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Abstract—There is substantial interest in the effect of

human mobility patterns on opportunistic communica-

tions. Inspired by recent work revisiting some of the early

evidence for a Lévy flight foraging strategy in animals,

we analyse datasets on human contact from real world

traces. By analysing the distribution of inter-contact times

on different time scales and using different graphical

forms, we find not only the highly skewed distributions

of waiting times highlighted in previous studies but also

clear circadian rhythm. The relative visibility of these two

components depends strongly on which graphical form is

adopted and the range of time scales. We use a simple

model to reconstruct the observed behaviour and discuss

the implications of this for forwarding efficiency.

I. INTRODUCTION

Digital traffic flows not only over the wired backbone

of the Internet or network of mobile phone masts, but

also in small leaps through physical space as people

pass one another on the street [14]. Thus opportunities

for a new communication paradigm via wireless-enabled

devices are emerging, which communicate directly with

other devices within their range and without a costly and

inflexible planned infrastructure (e.g., [9]). To improve

communication efficiency and prevent the spread of

wireless viruses in this new generation of communication

requires new insights and quantitative models of human

interaction. Of fundamental importance in this case is the

time sequence of human contacts, as well as other prop-

erties of complex networks, such as small-worldness, etc.

(e.g., the special issue of Science on Complex Systems

and Networks, July 24, 2009).

Recently, the emergence of human interaction traces

from online and pervasive environments is allowing us

to understand details of human activities. For example,

the MIT Reality Mining project [6] collected proximity,

location and activity information, with nearby nodes

being discovered through periodic Bluetooth scans and

location information from cell tower IDs. Several other

groups have performed similar studies. Some have used

Bluetooth to measure device connectivity [6], [9], [18],

while others rely on WiFi [11], GPS [22], [23], [15],

or the position of cell towers [10]. The duration of

experiments has varied from 2 days to over one year,

and the numbers of participants has also varied from

∼ 10 to ∼ 100, 000.

It has been suggested that the probability density

function (pdf) p(t) of times between human contact

is well approximated by a truncated power law i.e.

p(t) ∼ t−(1+α) over some range. This is so whether

the contact is by physical proximity (i.e., detectability of

wireless access points or Bluetooth devices, or closeness

of GPS locations [3], [13], [22]) or by telecommunica-

tion (i.e., mobile phone call [10] or e-mail [16]), and

whether one or both contacting devices are in motion

(e.g., both Bluetooth, one Bluetooth and fixed wireless

access points, mobile phone and fixed masts).

A summary is given in Table I of studies in which

the stability exponent α has been inferred from an inter-

contact time (ICT) distribution, together with the approx-

imate range of applicability. From the quoted values,

α is inferred to be in the interval [≈ 0, 0.9] which is

within the allowable range (0 < α ≤ 2) for the tails of a

Lévy (stable) distribution [20], [17] (except possibly for

the marginal case of the Europe study of mobile phone

contact which could actually be a gamma distribution.)

Consequently it has been argued that human mobility

patterns resemble truncated Lévy walks (TLW). The

TLW paradigm represents a development of the Lévy

flight, which was a random walk comprising steps drawn

from a Lévy distribution, rather than a Gaussian as

occurs in the more familiar Brownian random walks

[24]. The first modification, to a finite constant velocity,

was dubbed a Lévy walk. Subsequently the limitation

to a finite domain was described as truncation [17].

More recently some researchers have also considered the

velocity to be a variable (e.g. [23]).

Similar movement patterns have also been inferred

for animals [25], and it has been proposed that Lévy
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User population Intel Cambridge 1 INFOCOM

2005

Toronto UCSD Dartmouth Europe

Source Chaintreau et al. (2006) [3] Gonzalez et al.

(2009) [10]

Device iMote iMote iMote PDA PDA Laptop/PDA Mobile phone

Network type Bluetooth Bluetooth Bluetooth Bluetooth WiFi WiFi Mobile phone

Granularity 120 seconds 120 seconds 120 seconds 120 seconds 120 seconds 300 seconds N/A

Duration 3 days 5 days 3 days 16 days 77 days 114 days 6 months

Devices

participating

8 12 41 23 273 6648 100,000

Number of inter-

nal contacts

1,091 4,229 22,459 2,802 195,364 4,058,284 16,364,308

Approximate ex-

tent of power law

region

4min - 14min 10min - 30min 10min - 10h 2min - 6min 20min - 1day 10min - 1h 100s - 8h

Quoted power

law exponent

-0.9 -0.9 -0.4 -0.9 -0.3 -0.3 -0.9 +/- 0.1

Type of distribu-

tion plotted

Tail df

(ccdf)

Tail df

(ccdf)

Tail df

(ccdf)

Tail df

(ccdf)

Tail df

(ccdf)

Tail df

(ccdf)

Log-binned pdf

Inferred stabil-

ity exponent α

0.9 0.9 0.4 0.9 0.3 0.3 -0.1 +/- 0.1

TABLE I: Summary of studies in which the stability exponent α has been inferred from an inter-contact

time distribution

foraging is an optimal strategy under at least some

circumstances [26]. Debate continues as to the extent to

which a Lévy strategy could be universal and insensitive

to the details of the environment and of the physiology

and motivation of the individual (e.g. [8], [21], and refer-

ences therein). However, the statistical analysis methods

which have most frequently been used to infer empirical

support for the truncated Lévy walk hypothesis have

recently been criticised, both in the ecology literature

and more generally [8], [7], [4], [27]. Key problems

identified have included: (1) The widespread inference

of power law pdfs by the graphical method of straight

line fitting to histograms with double logarithmic axes;

(2) the difficulty of inferring power laws over very

limited ranges; (3) the use of intrinsically biased methods

(such as (1)) for estimating the power law exponent;

and, perhaps most importantly, (4) inadequate, or even a

complete lack of, alternative hypotheses.

In the light of this, it is worthwhile to consider

how these problems might apply to the human mobility

studies cited above and summarised in Table I. For

example, some simply compare their distributions with

a straight line on a log-log plot with unavoidable bias

and spread for the inferred power law exponent [3],

[13]. In addition, referring to Table I, the inference

of a possible power law region is very weak for the

Intel, Cambridge 1 and Toronto experiments because the

region is so limited (∼ 1/3 decade), presumably related

to the small samples (∼ 1000 contacts). The evidence

is more convincing for the larger samples (INFOCOM

2005, UCSD, Dartmouth and Europe) with wider ap-

parent power law regions. Alternative hypotheses to the

pure power law null model have been considered, such

as the exponentially-truncated power law [13], [10], but

only one study [15] has actually fitted and quantitatively

compared several alternative models to ICT distributions

(albeit simulated), using the less biased maximum likeli-

hood estimate to infer the model parameters such as the

power law exponent and Akaike weights [1] to compare

the goodness of fits. Thus, at present, the inference of

a truncated power law ICT distribution directly from

experiment is limited.
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Indeed, it would be surprising if a truncated power law

was a complete description of human ICT considering

our prior knowledge about the social habits and struc-

tures of humans, such as the working day and family

and community responsibilities [16]. In fact it has been

recognised that the ICT distribution is not stationary and

changes with the time of day [13]. Spatial movement

distributions also exhibit daily patterns [10] and Fourier

analyses of proximity edges have daily and weekly

periodicities [6]. Similarly a fundamental semi-diurnal

periodicity was identified in an early study claiming a

Lévy strategy for animal foraging [25]. This suggests that

alternative models combining non-trivial randomness

and periodic rhythms should be investigated. At present

such more complicated models are challenging to test

rigorously (e.g., by MLE) but progress can nevertheless

be made by closer examination of the experimental

ICT distribution using different graphical methods and

modelling.

In this paper we consider three similar human contact

experiments of varying durations (section 2). We analyse

and model them to identify regularities that modify

the underlying Lévy walk behaviour (section 3). Then

we briefly compare these analyses with others in the

literature and discuss how this hybrid behaviour may

be modelled and will affect the efficiency of ad-hoc

communication (section 4).

II. DATASETS

We analyse trace data from the Haggle project [9]

and Crawdad database [5], collected using Bluetooth

communication in a conference environment and two

university study environments. The configuration of

data collection is summarised in Table II.

MIT: in the MIT Reality Mining project [6], 100

smart phones were deployed to students and staff at

MIT over a period of 9 months. These phones were

running software that logged contacts.

Cambridge 2: in the Cambridge Haggle project [9],

36 iMotes (Intel Mote ISN100-BA) were deployed to

1st year and 2nd year undergraduate students for 11

days to detect proximity using Bluetooth. The iMote

runs TinyOS and is equipped with an ARM7TDMI

processor operating at 12MHz, with 64kB of SRAM,

512kB of flash storage, and a multi-coloured LED, and

a Bluetooth 1.1 radio, which has a radio range around

30 meters.

INFOCOM 2006: also in the Cambridge Haggle

Experimental data set MIT Cambridge 2 INFOCOM 2006

Device Phone iMote iMote

Network type Bluetooth Bluetooth Bluetooth

Duration L (days) 246 11 3

Granularity ∆ (seconds) 600 100 100

Number of Devices 97 36 77

Number of Contacts 54,667 10,873 191,336

Average # Contacts / Day 0.024 0.345 6.7

TABLE II: Characteristics of the experiments

project, 77 iMotes were deployed at the INFOCOM

2006 conference for 3 days.

The logged data from the above experimental studies

are used to build time-dependent network information

to study the distribution of contact times, inter-contact

times, community structure and their statistical proper-

ties, where we constructed discrete event traces of pair

interactions of 10 to 600 seconds intervals. We have

aggregated raw data within 100 or 600 second time

windows to avoid uncertainty of device detection from

a complex Bluetooth communication protocol.

A complex operation is required to collect accurate

connectivity traces using Bluetooth communication,

as the device discovery protocol may limit detection

of the devices in radio proximity. Bluetooth uses a

special physical channel for devices to discover each

other. A device becomes discoverable by entering the

inquiry substate where it can respond to inquiries

from other devices. The inquiry scan substate is used

to discover surrounding devices. The discovering

device iterates (hops) through all possible inquiry scan

channel frequencies in a pseudo-random fashion. For

each frequency, it broadcasts an inquiry and listens

for responses. Therefore, a Bluetooth device cannot

scan for other devices when the device cannot be in

discoverable. Bluetooth inquiry can only happen in

1.28 second intervals. It is reported that an interval of

4× 1.28 = 5.12 seconds gives a more than 90% chance

of finding a device. However, there is no available data

for situations where many devices are present, and no

precise study has been reported. The Bluetooth standard

recommends being in the inquiry scan substate for 10.24

seconds in order to collect all responses in an error-free

environment. A 10.24 seconds alternation may cause

missing links, and we therefore deploy 5.12 seconds

for inquiry. The power consumption of Bluetooth is

also a critical limitation for the scanning interval. The

iMote connectivity traces in Haggle [9] use a scanning

interval of approximately 2 minutes, while the Reality

Mining project in MIT [6], with cell phones, uses 5
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Fig. 1: INFOCOM 2006: (a) Rank order plot, (b) pdf, (c) semilog histogram with linear bins, and (d) loglog

histogram for times less than 12 hours, with linear bins

minutes. The ratio of devices with Bluetooth enabled to

the total number of devices is around only an average

15% - 20% of population. The range of Bluetooth varies

between 10m and 80m, which depends on the device

class such as cell phones or laptops. In cell phones, the

Bluetooth range is usually 5 - 10m. We have observed

that the devices can be detected in a 20m range if there

are no obstacles, while with obstacles such as a thick

wall the range drops to 5m (see more detail in [18][19]).

III. RHYTHM AND RANDOMNESS

In each of the experiments we calculated all possible

inter-contact times T between any two nodes, where

ICT is defined as the time between the end of contact

between two nodes and the start of next contact between

the same two nodes. Figures 1-3 summarise the ICT

distribution for the three experiments. In each case,

the distribution is plotted as (a) a rank order plot

with double logarithmic axes, (b) a probability density

function with logarithmic co-ordinate (probability

density) axis and logarithmic ordinate (inter-contact

time) axis using exponentially spaced bins (i.e., equal

bin width in logarithm space = 0.1 decade), (c) a

histogram with logarithmic co-ordinate (frequency) axis

and linear ordinate (inter-contact time) axis using 100

equally-spaced bins (equivalent to a pdf with linearly

spaced bins to within a constant), and (d) a histogram

for inter-contact times up to 12 hours with logarithmic

co-ordinate (frequency) axis and logarithmic ordinate
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Fig. 2: Cambridge 2: (a) Rank order plot, (b) pdf, (c) semilog histogram with linear bins, and (d) loglog

histogram for times less than 12 hours, with linear bins

(inter-contact time) axis using equal bin widths at the

granularity ∆ = 100 s or 600 s. (The inset in Figure 3c

shows a double logarithmic histogram using equal bin

widths of 1800 s.)

A. Truncated power law distribution

Considering the rank order plots in Figure 1-3, we

might suggest as others have done that the ICT tail

distribution of all three experiments roughly resembles a

restricted range power law with exponent < 1 (cf Figure

1 and 2 of [3]). To illustrate this, we performed the

following simulation:

1) A set of contact times is calculated for Lévy

walks in a domain bounded by the duration of

the experiment L (see Table II). Specifically we

calculate the cumulative sum, ti =
∑i

j=1 Xj ,

where X is a set of N iid samples chosen from

the Pareto distribution with pdf p(x) ∼ x−(1+a)

in the range ∆ to 100L. The samples are gener-

ated by picking iid samples Ci from the uniform

distribution in the range (0,1] and then inverting

the analytical equation for the Pareto cumulative

probability distribution to find the value x = Xi

that yields the value C = Ci.

2) Divide the contact times into individual trials (i.e.,

trial number = ti modulo L).

3) Calculate the set of inter-contact times T from

the time differences between neighbouring contact

times, Ti = ti+1 − ti, omitting inter-contact times
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Fig. 3: MIT: (a) Rank order plot, (b) pdf, (c) semilog histogram with linear bins (inset shows loglog histogram

with linear bins), and (d) loglog histogram for times less than 12 hours, with linear bins

that straddle trials.

Figure 4a shows a simulated ICT probability

distribution (solid line) choosing a = 0.4 and other

parameters corresponding to the configuration of the

INFOCOM 2006 experiment – ∆ = 100 s, L = 3 days,

and N = 10, 000. It is clear that the simulated

distribution is only a crude approximation to the actual

INFOCOM 2006 distribution (dashed line) and other

structure is evident.

B. Circadian rhythm

This is also obvious in the other experiments (e.g.,

the histograms in figures 1c, 2c and 3c.) where there

are significant deviations about any candidate monotonic

function. Closer inspection reveals much of this deviation

to be associated with a circadian rhythm, as evidenced by

the alignment of peaks in the histogram/PDF at integer

multiples of 24 hours. (Note also a weekly rhythm in

Figure 3.)

Nevertheless, the INFOCOM 2006 and MIT

distributions are well approximated by a power law on

time scales much less than a day (e.g., < 12 hours,

see Figure 1d and 3d). (This is less obvious in the

Cambridge 2 experiment (Figure 2d) due to a ≈ 10 min

periodicity which is likely an experimental artefact).

This suggests that a better null model of ICT in these

experiments is a Lévy walk in a periodic domain. To

investigate this we performed the following simulation:
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Fig. 4: Comparison of Lévy flight simulation of inter-contact times without (left), and with (right), the

presence of circadian periodicity.

1) A set of contact times is calculated for Lévy walks

in a domain bounded by the duration of the experi-

ment L (see Table II). Specifically we calculate the

cumulative sum, ti =
∑i

j=1 Xj , where X is a set

of N iid samples chosen from the Pareto distribu-

tion with pdf p(x) ∼ x−(1+a) in the range ∆ to L.

The samples are generated by picking iid samples

Ci from the uniform distribution in the range (0,1]

and then inverting the analytical equation for the

Pareto cumulative probability distribution to find

the value x = Xi that yields the value C = Ci.

2) Divide the contact times into days and retain

only contact times that fall within a working day,

defined to start at ts h and end at te h (i.e.,

ts ≤ di = ti modulo 24hours ≤ te).

3) Divide the contact times into individual trials (i.e.,

trial number = ti modulo L).

4) Calculate the set of inter-contact times T from

the time differences between neighbouring contact

times, Ti = ti+1 − ti, omitting inter-contact times

that straddle trials.

Figure 4b shows a simulated ICT probability distribution

(solid line) choosing a = 0.4 and other parameters cor-

responding to the configuration of the INFOCOM 2006

experiment: ∆ = 100 s, L = 3 days, and N = 10, 000.

The simulated distribution compares favourably with

the actual INFOCOM 2006 distribution (dashed line),

supporting the null model over a Lévy walk confined

within the domain L but not within the working day.

IV. CONCLUSIONS AND IMPLICATIONS

The distribution of human inter-contact times from three

experiments of differing durations has been analysed

using different graphical presentations. This has revealed

three essential properties of human contact:

Random, scale-free. On sufficiently short time

scales, the ICT distribution is approximated by a power

law consistent with the return times of a Lévy flight.

The value of the stability exponent (α < 1) implies no

characteristic ICT in the absence of other constraints.

Truncated. At some time scale the power law

component is truncated by a constraint on inter-

contact time. One artificial constraint is the experiment

itself which prohibits recording ICTs longer than

the experiment duration. This is demonstrated in the

simulated ICT distribution in Figure 4a and should

be considered in comparing results from experiments

of differing durations. More significantly, another

constraint is the removal of agents from the contact

domain. An example of this is movement from work

to home which suppresses ICTs between agents in

the same work group on times scales beyond the

working day. This is demonstrated in the simulated ICT

distribution in Figure 4b by the truncation of the power

law component at ICT ∼ 104 s.

Periodic. Environmental, biological, and social

constraints may have rhythms that encourage repeated

encounters such as the daily to-ing and fro-ing
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between work and home. This is demonstrated in the

simulated ICT distribution in Figure 4b by the peak at

ICT ∼ 6 × 104 s and ∼ 15 × 104 s (i.e., separated by

24 hours).

These three properties have been previously surmised

by various different means but evidence of their co-

existence in the ICT distribution has been overlooked.

In particular, closer examination of previously published

ICT distributions (e.g., [10]) reveals deviations about a

truncated power law consistent with a circadian rhythm.

Recognition of this rhythm in the empirical distribution

is important otherwise models of human movement and

behaviour may be unrealistically modified to generate

only the scale-free property (e.g., [2]). It also has

significant implications for building efficient routing

algorithms and functionality on top of opportunistic

networks. As a very simple example, clearly a rhythm

of period P that removes agents from each other for a

time P/2 reduces the average number of contacts by

50% over multiple cycles. But its determinism might

also be exploited to increase communication efficiency.

For example, the time of the next encounter could be

estimated at the node and thus selection of the next hop

could be determined based on the expected shortest time

to the next encounter. The periodic behaviour of nodes

could indicate moving from one network partition to

another and this could be used for temporal clustering

of nodes, where temporal-based communities could

be used as a backbone of logical network structure

for forwarding [12]. By these means, mobility-assisted

forwarding can take advantage of patterns arising

in the distribution of nodes in time and space. One

alternative movement model is suggested that combines

the Lévy walk model with models such as the Home

Cell Mobility Model (e.g., [2]) that incorporate the

influence of social structure. However the development

of more complicated models will also present challenges

in testing them and distinguishing between competing

models.
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