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Abstract. A dramatic increase of event monitoring capabilities by wireless sen-
sors requires new, more sophisticated, event correlation over timspacd. This
new paradigm implies composition of events in ubiquitous computing environ-
ments and event Correlation will be a multi-step operation from eventesuo
final subscribers, combining information collected by wireless devidesigher
level information or knowledge. We define generic composite evenasges,
which extend traditional event composition with data aggregation in wiredess s
sor networks (WSNs). This work bridges data aggregation in WSNs wihtev
correlation services over distributed systems. We use interval-baseshes for
event detection, defining precisely complex timing constraints.

1 Introduction

In event-based middleware systems, an event correlatimicseallows consumers to
subscribe to patterns of events (composite events). Thigges an additional dimen-
sion of data management, and improvement of scalability @erformance in dis-
tributed systems. Particularly in wireless networks, mimg event correlation as a
middleware service helps to simplify the application logiw reduce its complexity.
Event correlation is also important for constructing reactlistributed applications.

The recent evolution of ubiquitous computing has broughitia significant in-
crease of event monitoring capabilities by wireless devered sensors. Such systems
require new, more sophisticated, event correlation owee tind space. The integration
of a smart WSN with a large network increases its coverage atehpal application
domain. In WSNs, a sink node is a sensor nhode with gatewayifunscto link to exter-
nal networks such as the Internet. Sensed information imaldy distributed via a sink
node. A sink node may also be an gateway node to an interreealibhoc network,
which may deliver the sensor data to the Internet. Fig.ladspVSNs connecting to the
Internet, where an ad hoc network conveys sensed data totdradt.

This new platform enables the seamless use of the varioognass in physically
interacting environments. A consensus is emerging thahtbe appropriate system ar-
chitecture to support such platforms is service managemghtcommunication based
on the publish/subscribe paradigm. For example, a publistoker node can act as a
gateway from a WSN, performing data aggregation and digtnigtiltered data to other
networks based on contents. Event broker nodes that offeedaregation services can
coordinate data flow efficiently. Especially when eventdeasommunication is imple-
mented via a peer-to-peer (P2P) overlay network, the aactstn of event broker grids
will extend the seamless messaging capability over salatkerogeneous network en-
vironments. Event Correlation will be a multi-step operatfrom event sources to the



final subscribers, combining information collected by \es devices into higher level
information or knowledge. Mobile devices can be deployesmote locations without
a network infrastructure.

In existing middleware and applications, the semanticspefrators for composite
events is not defined in a uniform manner leading to a numbpraiflems. Event con-
sumption rules are mostly done as part of an implementatidhput a clear semantic
definition. Most extant approaches to define event cormldtick a formal mechanism
to define complex temporal and spatial relationships amonglated events. Thus, a
unified semantics has to be defined to resolve this ambigwtgporal ordering in real-
time is a critical aspect of event correlation in wirelesshad network environments.
Neither logical time nor classical physical clock synchiration algorithms may be
applicable. In order to determine the direction of movenoér@ real world entity, tem-
poral ordering of events originating from different deeideas to be established. Events
can be triggered by physical phenomena, such as glaciersaatidjuakes, and the or-
der of occurrence of sensed data is again important.

Event Aggregation, Filtering and Correlation: Some event-based middlewares offer
content-based filtering and provide flexible query langsadéese allow subscribers
to select events of interest, based on the values of thetenots1 A query can apply
to different event types but the aim is to select individuargs. On the other hand,
event correlation addresses the relationship among, terpadf, instances of differ-
ent event types. WSNs have led to new issues to be addresseehincerrelation. In
WSNs the requirement is to summarize current sensor valussie or all of a sensor
network. TinyDB[10] is an inquiry processing system for sensor networks andstake
a data centric approach. Each node keeps the data and exestnigval and aggrega-
tion (in-network aggregation), with on-demand based djao deliver the data to
external applications. TinyLIME3] enhances LIME (Linda In Mobile Environments)
to operate on TinyOS. In TinyLIME, LIME is maintained on eagnsor node together
with a partition of a tuple space. A coordinated tuple spacaeated across the nodes,
connecting with the base station in one hop. It does not otlyr@rovide any data
aggregation function, only a data filtering function based_nda/LIME at the base
station node. On the other hand, TinyDB supports data agtjoeegvia SQL query, but
redundancy/duplication handling is not clear from avdéatocuments.

Middleware research for WSNs has been active recently, bset reeearch focuses
on in-network operation for specific applications. In thégpr, we take a global view of
event correlation over entire distributed systems. We deafameric correlation seman-
tics, combining traditional event composition and dataraggtion in wireless sensor
networks. For the event detection semantics, we introdyeeameterized algebra. Pa-
rameters include time, selection, consumption, and subbest. This approach defines
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Fig. 1: Bridging WSNs to the Internet



unambiguous semantics of event detection and supportsreesoonstrained environ-
ments. We introduce interval-based semantics for evemictieh defining precisely

complex timing constraints among correlated event ingsnin resource constrained
network environments, the event algebra must be restrgzidtiat only a subset of all

possible occurrences of complex events will be detected tlsis can be achieved by
applying appropriate parameters. This paper continuesliasvs: Section 2 describes
the event model, Section 3 defines composite event semaniicsection 4 discusses
temporal ordering. The formal definition and proof of therdvalgebra is out of the

scope of this paper. Section 5 presents results of expetsmarSection 6 we describe
related work, and Section 7 contains conclusions and daresfor future research.

2 Event Mode

In this section, we define our event model. A primitive eventhie occurrence of a
state transition at a certain point in time. Each occurreri@n event is called an event
instance. Each event has a timestamp associated with theresce time. Composite
events are defined by composing primitive or composite eweith a set of operators.
Timestamps. A timestamp is a mandatory attribute of an event defined wighfime
system, while the event occurrence time is a real-time definethe occurrence of
the event. Thus, the timestamp is an approximation of theteeurrence time. Most
point-based timestamps consist of a single value indigatie occurrence time. If7],
the time when an event is detected is given as an intervaeb@mestamp, which cap-
tures clock uncertainty and network delay with two valué& ow and high end of
the interval. Although an interval format is used, it regms a single point (point-
interval-based timestamp). In addition, we define a (coritgpavent with duration and
give a new interval-based timestamp to a composite eveethas interval semantics.
A point-interval-based timestamp is an accurate reprasent and it is distinct from
interval-based timestamps representing the durationeftev

Spacestamp: We introduce spacestamp, as an optional attribute of art,enelicating
certain location, relative location, grouping and so fdgthy., position information (lat-
itude, longitude, elevation) by GPS, global node id). Thi®imation can be used for
ordering events within the given space.

2.1 Duration

Referencégl] argues that all events have duration and considers ingsivdlle the basic
timing concept. A set of 13 relations between intervals iineel, and rules governing
the composition of such relations controls temporal reiagpi©On the other hand, most
event systems consider events as instantaneous, thae iipth associated with the
event is an instant rather than an interval. A durative egantbe seen as capturing the
uncertainty over the time of occurrence and the time of dieteof an event rather than
modelling an event that persists over time. In this sens&tide events are akin to the
point-interval-based-timestamps described above. Thatida event model considers
that instantaneous events are durative events with minichuration, thus reconciling
the models. We would regard an ‘event’ that persists oves imakin to a state, with an
event at the start and one at the end of the time period. Thisl @so be defined as a
composite event. Composite events are built up from evernisrdng at different times,
therefore the associated real-time is usually that of thiedhits contributory primitive
events. This is natural in a context where the prime focusiisv@nt detection, since



typically a composite event will be detected at the time ttsalast contributory event

is detected. However, this does lead to logical difficultiethe case of some composite
events. Determination of the duration of composite eveedglires the semantics of
composition and time system information such as a poinedhas an interval-based
time model.

2.2 Duplication

It is important to distinguish between multiple instancéga given event type and du-
plicates of a given event instance. The expressivenesayd svent specification lan-
guages has been limited by not distinguishing between dypes and instances of
those types[8] attempts to define conditions and constraints on attriboftesents in
correlation rules rather than defining operators on evesitiirtes. Especially in sen-
sor networks, in order to avoid loss of events by commuracaitistability, duplicates
of events may be produced to increase reliability. Dupéisdtave to be handled dif-
ferently depending on the application, and contexts wittpplications. For example,
in object tracking, the most recent reading from a sensoalislvand events prior to
that will be obsolete, except for the historical record. Baather hand, in a transaction
event in which a customer cancels an order, a duplicate ebhenid be ignored because
a transaction is being repeated. Thus, the semantics of ewerposition have to ad-
dress handling of duplicatef®] take the approach of defining constraints on attributes
of events and detect occurrences of events, before caorelzinditions are evaluated.
We propose duplicate handling in two ways: adding a seleatigerator as an event
composition operator and adding subset policies as paeasnet

3 Event Correation Semantics

We define composite events by expressions built from prmigind composite events
and algebraic operators. The operators of the event algebrdefined informally in
this section. We also support parameters, which help toeefiambiguous semantics
of event detection and support resource constrained emaiats. In wireless ad hoc
networks, the event algebra must be restricted so that oslipaet of all possible oc-
currences of complex events will be detected. We providelmggerators that have the
potential of expressing the required semantics and ardt@mpgrestricting expressions.
Also, an interval semantics supports more sensitive iateelations among events in
environments where real-time concerns are more criticgh &s wireless networks or
multi-media systems. The temporal operators introduced]iare not uniformly de-
fined in many applications. We define complex timing consteaamong correlated
event instances. An example is shown in Fig.2 (see full déimin [16]).

Relation |Timestamps of Primitive Events |Point | Interval
A before B |P-P:t,(A) < £,(B) O A C—A—O

L £, (A < t.(B) OB O-B-O
(A+B) [ o [ 2
(A B) . L J *o—@
(A:B) -9 @
A overlaps B|p-P: NA O—A—O

L (6 (A)' < 6 (B A (8 (A" > :(B)Y) O—B—0O
(A+B) o—————e
(A]B) *o———©O
(A B) *o————@

Fig. 2: Temporal Condition for Composite Events



3.1 Composite Event Operators
The event operators are defined informally as follows:

e Conjunction A + B: Event A and B occur in any order.

e Digunction A | B: Event A or B occurs.

e Concatenation A B: Event A occurs before event B where timestamp constraintéare
meets B, A overlaps B, A finishes B, A includes B, and A starts B

e Sequence A ; B: Event A occurs before B where timestamp constraintsfabefore B,
and A meets B(A ; B)r denotes that an interval T between event A and B.

e Concurrency A||B: Event A and B occur in parallel.

e Iteration A*: Any number of event A occurrences.

e Negation —A7: No event A occurs for an interval T4; B) — C denotes that event A is
followed by B and there is no C in the duration of (A;B).

e Selection AN: The selectionA” defines the occurrence defined by M4"¢ denotes
taking the average during an interval T.

e Spatial Restriction Ag: Event A occurs if it is a spatial restriction defined in S, that can
be defined as a specific location or a group identifier etc.
- E.g. Acposrp: The area cod€BO03FDidentifies the zone around Computer Laboratory
in Cambridge. Event A is valid only when spatial condition is satisfied.

e Temporal Restriction A7: Event A occurs within TBr denotes a valid interval for B.

Example: The temperature of rooms with windows facing south is meakevery
minute and transmitted to a computer placed on the corridalenotes a temperature
event andl’y)V ¢ denotes a composite event of an average of the temperattng G0
minutes(Troom1 + Troom7)30 ¢ denotes to take an average of room 1 and 7.

3.2 Interval Semantics

We give a timestamp to a composite event based on intervarg@s. In most event
algebras, each event occurrence, including compositeégusmassociated with a single
time point. This may result in unintended semantics for soperator combinations,
for example nested sequence operators. In Fig.3, time fiams left to right, and each

row shows the occurrence of a primitive event. When singlatmetection is used, an
instance of event B;(A;C) is detected if A occurs first, foled by B and C. The reason
is that these occurrences cause a detection of A;C, whicksiscated with the occur-
rence of B;(A;C). With interval semantics, the sequence Aaa be defined to occur
only if the intervals of A and B are non-overlapping. No ogeurce of B;(A;C) would

be detected. ‘

A: move into the area above 1000m, B: temperature goes down to -4C
C: move into the area above 2000m

A Y Y

B —_— - - e

c —_— e —_— e

A;C - - -
B;(A;C) -

B;C —_———®— —
A;(B;C) —_——®—

Fig. 3: Point and Interval
3.3 Event Context
Adding the policy defining the constraints provides a way talify the operator seman-
tics. This parameter-dependent algebra can accommodédecdt policies on event



consumption. First, each operator is given a principle defimof the constraints on
the participating occurrences of events that charactéheeperator. Then a number
of event contexts are defined that act as modifiers to the simpérator semantics.
These contexts specify constraints on how occurrences maglected. As a result,
each combination of an operator and a context can be seerepsi@te operator with
a specific meaning.
Consumption Policy: Three event consumption policies can be definsdestricted
recentandchronicle Snoop[2] uses these contexts, but it is not capable of applying an
individual context to different event operators. The pagtendependent algebra clari-
fies the situations. The following gives an informal defmmitifor detecting A;B.

e Unrestricted: All instances of A and B are valid.

e Recent: If an instance of B can be combined with several instances dioAncnstances of

A;B, the only recent instance of A is valid.

e Chronicle: Only the oldest instance of A is valid, which is never valid in theréutu
Subset Palicy: defines the subset of events to detect. Ideal\Sthigset Policghould in-
terfere as little as possible with unrestricted semankicse of the removed instances
should have a crucial impact on the detection of an enclod@tgction. At the same
time, operations such as conjunction and sequence mustid®éoalblentify non-valid
instances early, before the end time of the instance is eeadthe main task of thBub-
set Policyis to make an effective algebra, feasible to implement inuese constrained
environments. The basis of ti8ubset Policys that the restricted event stream should
be a subset that does not contain multiple instances withahe end time.

Precision Palicy: defines the precision of the events to be detected. The dgnami
spatial-temporal data from WSNs is generated at a rapid radeall the generated
data may not arrive at the aggregation node over the netwhir&go the lossy/faulty
nature of the sensor network. On the other hand, if some icigiom of the collected
data could be tolerated by the application, defining theigi@t available is important.

For exampleHigh, Default, Lowcan map to:
e the ratio of sensor nodes that are awa@%o, 20%, 5%
e the delivered time-series datE00%, 70%, 50%
e the interval of data collectiori: second, 10 seconds, 60 seconds
e the frequency of data repottirgent, Periodical, Available.

3.4 Event Detection

The current detection mechanism is based on an imperatjegitdm, which is exe-
cuted once every time instant. The main loop selects subsgjams dynamically and
computes the current instance of a target composite evemt tihe current event and
stored past information. For examplg,denotes the event expression to be detected,
and subexpressions éf are indexed to k in bottom-up order. The operation result is
E*(= E). Each operation in the expression needs its own indexeg\&anbles (e.g.,
past events, time instant, and spatial information). A eaintletection component can
be created for common use. We implemented a prototype usimyde automata with
support of parameterized values and time constraints.

4 Temporal Ordering
Sensor networks are used to monitor real world phenomenfbasdch monitoring ap-
plications, physical time is crucial. In global computimygonments, such sensor data



flow over heterogeneous networks. We cannot assume a glolo&| or globally syn-
chronized physical clocks, to correlate events. Moreovieemthe store-and-forward
paradigm is used for communication, message propagatlaey ideunavoidable. Tradi-
tional message ordering based on a transport layer pragnoot applicable. Thus, we
use timestamps embedded in events for correlation, whioVige a real-time mecha-
nism. Temporal ordering of events is highly influenced bydhent detection method,
timestamping methods and the underlying time systems.

In many real world scenarios, wireless networks may be geplovith relay nodes
to the Internet and it is possible that relay nodes can cdrieeGlobal Positioning
System (GPS). GPS may be the key for providing accurate tiajusenent at certain
nodes that are less resource constrained within wirelesmadetworks. We define
two categories of network environments; where NTP is degdowith GPS, such as
the Internet domain, and where networks are isolated in achtarle without GPS or
any other deterministic time synchronization mechanison.tke first category, we use
interval-based point timestamps for primitive events, rehthe interval low and high
end values are computed as describe@]imo allow for clock uncertainty and network
delay. For timestamping composite events we use interasdd semantics, unlikg
where a new timestamp is taken on the detection of a compesitat. For the second
category, several time synchronization mechanisms haste p@posed. Among those,
we investigated the one describedin]. The idea of the algorithm is not to synchro
nize the local computer clocks of the devices but insteaceterate timestamps from
a local clock. When such locally generated timestamps argeplasetween devices,
they are transformed to the local time of the receiving dewtle propose a simplified
protocolLightweight Local Clock Propagatigrwhich is on-demand based timestamp
synchronization. The basic idea is that each node calauilstprocessing time using a
local clock, and at the sink node, the sum of the processinggis subtracted from the
event arrival time to estimate the occurrence time. Conipparmestamps are there-
fore created at sink nodes instead of network-wide. Thigireg the two assumptions:
network delay is negligible (e.g. the node is close to théoradnetwork deploymentis
dense) and clock drift is negligible (e.g. the node carmesszilloscope that guarantees
less than 10 ppm drift).

Thus our proposal is a coordinated approach with and withtivaituse of GPS.
Sensor events could be aggregated at gateway nodes wigiatnared timestamps and
passed towards a subscriber node in the Internet enviranmbere GPS-based time
synchronization is deployed.

5 Experiments

Below are experiments results for composite event detegtith time restriction, sub-
set rule, and an object tracking system. Surface metedoalodata from the NOAA
Aeronomy Laboratory TRMM profile system recorded in 1999 ased as base data
for the experiments described in Section 5.1-2. The datéagomind, temperature,
relative humidity, pressure and solar radiation. The dedenfeach instrument were
sampled every 0.5 second. Every 10 seconds, a 10 second@veaa transmitted to a
base station. As part of the 10 second average, a timestampdded to the data. The
clock is kept in UT time, and is set to the GPS time standardyeweek. The logged
data were assembled to the individual event and a discrete @enerator simulates
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the event occurrences as if sensed data are reported froseriser network in single

hop communication range. In the first experiment, each egedtiplicated. There is
no loss of events in both experiments. The composite evext insthe experiments is
as follows: humidity below 60% (H) followed by temperatureen30% (T) within 10
seconds, which denoté&l; 7).

5.1 Time Restriction

Consider as an example, the event expres§ldnT’),: before the current time instant
10, there have been six occurrences of H. f,ainstance occurs in the current time
instance, and the start time of this instance is 9 or 10, itilshbe combined withhg
(occurred at time instant 7) to form an instancefTy. If the start time is 8, it should
be combined with; (at 6), etc. Since an instance Bf with an end time of 10 must
start no earlier than 6, it follows that it must be combinethvgitherhs (at 4), k4 (at
5), hs, or hg, and thus there is no need to stdre (at 1) andh, (at 2). Throughout
the detection of this expression, all instances of H thatraock than 4 time units ago,
except the one with the latest start time, can be discardgd4Fshows a simulation
of memory usage with the number of event states to be kepthEadetection policy,
the most recent instance of H is used. The time restrictidnevis set to 10, which
may be relatively a large number. The time restriction israilar concept of event
detection with a sliding window, but with our approach, saties are unambiguous and
capability of individual definition for each event gives #mer advantage. Our approach
ensures that detection of composite events can be effigiemplemented with limited
resources, which can be an critical element for embeddelitappns. The number of
detected composite events is also illustrated in Fig. 4shaivs only half of composite
events being detected when time restriction is specifiathdetected composite events
imposes loss of information, then the time restriction nermrghould be reduced.

5.2 Subset Rule

Fig. 5 illustrates the memory usage when the H's sub&gtThe event instances with
the same end time is removed and the Subset Rule keeps exaetlyith maximal start

time. Because the composite evéhls; T') is equivalent tq H; T), in an environment

with the Subset Rule all the composite events, supposed deteeted in unrestricted
environments should be detected. In Fig. 5, both cases dimsaime results for com-
posite event detection. On the other hand, with the Subdet|Bss states are kept.

5.3 Object Tracking
We developed a prototype of an object tracking system usiad\ttive BAT data (see
[17] for more detail). Fig.6 shows the specific period, when twopbe are positioned
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Fig. 6: Composite Event Detection

at the machine room. The composite ev@rian+Andy)machine-roommwhere ‘Brian
and Andy are together at the machine room’ is detected bettihegime unit 1523 and
1529.

6 Redated Work

Much composite event detection work has been done in aciabdse research. SAMOS
[5] uses Petri nets, in which event occurrences are associdted mumber of parameter-
value pairs. The transition from centralized to distrilbLggstems led to the need to deal
with time. [2] presents an event-based model for specifying timing caimétr to be
monitored.[9] proposes an approach that uses the occurrence time of saeat in-
stances for time constraint specification. GEM] allows additional conditions, includ-
ing timing constraints, to combine with event operatorsdmmposite event specifica-
tion. Composite events service in an event-based middéesymstem reduces the com-
munication within the system and potentially gives a highearall efficiency, which is
addressed ifL2]. Hayton et al[6], on composite events in the Cambridge Event Archi-
tecture, describe an object-oriented system with an eugabea that is implemented
by nested push-down FSA to handle parameterized events.

Temporal message ordering has been an issue in traditiebabrks such as for
system monitoring and in distributed event systems. Intiexjsystems, the semantics
of event order often depends on the application logic. Fal-time support, a com-
mon solution in wired networks provides a virtual globaladhat bounds the value
of the sum of precision and granularity within a few millisads. The 2g-Precedence
model is enhanced for distributed event ordering and corgesgent detection using
2g-precedence-based sequence and concurrency opgtajotsowever, in open dis-
tributed environments, not all servers are interconneatetievent ordering based on
NTP may lead to false event detection. Interval-based tiys¢ems define event or-
der based on intervals. ], timestamps of events can be related to UTC (Universal
Coordinated Time) with bounded accuracy, and event timgstaare modeled using
accuracy intervals. They use NTP that provides referemce ithjected by a GPS time
server and, in addition, returns reliable error bounds. Wioeless network environ-
ments,[13] presents a GPS based virtual global clock, which is usedrf@stamping
events, and deploys a similar concept to 2g-precedencefdtds synchronizatioiy]
is based on unsynchronized local clocks but limits syndedion to the transmit range
of the mobile nodes.



7 Conclusionsand Future Work

Our event correlation semantics supports a new paradignmgoftom the recent evo-
lution of ubiquitous computing with a rapid increase of évaonitoring capability by
wireless devices. The main focus is on supporting time aadespelated issues such
as temporal ordering, duplicate handling, and intervalellasemantics, especially for
wireless network environments. Event management will beiki+step operation from
event sources to final subscribers, combining informatalected by wireless devices
into higher-level information or knowledge in a global camipg environment. Work
is ongoing on the transformation of event algebra, so thaiptex expressions can be
more efficiently implemented in resource constrained asvaver wireless ad hoc net-
works. We are working on a complete implementation, inglgdiarious timestamping
environments.
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