more power-law in behaviour for lower cliqueesi Fig.2 shows the dis-
tribution, where overlapping cliques are removed. We tryaimove overlapping sub-
cliques by working backwards from a high-clique base andoréng all sub-cliques
from the results. For example, when the base K=7, in CAM ddtaubgraphs in K=6
to K=3 are removed for the duration of a 7-clique meetingsTnsures that cliques
of size k are only counted once as size k. The figure shows a oheae power law
distribution with a reduced rms error in the fit. We note hogrehat, in the presence of
noise, removing subgraphs is not a straightforward proséesut knowing the detec-
tion failure rate. For example, nodes a-b-c may form a 3ueiffom times 1-10, then a
4-clique a-b-c-d from times 11-15, then b-c-d from times200-The clique elimination
used here was to count higher cliques as having precedehas.tfie duration of the
cliques in this example detects times 11-15 as a 4-clique saparately detects times
1-10 and 15-20 as 3-cliques.

3.2 Cluster and Track (CAT)

In this section we introduce our novel algorithm called ‘CATluster and Track),
which builds clusters at each time slice based on the edgeectivity. The algorithm
works iteratively and greedily by growing a cluster. Figelgs illustrate the algorithm.
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Fig. 3. Distribution of Meeting Time - Case K=4

Let the cluster C denote the set of nodes in the cluster. Let Bib set of nodes that
are immediate neighbours of the cluster C. Let R be the setrofining nodes. For
each node in B, it compares the number of edges to C to the nurhleelges in R. If
there are more edges to C, it adds the node to the next verfsiba duster. In Fig.(4a)
only the black node in the boundary region B satisfies thigida and is added to the
cluster. The process is repeated until the cluster canowt gny further. The end result
of the cluster growth is seen in Fig.(4b) - notice how the nerdf nodes in the cluster
has grown to eight. By trying each node as a seed node, treslgigrowth algorithm
generates candidate clusters around each node.

Fig. 4. CAT Algorithm

The next stage of the algorithm then greedily selects a sstalbvering set of clus-
ters. Determining the smallest covering set is helped Hisiutj dominance relations
between clusters. This is where a candidate clusters cafirhi@aed because there
is typically another larger cluster candidate than fullptons them thus dominating
them. The clusters in the covering set are assigned an Ixhttieae slice. Each cluster
is compared against the covering set of clusters from theeplieg time-slice. If half
or more of the nodes from the previous slice’s cluster is seencurrent cluster then
the ID is preserved in this cluster. When two clusters metye ctuster ID from the
larger number of preserved nodes is kept. When clusters aghin the cluster with
the largest number of preserved nodes retains the ID ance#tteare assigned a new
ID. This, then, comprises a simple scheme for determiniongtets and tracking them
through time. This approach allows one to estimate meefimgjse form of clusters,
and track their duration. Such meetings are considereddhi separate entity, and it
is interesting to see if they exhibit any interest statédtinehaviour. Fig.5 depicts the
distribution of meeting time using the CAT algorithm, whiekhibit more significant
power law characteristics.



6 Yoneki and Greenfield

CAM 6005+ R MIT o L INFCO6 6005+

et
- o N
0.1 | | Prget | 0.01 | — | — 01 | | e |
- N
w7 0.001 . B

0.01 b 0.0001 ! 0.01

CDF
CDF
CDF

1e-005

0.001 1e-006 0.001
10mins 30mins  thour 2hours 4hours 8hours 10mins  30minslhour 8hours  24housiBhours. 10mins  30mins Lhour hours  24hours
CLUSTERISE Duration CLUSTERISE Duration CLUSTERISE Duration

Fig. 5. Distribution of Meeting Time - CAT

4 Conclusions and Future Works

In this paper, we have shown the dynamics of meeting and gsepted work has wide
future extensions. Uncovering temporal and dynamics ofimggroups can be used as
a signature for constructing synthetic network generatigh the information of sub-
graph structure and dynamics. Most importantly extractedehmust be validated in
some way of real experiments. The iteration of modelling@xaeriments will uncover
further understanding of time-dependent complex humanectivity networks. Future
works include: identifying the significance of meeting w@stransitivity, classifying be-
havior of nodes in the core/transient meetings, and dyrewoiittow between meetings.
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