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ABSTRACT
We have previously demonstrated that information about
social relationships can yield improved performance when it
is used to control epidemic forwarding [7]. We believe that
extensive work to model human connectivity – incorporating
notions of community and interaction ’weight’ – is required
if we are to understand this phenomenon and build networks
that capitalize on it. This paper describes a visualization of
detected community structures uncovered by different meth-
ods from human encounter traces. We focus on extracting
information related to levels of clustering, network transitiv-
ity, and strong community structure. The position change
of hub nodes within the network is also visualized.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Com-
munication Networks—Distributed Systems; I.6 [Computing
Methodologies]: Simulation and Modeling

General Terms
Measurement, Experimentation, Algorithms

Keywords
Delay Tolerant Networks, Network Measurement, Social Net-
works, Centrality, Clustering

1. INTRODUCTION
As mobile, network-enabled devices become more common,
we gain the opportunity to exploit the dynamic networks
that form among them. However, these networks pose sig-
nificant challenges: the devices are sparsely distributed, and
the network often becomes partitioned due to geographi-
cal separation or node movement. The emergence of Delay
Tolerant Networks (DTNs) has culminated in a new genera-
tion of wireless networking addressing such network environ-
ments. New communication paradigms, which use dynamic
interconnectedness as people encounter each other leading
towards a world where digital traffic flows in opportunistic
manner. We focus on human-to-human (H2H) communica-
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tion among such networks that exhibit the characteristics of
social networks.

We have previously demonstrated that information about
social relationships can yield improved performance when
it is used to control epidemic forwarding [7]. This is par-
ticularly useful when applied to Pocket Switched Networks
(PSNs): a subclass of DTNs, in which each node is a mo-
bile device carried by a human being. Furthermore, we have
shown that it is possible to infer social networks from human
connectivity traces. During this work, we realized that fur-
ther understanding of network models is essential, because
the properties of human contact networks – such as commu-
nity and weight of interactions – are important aspects.

In this paper, we show a visualization of detected com-
munity structures using different community detection algo-
rithms from human encounter traces especially a snapshot
of hierarchical community detection results. We focus on ex-
tracting information related to levels of clustering, network
transitivity, and strong community structure. The position
change hub nodes along changing community formation is
also visualized.

2. INFERRING HUMAN COMMUNITIES
People inherently form groups, yielding social structures in
which prominent patterns or information flow can be ob-
served. Community detection in complex networks has at-
tracted a lot of attention in recent years. In the Internet,
community structures correspond to autonomous systems.
It is crucial to construct efficient algorithms for identify-
ing the community structure in a generic network. Many
community detection methods have been proposed and ex-
amined in the literature (see the recent review papers by
Newman [9] and Danon et al. [2]). We have shown various
community detection mechanisms [7] which can be applied
to human connectivity traces in both a centralized and a
decentralized way. The following summarizes the outline of
algorithms (see [7] for further details).

• K-Clique: Palla et al. define a community as a union
of all k-cliques (complete sub-graphs of size k) that
can be reached from each other through a series of
adjacent k-cliques, where two k-cliques are said to be
adjacent if they share k−1 nodes. An advantage of this
approach is that it allows overlapping communities,
which is useful as, in human society, one person may
belong to multiple communities.

• Weighted Networks Analysis by Newman [8] can work
on weighted graphs built from encounter trace. A
weighted graph can be converted into a multi-graph
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Figure 1: Communities - SIMPLE and K-Clique (CAM trace)

with many unit edges.
• Fiedler Clustering: The eigenvector for the nonzero

smallest eigenvalue of a Laplacian matrix is called the
Fiedler vector [5]. This vector can be used for decom-
posing graphs into structural components.

As self-organizing networks, we would also ask whether
the mobile devices can sense and detect their own local com-
munities instead of relying on a centralized server, which
leads to the area of distributed community detection. We
have shown three different algorithms named SIMPLE, K-
CLIQUE and MODULARITY, for distributed community de-
tection, and they proved that the detecting accuracy can be
up to 85% of the centralized K-CLIQUE algorithm. See [7]
for the details.

3. VISUALIZING COMMUNITIES
The quantitative understanding of human dynamics is diffi-
cult and has not yet been explored in depth. The emergence
of human interaction traces from online and pervasive envi-
ronments allows us to understand details of human activi-
ties. For example, the Reality Mining project [4] collected
proximity, location and activity information, with nearby
nodes being discovered through periodic Bluetooth scans
and location information from cell tower IDs. Several other
groups have performed similar studies. Most of these [4] [3]
use Bluetooth to measure device connectivity, while others
[6] rely on WiFi. The duration of experiments varies from 2
days to over one year, and the numbers of participants vary.
We have analyzed various traces from Crawdad database [1]
listed below and Table 1 summaries the configuration.

We show a snapshot of visualization in Fig. 1 and Fig. 2,
where detected communities with different algorithms are
depicted. Fig. 1 shows the community structures of the
CAM trace, where distinct two communities are observed.
The CAM trace contains the encounter log of the first and
second year undergraduate students. Both SIMPLE from
the distributed detection and K-Clique depict similar results.
Fig. 2 demonstrates hierarchical structures of communities
by Fiedler Clustering. The Cambridge result shows two clus-
ters clearly.

4. INFLUENCE OF HUB NODES
We have defined hubs based on the following centralities
(see [11] for further detail). Hub nodes are influential nodes
within the network.

Experimental data set MIT UCSD CAM INFC06 BATH

Device Phone PDA iMote iMote PC

Network type Bluetooth WiFi Bluetooth Bluetooth Bluetooth

Duration (days) 246 77 11 3 5.5

Granularity (seconds) 300 600 120 120 Continuous

Number of Experimental Devices 97 274 36 78 7431

Table 1: Characteristics of the experiments

• DEGREE Hub: The total degree of each node over
the entire duration of the trace indicates the popularity
of the node (Degree Centrality).

• RANK Hub: The frequency that a node is used to
relay data to other nodes indicates the Betweenness

Centrality. We simulated flooding over the temporal
graph extracted from the trace and counted the num-
ber of times each node is used for relaying the data.

• CROSS Hub: The appearance of a node at different
locations indicates that it has Mobility Centrality.

We visualize the position of hub nodes within the network
leading to discover the characteristics of hub nodes. Fig. 3
depicts network evolution over a period 15 minutes in the
UCSD trace (taken from our visualization work [10]). The
network exhibits a small-world-like formation at first, which
breaks down into two groups, each forming a star topology.
The node 35 with dotted circle positions always center of a
clique, while the node 19 with double circles takes place at
the edge of a cluster.

5. CONCLUSIONS
In this paper, we show visualization of detected commu-
nity structures uncovered by different community detection
algorithms from human encounter traces. The movement
of hub nodes within the network is also visualized. Visu-
alizing dynamic node behavior gives an aid to understand
complex network structure and network transitivity. We are
currently working on integrating location information in vi-
sualization.
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Figure 2: Hierarchical Community Structure - Fiedler Clustering

Figure 3: Position Change of Hub Nodes (UCSD Trace)


