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Abstract—The recently developed small wireless devices
ranging from sensor boards to mobile phones provide a timely
opportunity to gather unique data sets on complex human
interactions, which in turn will support rich and meaningful
modelling of the underlying networks. We are convinced
that this approach will be fruitful and effective for tackling
various issues such as infectious disease spread and beyond.
Human social dynamics are far more complex than the current
simplified models in network theory, and the data driven
modelling with large-scale experimental results is essential for
understanding and building systems that exploit real networks.
An important issue to be addressed for taking empirical and
heuristic approach is understanding the characteristics of data
such as data collection methods, limitations, scale of noise, and
so forth. This aspect has been many times neglected during
inference of data. We express the importance of data driven
approach in this paper.

I. Introduction

The recent emergence of wireless technology (e.g. mobile
phones and sensors) makes it possible to collect real world
data on human proximity. Capturing human interactions
with wireless sensors will allow us to understand complex
patterns of human activities. For example, in one experiment
people will carry mobile phones that record dynamic infor-
mation about other devices nearby. A post-facto analysis of
this data will yield valuable insight into how communities
are formed, how much time people spend together, and how
frequently they meet; such data exhibits complex network-
like structures that are similar to social and biological
networks. The analysis can also identify specific individuals
who act as coalescing hubs of the network at different points
in space and time, and who influence data flow. We have
demonstrated series of experimental results [4][10][16].

In the 21st century, the epidemic spread of infectious
diseases is still a serious threat, killing 15 million people
every year. Beyond the advance of modern drugs, analyses of
epidemic models by computer simulation have been useful
for understanding the dynamics of disease spread. Advanced
modelling provides predictions of future epidemics to build
an early outbreak warning system. Accurate and reliable
models of human social interactions are key input to such
computer simulation. How does the epidemic diffusion oc-
cur, and how does the epidemic reflect the movement of
people in the real world? Daily human interaction in real
world is complex and the quantitative understanding of

human dynamics is a difficult task and has not been explored
at any depth. Real world networks are far more complex
than the simplified models that derived from physics and
graph theory. We must take advantage of real world data
that reflects human interactions, which can be used to
construct human contact networks and will provide valuable
parameters for understanding and modelling such networks.

Building an effective and reliable human proximity de-
tection system raises various issues. Particularly, optimal
exploitation of technologies available across the hardware
and software is necessary. Current detection mechanisms
using WiFi access points or Bluetooth expect high failure,
communication protocol limitation and complex statistics.
Without in-depth understanding of the data collection mech-
anism, modelling networks will not be reliable. For example,
the symmetry of edge detection is extremely low according
to our experiments using Bluetooth. This indicates missing
edges from the device detection leading inaccurate clustering
coefficient calculation. With such noisy data, how deep
can we infer contact networks? We need to understand at
least the scale of missing edges. However, such important
information is entirely missing in current research efforts.

Understanding epidemic spread often requires not only
human interaction information but also sufficient data which
enables to reconstruct physical environments. We envision
large scale and detailed spatial world models including sta-
tionary objects (e.g. streets, landmarks, and mobile objects)
that may be useful for modelling. Furthermore a model may
be augmented by virtual objects to associate real world
objects such as web links or events from social network
services. We have done some initial work on such world
modelling [13].

The rest of this paper is structured as follows. We describe
background of complex networks in Section 2, introduce
examples of human contact trace data sets in Section 3,
and then describe the proximity detection mechanism by
Bluetooth communication in Section 4. In Section 5, we
discuss complexity of data collections followed by brief
discussion of ethical/privacy issues in Section 6. Finally, we
conclude in Section 7.

II. EPIDEMIC IN COMPLEX NETWORKS

In theoretical physics, Erdos and Renyi have shown the con-
cept of phase transition in random networks [7], while Watts



and Strogatz have shown small world networks for social
relationships [15]. Barabasi described scale-free networks
demonstrating the existence of hub nodes [2]. Universal rules
govern the structure of all networks, whether they are social,
technological or biological. Human society promotes coop-
eration, which is based on spatial and social relationships
and can evolve as a consequence of social viscosity. In
dynamic physical networks, how do people form commu-
nities and how does community structure affect epidemic
spread in a population? How do hub nodes and weak links
influence temporal or spatial effects and how does it affect
the transmission characteristics of diseases? How do the
community-like topology of interpersonal connections and
its hierarchical nature yield a multi-level structure? Current
models in network theory are too simplified, and answering
these questions will require more in-depth understanding of
real world networks. Multiple experiments and large-scale
experimental data will be needed both for modelling and
building systems.

Human proximity networks display extremely dynamic
topology on a spatial and temporal scale. We refer to such
networks as ‘time-dependent networks’. Generalisation of
the measurements of complex networks is a recent active
research topic. However, modelling dynamic temporal and
spatial series of sub-networks (e.g. trees or motives) in
time-dependent networks in a discrete form is a future
challenge. Several researchers have worked on a predictive
model for epidemics such as an influenza pandemic [8]. Such
models require precise information of mobility, interaction,
and behavioural assumption of the population. On the other
hand, interactions between individuals are assumed to follow
random encounters. Thus, human connectivity information
including spatial and temporal information has yet to be
incorporated in such models for improving the predictions.

Apart from confirming previously known results, such as
that degree distributions with high variance of occurrence
of high-degree individuals can be associated with an ac-
celerated course of the epidemic [3]. Many other network
characteristics (e.g. population size, geographical location)
can be uncovered. Clustering will be an important factor to
drive the epidemic, and looking into causal contact patterns
of the epidemics will give additional insight. The patterns
of interactions between individuals are key to understand-
ing how infectious diseases spread, and each interaction
may not be described in a binary form. Only considering
monogamous pair relationships may be problematic, and
consideration of the strength and regularity of connections
will be necessary.

III. R EAL WORLD HUMAN CONNECTIVITY TRACES

The Reality Mining project [6] collected proximity, location
and activity information, with nearby nodes being discovered
through periodic Bluetooth scans and location information
from cell tower IDs. Several other groups have performed

Experimental data set MIT UCSD CAM INFC06
Device Phone PDA iMote iMote

Network type Bluetooth WiFi Bluetooth Bluetooth
Duration (days) 246 77 11 3

Granularity (seconds) 300 600 120 120
Number of Experimental Devices 97 274 36 78

Table I
Characteristics of the experiments

similar studies. Most of these [6] [1] [12] use Bluetooth
to measure device connectivity, while others [9] rely on
WiFi. The duration of experiments varies from 2 days to
over one year, and the numbers of participants vary. We have
analysed various traces from the Crawdad database [5] and
several examples are listed below, and Table I summarises
the configuration of them.
MIT: in the MIT Reality Mining project [6], 100 smart
phones were deployed to students and staff at MIT over a
period of 9 months. These phones were running software
that logged contacts.
UCSD: in the UCSD Wireless Topology Discovery [14], ap-
proximately 300 wireless PDAs running Windows CE were
used to collect WiFi access point information periodically
for 11 weeks.
CAM: in the Cambridge Haggle project [1], 40 iMotes were
deployed to 1st year and 2nd year undergraduate students for
11 days. iMotes are sensor boards equipped Bluetooth for
detecting proximity devices.
INFC06: 78 iMotes were deployed at the Infocom 2006
conference for 4 days [4].

IV. PROXIMITY DETECTION WITH BLUETOOTH

Bluetooth is a low-power open standard for Personal Area
Networks (PANs) and has gained its popularity due to its
emphasis on short-range, low-power and easy integration
into devices. The platform used in the Haggle experiments
is the Intel Mote ISN100-BA (known as the ‘iMote’). The
iMote runs TinyOS and is equipped with an ARM7TDMI
processor operating at 12MHz, with 64kB of SRAM, 512kB
of flash storage, and a multi-colored LED, and a Bluetooth
1.1 radio. The specifications lists the radio range to be 30
meters.

It is a complex task to collect accurate connectivity traces
using Bluetooth communication, as the device discovery
protocol may limit detection of all the devices nearby. Blue-
tooth uses a special physical channel for devices to discover
each other. A device becomes discoverable by entering the
inquiry substate where it can respond to inquiry requests.
The inquiry scan substate is used to discover other devices.
The discovering device iterates (hops) through all possible
inquiry scan physical channel frequencies in a pseudo-
random fashion. For each frequency, it sends an inquiry
request and listens for responses. Therefore, a Bluetooth
device cannot scan for other devices and be discoverable
at the same time. Bluetooth inquiry can only happen in1.28

second intervals. An interval of4 × 1.28 = 5.12 seconds



gives a more than 90% chance of finding a device. However,
there is no data available when there are many devices and
many human bodies around. The Bluetooth standard [12],
recommends being in the inquiry scan substate for 10.24
seconds in order to collect all responses in an error-free
environment. The power consumption of Bluetooth also lim-
its the scanning interval, if devices have limited recharging
capability. The iMote connectivity traces in Haggle use a
scanning interval of approximately 2 minutes, while the
Reality Mining project uses 5 minutes. The ratio of devices
with Bluetooth enabled to the total number of devices is
around only an average 15% of population.

Bluetooth for proximity detection is widely available and
a lot of people carry a Bluetooth enabled mobile phone
with them. Thus, it is possible to detect a certain amount
of peoples phones without handing a special device to each
of them, which makes Bluetooth appealing for experiments
involving a large quantity of people. The range of Bluetooth
varies between 10m and 100m, depending on the device
class. In mobile phones, the range is usually 10m. We have
observed the devices can be detected in 20m range if there is
no obstacles, while if there is any obstacles such as a thick
wall it limits to 5m range.

V. COMPLEXITY OF CONNECTIVITY DATA COLLECTION

We haves developed a range of ways for detecting and
recording spatial proximity [4][10][16]. These include small
custom built battery-powered sensor devices (i.e. Intel
iMote) and mobile phones. In each case, software has been
developed to record contacts with other devices. Each device
is uniquely identifiable, so a network of contacts, which
includes information about which devices interact, can be
built. Furthermore, the duration of interactions are logged
(both the duration of a single interaction and the cumulative
duration of all interactions over the study period) to enable
weights to be assigned to links in this contact network. Trials
have taken place in a range of settings - from academic
conferences to the streets of a city. Although developed for
the purpose of designing wireless data-forwarding protocols,
these methods are clearly directly relevant to social network
epidemiology and provide an easy-to-use means of measur-
ing weighted social networks. The technology has proved
robust with reliable data collection at initial level. However,
reliable network modelling requires further massive and
precise experimental data.

In [17], we have shown the distribution of the inter-
meeting time, where meeting indicates interaction among
several nodes using K-Clique based meeting detection and
inter-meeting is time between meetings. We immediately
note that the bulk of inter-meetings times are within 24
hrs. However, the distribution does not appear very power-
law in its nature, except perhaps for the early head of the
distribution. While the interaction times between nodes is
not power-law, the duration of meetings does appear to be.

We can explain this discrepancy by noting that meetings
involve many nodes and that counting these as pairs of
interactions leads to weighting the meeting duration by the
(often large) number of pairs, thus skewing the distribution.
Furthermore, the Bluetooth detection data is noisy, which
can make estimating the contiguous duration of an interac-
tion unreliable, with the probability of a break due to noise
growing with the length of the meeting. This thus also skews
pairwise interactions to be shorter than they actually are.
Unless Bluetooth detection gives high accuracy result, using
the clustering methods, which can be better tolerated with
noise is necessary for more reliably estimating the meeting
duration.

CRAWDAD [5] provides an archive for a large amount of
such human connectivity/mobility data. The current average
data is small-scale with limited device detection capability.
For example, the Bluetooth scanning interval is> 5 minutes,
which may miss many devices in a busy street and may not
provide sufficient information for critical analyses such as
prevention of disease epidemics. From the collected traces,
the reflectivity value (i.e. when A sees B, the probability
that B sees A) is extremely low, even when setting the
single time unit size to 10-15 minutes. This does not lead
to accurate transitivity values for evaluating the network
clustering. There have been various trace data archived, but
each trace is collected in different ways. Thus, we need to
look into the level of accuracy required for the model, so that
data collection can be organised accordingly. This process
is completely missing in current research.

It is desirable to explore not only Bluetooth communica-
tion based proximity detection, but explore various methods
including 802.15/ZigBee boards. Existing trace data typi-
cally lacks geographical information. We are experimenting
GPS equipped mobile phones, small computers, and em-
bedded Linux boards to design tracking and localisation
mechanisms in an efficient and inexpensive way. Software
that detects proximate devices for the phone will be de-
veloped based on our previous work [12], extending to
GPS tracking and capturing image/sound as necessary to
record contexts in the environments. The proximity networks
represent pair relationships, proximity based modularity, and
social interactions, while online based interactions suchas
email, instant messaging, and social network services (e.g.
Facebook, LinkedIn, Orkut) represent another type of social
interactions. We collect data from online social networks to
be used for network analysis, including correlation between
two types of social networks.

VI. ETHICAL /PRIVACY /ANONYMITY ISSUES

We am well aware of ethical and privacy issues for the
collected data, and the data must never be used to identify
individuals. The collected data will be anonymised before
analysis. Software developed for mobile phones may involve
collaboration between ad hoc groups of members. When new



encounters occur, there are complex issues in knowing what
entities to trust. Based on predefined trust, recommendations,
risk evaluation and experience from past interactions, an
entity may derive new trust metrics to use as the basis for
authorisation policies for access control. This raises serious
concerns about privacy, surveillance and freedom of action.
While providing location information can clearly be a one-
way system where the location providing tools do not track
who is receiving, once a device receives information, its
location is potentially available to others.

VII. C ONCLUSIONS

Data-driven modelling of human interaction dynamics is
described in this paper, where experimental measurements
are followed by mathematical modelling. We emphasise
that real-world data needs to drive modelling. The derived
network models need to be accurate and parameterised with
data on human interaction patterns, modularity, and details
of time dependent activity and it is important to understand
data collection methods, limitations, scale of noise for data
collections. How the data is measured would influence how
deep we are able to infer network properties. The derived
models can be used by many applications, for example, de-
termination of epidemic spread and construction of synthetic
networks. Data collection requires careful attention to the
ethic and privacy issues that will have to be addressed.

In data analysis, the focus on on modelling structure
and dynamics could be set from the following aspects: 1)
Physical proximity networks represent pair relationships,
proximity based modularity, and social interactions includ-
ing studying online based interactions such as email, instant
messaging, and social network services (e.g. Facebook,
Orkut). 2) Real social networks are not random as they ex-
hibit modularity. 3) Many real world networks are weighted,
but little analysis has been done in this area [11]. Topology
is closely related to edge weights, which influences how the
modularity of networks is formed. The connectivity traces
can be represented by weighted graphs in which the weight
of an edge represents, for example, the contact duration and
frequency for the two end vertices. 4) Human proximity
demonstrates the topology changes for every time unit. Thus,
existing network measurement metrics for static networks
are difficult to apply. Centrality measurements give insight
into the roles and tasks of nodes in a network including
degree, betweenness, and closeness centralities. 5) Analysing
the structural properties of growing networks is important. In
each time unit, several nodes appear or disappear, and each
node selects or deselects possible counter parts from existing
networks. Identifying such dynamics from empirical trace
defines the form of network evolution, where high dynamics
indicates significant network transition.
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