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ABSTRACT
Web 2.0 sites have made networked sharing of user gener-
ated content increasingly popular. Serving rich-media con-
tent with strict delivery constraints requires a distribution in-
frastructure. Traditional caching and distribution algorithms
are optimised for globally popular content and will not be
efficient for user generated content that often show a heavy-
tailed popularity distribution. New algorithms are needed.

This paper shows that information encoded in social net-
work structure can be used to predict access patterns which
may be partly driven by viral information dissemination, termed
as a social cascade. Specifically, knowledge about the num-
ber and location of friends of previous users is used to gen-
erate hints that enable placing replicas closer to future ac-
cesses.

1. INTRODUCTION
Requests for web content are known to follow a heavy-

tailed distribution. For example, Yu et al. [11] find that
the top 10% of the videos in a video-on-demand system
account for approximately 60% of accesses, and the rest
of the videos (the 90% in the tail) account for 40%.

This popularity pattern can make server provision-
ing difficult, especially for rich-media content such as
streaming video, which have relatively strict delivery
constraints. The problem becomes especially severe
with the recent proliferation of rich-media User Gen-
erated Content (UGC) such as YouTube videos, whose
popularity can vary dynamically, and often dramati-
cally [3].

While global replication via content delivery networks
(CDNs) is efficient for the most popular content, the
majority of objects are in the tail and accessed too
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made or distributed for proïňĄt or commercial advantage and that copies
bear this notice and the full citation on the ïňĄrst page. To copy other-
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rarely for global replication to be practical. For in-
stance, YouTube only uses CDNs for the most popular
videos [5]. However, objects in the tail collectively ac-
count for a sizeable fraction of accesses.

The goal of this paper is to help mitigate the difficulty
of serving content not yet popular enough to be glob-
ally replicated. Given a history of previous accesses, we
wish to predict the geographies of the next few accesses,
so that replicas may be intelligently provisioned to min-
imise future access times. Our predictions are based on
the means by which a UGC object becomes known to
potential users.

Knowledge of a UGC object can spread in two ways;
broadcast highlights or viral propagation. The first hap-
pens when the UGC object is featured or highlighted on
a central index page. Examples include being featured
on the home page of the hosting sites (such as the fea-
tured videos list on YouTube); being promoted on an
external social bookmarking site (e.g. if slashdotted, or
featured on Digg, Reddit, Del.icio.us “hotlists”, etc.);
or ranking high on a google search. UGC objects in
this class have to be popular according to the indexing
algorithm used. Such high-visibility objects will likely
be accessed many times and from all over the world,
and are best served by replicating globally via CDNs.

The second possible means of propagation is by word-
of-mouth, by sharing explicitly with a group of friends.
This can happen through online social networks, emails,
or out-of-band (or face-to-face) conversations. This kind
of viral propagation has been termed as a social cascade
and is considered to be an important reason for UGC
information dissemination [4].

The links between friends on an online social network
explicitly captures the means of propagation for social
cascades. Furthermore, many social networking sites
include approximate geography information. Thus, in-
formation about the friends of previous users and their
geographical affiliations could be used to predict the
geographical access patterns of future users.

In reality, content access is driven by a diverse mix-
ture of random accesses and social cascade-based ac-
cesses. The content provider must place replicas to
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handle this access pattern. A user request from a region
where the provider has a replica of the content object is
counted as a local access. A user request from a region
where there is no local replica is counted as a remote
access. Remote access is costlier than local access. The
goal of the provider is to minimise the cost of access
by choosing the geographic regions in which to place a
fixed number of replicas of the content.

Two replica placement strategies are considered. The
first, location based placement, uses the geographical
location of recent users1 to place replicas. The sec-
ond strategy, which we call social cascade prediction,
places replicas in regions where the social cascade “epi-
demic” is densest, as determined by the average number
of friends of previous users.

In the specific case where a fixed number, k, of repli-
cas is chosen, location based placement amounts to plac-
ing the replicas in the top k regions ranked by number
of recent users. Social cascade prediction ranks regions
by the number of friends of previous users and places
replicas in the top k regions.

Our main result is that social cascade prediction can
decrease the cost of user access; i.e., more users are
served by local replicas. The cost decrease is greatest
when the cascade is responsible for most requests. Costs
also decrease when cascades are responsible for fewer
requests than random accesses.

Based on this, we have built a prototype system, Buz-
ztraq, that provides hints for replica placement by using
social cascade prediction. Intuitively, Buzztraq relies
on the presence of a social cascade component, which
makes the geographies of user requests non-random.

Location based placement predicts that future re-
quests will come from the same geographies as those of
past requests. If instead, the requests shift to a new re-
gion, it is slower to react – until enough requests come
from the new region to displace one of the old top-k,
replicas are not moved.

In contrast, Buzztraq’s social cascade prediction strat-
egy starts counting friends of previous users who are in
the new region even before a request originates from
the region. Furthermore, the number of local friends of
users grows faster than the actual number of users from
the new region. Thus, Buzztraq’s strategy is faster to
shift replicas and incurs fewer remote accesses.

The paper proceeds as follows. Section 2 studies the
geographic spread of social cascade. Section 3 describes
how we obtain the inputs used by Buzztraq. Section 4
discusses the mechanics of Buzztraq and strategies for
replica placement. Section 5 evaluates these strategies.
Section 6 discusses related work. Section 7 discusses
some limitations. Section 8 discusses our next research
steps and concludes.

1This can be determined from the IP address block of the
user. Commercial CDNs may employ similar strategies [9].

2. SOCIAL CASCADE AS AN EPIDEMIC
When users access a UGC object influenced by their

friends, it can be modeled as if infected by such friend’s
opinion. We envision that many ideas, messages, and
products could be spread rapidly through our popula-
tion as social epidemics.

A recent example is the use of the hashtag “uksnow”2

on Twitter messages sent across the UK on Feb 2, 2009.
Although there was no prior agreement on using this
string, it quickly spread amongst Twitter users, and be-
came the most popular hashtag. At its height, between
3pm and 5pm, nearly 2000 Twitter posts used the tag,
making it the most popular hashtag of the day.

This section investigates how information can spread
across geographies as an epidemic. We take an empir-
ical approach, using friend lists from an online social
network (details in Section 5.1) to emulate a social epi-
demic. We select a single user as an initial infectious
user and propagate the infection process to her friends.
This process is repeated over n rounds, with infection
spreading from the initial seed to nodes n hops away.

Fig. 1 shows two possible geographic distributions of
infected users. Fig. 1(a) depicts a rapidly shifting epi-
demic. The infected population and the regional spread
of the users changes from the third round (left) to the
fifth round (right). On the other hand, Fig. 1(b) shows
the infection can also proceed without much change in
geographic locations.

The history of past locations can trivially predict the
future when the epidemic is localised. The rest of the
paper discusses how to predict regions of future infec-
tion when the epidemic is shifting.

3. INPUTS TO BUZZTRAQ
Buzztraq takes users’ declared social links and geo-

graphic affiliations and produces hints on where to place
replicas. This section discusses how Buzztraq obtains
the declared social links and geographic affiliations.

3.1 Social network information
Buzztraq needs the declared social links of users. Pre-

viously this information was confined to social network-
ing sites. New APIs such as Facebook Connect3 and
MySpace Data Availability4 are starting to make this
data available to external web sites. These new APIs
allow a user to login to external web sites using their
identity on the corresponding social network. The ex-
ternal web site is authorised to retrieve and add related
information about the user. Buzztraq uses the Face-
book Platform API to retrieve each user’s friends, and
their publicly available affiliation information.
2
http://www.hashtags.org/tag/uksnow

3
http://developers.facebook.com/connect.php

4
http://developer.myspace.com/community/myspace/

dataAvailability.aspx
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(a) Shifting cascade symptom: regions of infections shifting over rounds
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(b) Stable growth of cascade: Infection regions stay the same over rounds

Figure 1: Geographical nature of social cascades

3.2 Obtaining geographic information
We attempt to deduce a geographic location for each

retrieved affiliation using Google’s geocoding API5. Sec-
tion 5.1 shows that the affiliations of the users are largely
geographical in nature. The geocoding API translated
71.3% of user affiliation strings into latitude-longitude
coordinates.

The final goal is to design a replica placement policy.
For that, geographic decisions must be made. Locations
are treated as points and are clustered into regions using
the k-means algorithm [8]. To decide cluster member-
ship, Vincenty’s formula is used to calculate geodesic
distances between points [10]. The clusters define fixed
regions across the world, and the UGC provider can
place replicas in any of the identified regions.

Although social networks typically contain informa-
tion about users’ current geographic locations, this is
not the right granularity for our purpose. The geo-
graphical spread of a user’s influence is not limited to
their current location. Often, information about new
objects may be forwarded by out-of-band channels such
as emails to old friends in the user’s previous locations.
In practice, we also find that the current location in-
formation is not entered by a vast majority of users.

5
http://code.google.com/apis/maps/documentation/

geocoding/index.html

Therefore, we use all the declared affiliations of the user
in predicting the location of next access.

By giving equal weight to all locations, we are ignor-
ing the complexities involved in word-of-mouth propa-
gation, and may end up introducing false positives. For
instance, depending on the nature of the content, a user
may be much more likely to spread information about
it in only a subset of her affiliations/communities.

One mitigating factor is that Buzztraq hints are re-
stricted to regions of the world. If the geographic affil-
iations of a user all belong to a single region, then the
hints will be correct. Furthermore, to the extent that
the user has more friends in the geographic region where
she is most likely to spread a social cascade, Buzztraq
hints will still be correct.

4. PREDICTING FUTURE ACCESSES
The UGC provider specifies a single UGC object or a

collection of related content by a content-id. Buzztraq
keeps note of users accessing content identified by each
content-id. Using information about these users’ friends
and affiliations, hints are generated on where to place
replicas of the content.

For purposes of exposition, we discuss how this is
done in the context of a possible UGC provider architec-
ture. Note that the basic concepts underlying Buzztraq
do not rely on this specific model.
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4.1 A basic UGC provider model
We assume that users first log in at a central site and

are redirected to one of a fixed number of replica sites
to access the requested rich media UGC. Redirection
to a replica site local to the user is considered to be
preferable. For instance, this may enable better delay
and jitter guarantees.

The central site runs Buzztraq, which obtains the
user’s declared friends and geographical affiliations as
detailed in Section 3. After each user access, Buzztraq
uses this information to predict the top-k regions from
which future accesses to the requested UGC are likely
to originate. The UGC provider can use these hints to
decide where to locate each UGC object. Specifically, in
our evaluation, we look at the case where each content
object is placed in a fixed number of replicas.

Buzztraq predictions are to be treated as hints for
replica placement. While hints are generated after each
access, the provider is not required to reconfigure replica
locations each time. This is not critical since the set of
top-k regions is not expected to change frequently.

There may be regimes where it is practical to recon-
figure replicas after each user. For instance, suppose
each region contains all the UGC objects hosted by the
provider, but only those most likely to be accessed are
kept in main memory. Buzztraq hints can be used to
decide which k regions will keep a given object in main
memory. Changing this set is less expensive than ship-
ping the content over the network, and could potentially
be done after each user access.

4.2 Generating replica placement hints
Without social network links, the best a UGC provider

can do is location based placement. This strategy
keeps per-region histories of user accesses and places
replicas in regions which have historically contributed
the maximum number of users. Typically, only one re-
gion can be found, by reverse-mapping the IP address
block of the user to a geography/ISP. The evaluation be-
low uses the social network affiliation information and
updates the UGC provider’s history for the all the re-
gions the user is affiliated with.

Buzztraq uses an alternate strategy, social cascade
prediction, which predicts the next accesses by taking
social cascade into account. If user accesses are being
driven by word-of-mouth propagation, we expect that
some of the future accesses will be made by friends of
previous users. Thus, our strategy is to place the repli-
cas in the top-k regions where the number of potential
future users, as measured by the number of friends of
previous users, is highest.

Unlike location based placement, which only counts
the number of previous users in each region, social cas-
cade prediction additionally attributes non-local friends
to their appropriate regions as potential future users.

If the cumulative number of friends of previous users
ranks a new region in the top-k, Buzztraq predicts that
more accesses will originate from this region, owing to
social cascade. Location based placement will not rank
this new region in the top-k until the new region gener-
ates enough requests to displace one of the previous top-
k. During this transition period, location based place-
ment will cause non-local replica access for users from
the new region, leading to higher costs.

If a user’s friends are local to her region, then both
social cascade prediction and location based placement
will recommend placing replicas in the same regions.

The approach of counting friends of previous users
is similar to the concept of the reproductive number R
in epidemiology, which measures the average number
of secondary cases caused by each case of an infectious
disease [2]. If R > 1, then the infection will be sustained
in the region. In this language, we are counting the
number of potential secondary accesses that could be
caused by a previous infected user. Buzztraq’s output
of top-k regions gives the regions where the intensity
of infection is highest. Since each access generates new
hints, only the current infection intensity is counted.
We do not normalise to predict whether the infection
will be sustained.

5. EVALUATION
This section evaluates the relative costs of location

based placement and social cascade replication using
a synthetic workload. Social links and geographical
affiliations are derived from a small subset of Face-
book users. We generate a workload with user requests
coming as a mixture of social cascade and random ac-
cesses, and compare the relative costs of the two dif-
ferent strategies for replica placement. The simulations
find that social cascade prediction can help place repli-
cas closer, on average, than location based placement.

5.1 User characteristics
Users for our workload are drawn from 20,740 face-

book profiles from the Harvard network with profile IDs
< 36, 000. There are 2.1 million links between them,
with a mean degree of 63 and a maximum degree 911.

The users have 1,660 distinct affiliations, of which
1,181 could be mapped to geographic locations, all over
the globe. Using k-means clustering, we classified these
into 10 regions. Our algorithm found separate clusters
for North Africa, South and Central Africa, Europe and
the Middle East, Australia and the Far East, South
America, and the Indian Sub-continent. Predictably,
there were multiple (4) regions within the United States.

5.2 Workload
Evaluation is driven by a simple workload. It is not

intended to capture the all the complexities of user re-
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quest arrivals. User accesses from across the globe are
assumed to arrive at the central site in some serialisable
fashion. Only the sequence of requests matters; there
is no notion of real time. We also assume that user
accesses are generated either by a social cascade or by
a random process. Additionally, each user performs at
most one access.

The main goal of the workload is to have a tunable
amount of social cascade-based user accesses. User re-
quests are assumed to arrive because of social cascade
with probability ps, or as a result of a random access,
with probability (1 − ps). Thus, with probability ps,
the next user is chosen to be a friend of a previous user;
with probability 1− ps, the next user is a random user.
We incorporate a notion of recency in the social cascade
process – only friends of the last TTL users are chosen
for non-random accesses.

Given this workload, the UGC provider has to place
replicas so that access cost is minimised. If the provider
has a replica in the region of the next user, it is deemed
to be a local access; otherwise it is a remote access. The
cumulative cost is measured by a cost function which is
arbitrarily defined so that a remote access is cr = 20
times costlier than a local access. The provider’s goal is
to minimise the total cost of all user accesses. Note that
any value of cr > 1 will capture the relative difference in
the long term costs of two replica placement strategies.
Using larger cr allows us to see the difference after fewer
simulated user requests.

The UGC provider is allowed a fixed number of repli-
cas (k = 3 in our experiments), and there are 10 re-
gions in the world where the replicas can be placed.
The replica placement strategy basically amounts to a
strategy of choosing the top regions predicted for future
accesses. The UGC provider is allowed to reconfigure
its replicas after each user access.

Our dataset contains more declared affiliations for
places within USA than any other country. Thus a safe
strategy would be to concentrate all replicas in US re-
gions. However, note that USA also contains four re-
gions. By restricting the number of allowed replicas to
three, any placement strategy is forced to choose at least
one US region to serve remotely. This counteracts any
inherent geographical bias and brings out the relative
difference in the costs of the two strategies.

5.3 Relative cost of social cascade prediction
In effect, location based placement uses the history

of previous accesses to predict future accesses. Social
cascade prediction explicitly captures a user’s friends as
potential future users. Thus, social cascade prediction
should be expected to work better if there is a strong
social cascade component driving the user accesses.

To verify this, we simulate the same workload (with
ps = 0.5) on two UGC objects which are placed using
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Figure 2: Cost comparison of social cascade pre-
diction to location based placement. ps = 0.5.
When cost ratio is less than 1, social cascade
prediction is cheaper.

following social cascade prediction and location based
strategies, respectively. We measure the cumulative
cost of serving the first n requests, as n increases.

If the UGC provider is able to serve more users local
to regions where it has placed replicas, its cost is lower.
Fig. 2 plots the result. The x-axis shows n and the y-
axis plots the ratio of the cumulative costs of serving
the first n requests using the social cascade prediction
strategy to the cumulative costs using location based
placement. Initially, when there is no discernable social
cascade, location based placement outperforms. How-
ever, as the number of accesses increases, social cascade
prediction becomes the more efficient strategy.

Fig. 3 examines the relative efficiency of the two strate-
gies for different values of ps, the probability that the
next user accesses because of a social cascade. A se-
quence of 100 requests are performed, and the relative
cumulative cost of serving the last ten requests is mea-
sured, for different values of ps. The cost ratio remains
less than 1 (i.e. social cascade prediction is cheaper)
for all the ps values we measure. As the probability of
a social cascade choice increases, the cost ratio drops,
showing that the social cascade prediction does detect
the underlying process generating the user inputs.

6. RELATED WORK
Buzztraq is motivated by a recent result [4] confirm-

ing anecdotal evidence that social cascades are an im-
portant factor in information spreading about user gen-
erated content, specifically photos on Flickr.

We emphasise that this system is intended mainly for
UGC objects that are not popular globally. For globally
popular content, commercial CDNs such as Akamai6

can be a better fit. On the other hand, Akamai and
other CDNs use DNS resolution to direct users to the
6
http://www.akamai.com
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Figure 3: Average cost ratio for different values
of ps. As ps, the probability that social cascade
drives user access, increases, Buzztraq’s strategy
becomes more efficient

nearest replica [1]. This can be incorporated into our
system as a useful complementary behaviour.

The expected utility of Buzztraq hints depends on
the collective popularity of long-tail content. In one
study [11], the 90% of the videos that comprise the tail
account for 40% of accesses, whereas another [3] reports
that the tail 90% accounts for around 20% of the views,
at least in the limited datasets studied. Buzztraq will
clearly be more useful in the former case.

The system attaches a geographic profile to users
by utilising geographic affiliations on their online so-
cial network profile. We believe this is a novel appli-
cation. Several previous systems, including online ad-
vertisement systems have previously tracked users, but
most of them use the IP address of the user to glean
geography. One illustrative example is Cluster Maps7,
which pinpoints visitors to blogs and draws a world map
showing visitor locations.

7. SCOPE AND LIMITATIONS OF SOCIAL
CASCADE PREDICTION

We showed how to use social cascade prediction to
mitigate the cost of storing and serving the long-tail
of UGC objects that are not (yet) popular enough to
replicate worldwide, using standard mechanisms such
as CDNs. Any content that is disseminated virally can
potentially benefit from social cascade prediction; it is
not specific to serving user generated content.

Social cascade prediction predicts the geographic lo-
cation of social cascades by utilising friendship and ge-
ographic information in social networks. Lacking accu-
rate and complete geographic affiliation records in cur-
rent online social networks, we use users’ network affili-
ations and attach geographic locations to them. Success
naturally depends on accuracy of geocoding systems
7
http://www.clustrmaps.com

- while the current crop of geocoding APIs are very
good at parsing, there are limitations. (e.g. “MIT”,
“BYU” etc. were parsed to latitude-longitude coordi-
nates, but “SUNY Buffalo Graduate Center” proved to
be too complex). Also, we are conflating geographical
closeness between server replica and user, with good
network connectivity. This may not neccessarily be a
correct assumption in all cases.

Buzztraq uses the logical OR of a user’s geographi-
cal affiliations on Facebook. On the one hand, this is
beneficial because it captures information not in the so-
cial network about means for social cascade (e.g. a user
might spread information to someone not on their Face-
book profile but in their geographical affiliation region).
On the other hand, this could introduce noise – old and
inaccurate affiliations might cause our system to predict
the next few accesses from a foreign location when it is
not called for.

Even with the above caveats, we believe that our
strawman implementation of Buzztraq is the beginning
of a system that can efficiently handle the long-tail of
UGC that is not yet popular for expensive worldwide
delivery by CDNs.

8. CONCLUSION AND FUTURE WORK
We conclude by emphasizing that identifying the ge-

ographical locations of potential next users is only half
the problem. The other half of the problem is actually
provisioning a server or servers such that the service
time is minimised. This is a complex problem in itself,
and this paper does not address all the details. Instead,
we simplify the problem and find the best regions in the
globe in which to place a given number of replicas.

Furthermore, this paper only considered placement
strategies. In other words, social cascade prediction has
been used to answer the question of where to place a
UGC object. This works well when the UGC object is
being replicated on spare storage available at the repli-
cas using spare bandwidth that the UGC provider is
already contractually obligated to consume. Our next
steps to a more complete system will require resolving
the question of which objects to replicate when replicas
have limited storage and bandwidth, as well as possi-
ble strategies for the replicated videos replacing other
videos at the replica site.

Finally, our early prototype captures social cascades
using a very simple model.Considerably more sophisti-
cated models have been proposed [6, 7]. Incorporating
these could lead to better geographical access pattern
predictions with Buzztraq.
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