
Mobile Applications with a Middleware System

in Publish-Subscribe Paradigm

Eiko Yoneki

University of Cambridge Computer Laboratory,
William Gates Building, J J Thomson Avenue,

Cambridge CB3 0FD, UK

Eiko.Yoneki@cl.cam.ac.uk

Abstract

This paper presents applications using Pronto[12] and its correspond-
ing functions. Pronto is a middleware system for mobile applications with
messaging as a basis in both centralized and decentralized forms. It ad-
dresses design issues in mobile computing, including data optimization,
resource constraints, and network characteristics. Pronto consists of a
lightweight Message Oriented Middleware (MOM) client and an intelligent
gateway as a message hub with store-and-forward messaging. The publish-
subscribe paradigm is ideal for mobile applications, as mobile devices are
commonly used for data collection under conditions of frequent disconnec-
tion and changing numbers of recipients. This paradigm provides greater
flexibility due to decoupling of publisher and subscriber applications. Mo-
bile applications benefit from advantages by deploying Pronto, including
disconnected operation, Gateway caching, compression, data transforma-
tion by Gateway plug-in functions, and content-based subscription.

1 Introduction and Background

Computing devices are becoming increasingly mobile at the client end. In a
mobile/wireless network environment, devices have a small ROM/RAM foot-
print, latency is high, bandwidth is low, connections are frequently interrupted,
and many devices are not programmable. Middleware communications service
is especially important for integrating such hybrid environments into coherent
distributed systems.

Intercommunication is commonly achieved using directed links between tightly
coupled senders and receivers; the message destination must be known at the
time of sending, which is difficult with changing destinations or varying num-
bers of recipients. By contrast, Message Oriented Middleware (MOM) encour-
ages loose coupling between message senders and receivers with a high degree
of anonymity, with the advantage of removing static dependencies in a dis-
tributed environment. MOM’s characteristics (intuitive programming model,
latency hiding, guaranteed delivery, store-and-forward) are appealing for mobile

applications. Java Message Service (JMS) [8] is a recent Java technology, pro-
viding an API for inter-client communication among distributed applications.
It is a service-oriented API specification, providing an architecture for MOM
and prescribing messaging functionality in terms of interfaces and associated
semantics. It offers a publish-subscribe paradigm and expands previous mes-
saging capabilities. Most JMS products implement a centralized server model.
To provide rich JMS functionality, especially persistent message delivery, servers
require databases (for storing messages), yet none of the commercial products
has successfully implemented JMS in a decentralized model. There have been
efforts to construct messaging systems over peer-to-peer networks, but none pro-
vide enterprise level messaging functionality thus far. Given the characteristics
of mobile devices and wireless networks, more work is required for good perfor-
mance. Some important design issues are specified below:

• Wireless networks become increasingly packet-oriented. With a packet-oriented
bearer such as GPRS (General Packet Radio Service) or UMTS (Universal Mo-
bile Telecommunications System), users typically pay only for the data they
communicate. Reducing data size for transmission is crucial.

• Because of low bandwidth, high latency, and frequent disconnections, a middle-
ware should provide an interface to applications that allows for communication to
be maintained during disconnected operation. Dependable caching is essential.

• A data source can be interpreted in different formats and semantics depending on
the specifications of mobile devices and wireless networks. Semantic transcoding
technology [6] should allow for more efficient data flow.

• There are various bearers such as 2G, 2.5G, 3G, Bluetooth, and IEEE 802.11 and
many devices are non-programmable. A middleware needs to offer an interface
that provides a communication abstraction.

We have developed Pronto [12], a middleware system for mobile applications.
The basis of Pronto is a MOM, based on JMS in both centralized and decentral-
ized forms. Pronto also introduces an intelligent gateway [11] for reliable and
efficient transmission between mobile applications and servers, taking advan-
tage of plug-in components for caching, device-specific transport, compression,
and semantic transcoding as well as supporting disconnected operation. Pronto
provides a useful MOM layout from a server to mobile devices over a wireless
network, and its performance is optimized by applying and comparing different
techniques.

To demonstrate the potential of Pronto, we wrote several applications. Pronto
can be used for pervasive computing, thus providing instantaneous access to in-
formation (e.g. stock quotes, email, calendar-alerts) in a reliable and efficient
manner. Over a temporal network environment, Pronto can be used to establish
group communication without a central server. This paper presents applica-
tions constructed with Pronto and the corresponding functions. Section 2 de-
scribes the component overview of Pronto and deployment possibilities. Section
3 presents experimental applications and deployment examples. More details of
Pronto functions follow in Sections 4-7. Section 8 shows benchmark testing for
performance improvement. This paper finishes with an overview of related work
(Section 9) and a conclusion and future work (Section 10).

2 System Overview
Pronto is designed as a middleware forming a collection of distributed services.
Three main functions form the backbone:

MobileJMS Client: MobileJMS Client is designed to adapt the JMS client
to the mobile environment. The challenge is to accommodate JMS with con-
strained mobile devices. The specifications and interfaces of JMS are complex,
but not all functions are mandatory for a mobile environment. For example,
Pronto does implement neither MapMessage nor message priority. MobileJMS
Client is described in more detail in Section 4. Furthermore, a simple JMS server
was implemented to support the MobileJMS Client, which is out of scope of this
paper.
Serverless JMS: Serverless JMS is a novel serverless version of MobileJMS
Client. The aim is to put the JMS scheme in a decentralized model, using IP
multicast as transport mechanism. In a mobile environment, the nature of data
distribution may often fit better into a multicast/broadcast model. Multicast
transport mechanisms allow the efficient transmission of data from one to many
without redundant network traffic. Serverless JMS will perform best over an
ad-hoc network and for high-speed transmission of a large number of messages
distributing the workload of one to several servers. The ad-hoc network, another
feature of a mobile/wireless network, is a dynamically re-configurable network
without fixed infrastructure and without a requirement for the intervention of a
centralized access point. The message domain publish-subscribe can reside well
on an ad-hoc network.
Gateway and SmartCaching: An intelligent Gateway [11] is introduced as
a message hub with store-and-forward messaging, taking advantage of plug-in
components for caching, device specific transport, and message transformation.
SmartCaching is designed to provide generic caching; it is embedded as a central
function for message storage in Gateway. Gateway and SmartCaching are key
technologies for improving messaging among mixed mobile-tier environments in
dynamic connectivity scenarios (see Sections 6-7 for details). Plug-in compo-
nents are not discussed in this paper.

Pronto can be deployed in a centralized model with MobileJMS Client and Gate-
way functions and in a decentralized model with Serverless JMS. Combination
of Gateway and Serverless JMS optimizes message flow in distributed systems
(see Section 3.5 Gateway Cascade).

2.1 Distributed Systems with Pronto in a Centralized Model
Fig. 1 shows an overview of a distributed system with Pronto in a centralized
model. Different deployment possibilities are illustrated:

• Application with MobileJMS Client: An application in a mobile device
uses a MobileJMS Client API; it communicates directly with the JMS server.

• Application with LocalGateway: An application in a mobile device uses a
MobileJMS Client API or a Gateway API. LocalGateway is a mode of Gateway
and can run as a separated thread from the application or within the application
and performs caching and transcoding through plugged-in components.

 JMS
 Server

 SmartCaching

 Mobile
 JMS
 Client

 Local
Gateway

Message
Database

 JMS
(TCP/IP)

RemoteGateway

Device Specific
Communication

 Application
 on
 MobileDevice

Application
 on
MobileDevice

Application
 on
 Mobile
 Device

JMS (TCP/IP)

 Subscriber

 Publisher

Plug-in Components

 Transport Message

 Transform Message

Transport

SMS

Email

Server
-less

JMS

SMS

Email

IPnet ServerlessJMS

 Cache

Snapshot

Subscribe
Cache

RMI

 Smart
Caching

 Smart
 Caching

Figure 1: System Overview of Distributed System with Pronto

• Application with RemoteGateway: An application in a mobile device uses
a MobileJMS Client API or a Gateway API. RemoteGateway is another mode
of Gateway and runs as a separate process. Currently RMI-based transport
between a RemoteGateway and MobileJMS Client is implemented.

• Non-Programmable Devices with RemoteGateway: Non-programmable
devices require RemoteGateway to perform proper transportation and message
transformation for the target device. RemoteGateway represents every sub-
scriber and publisher for the non-programmable device.

2.2 Pronto in a Decentralized Model

Serverless JMS supports a decentralized model. A publisher acts as a temporary
server and keeps a subscription list. Fig. 2 shows the data flow in Serverless
JMS.

Publish

Publish

 IP Network
 (ex. IEEE 802.11B)

 Serverless JMS X

Publisher Application

 Serverless JMS Serverless JMS

 X Serverless JMS

 Publisher Application

 Serverless JMS

Subscription
 List (Topic B)

Subscription
List (Topic A)

X: Serverless JMS stops non-subscribed message delivery.

Subscriber Application
 on Topic A

Subscriber Application
 on Topic B

Subscriber Application
 on Topic A, B

Figure 2: Serverless JMS over IEEE 802.11 Network

2.3 Disconnected Operations

The following approaches are designed for disconnected operation in Pronto:

• Durable subscription via MobileJMS Client: Durable subscription is part
of the JMS API. Non-durable subscriptions last for the lifetime of the subscriber
object. A subscriber can, optionally, be durable by registering a durable sub-
scription with a unique identity.

• Gateway Cache: Gateway maintains its cache even if applications are inactive.
Applications can use the Gateway cache after regaining connection; they can use
the pull, subscribe, and snapshot operations of SmartCaching as appropriate.

3 Applications and Deployments

Mobile applications benefit from various advantages by deploying Pronto. Ap-
plications and deployment examples are shown below.

Mixed Media Chat: Chat among an applet, an application, Palm pilot, iPAQ,
and SMS phone. All clients subscribe to the topic ’Chat’. A Gateway residing in the
mobile laptop contains two plug-in components, Voice Synthesizer and SMS. Two iPAQ
devices are monitoring the chat conversation through the Gateway cache. Additional
devices can join the chat anytime without change of the other components(see Fig.3).

 8 02 .11B
J M SS e r v e r

A p p le t C h a t

M o b i le L ap to p

 P a lm

L e t ’ s g o
S w im m in g …
O K . N o w ?
I a m b u s y ..

 S M S S M S M e s s a g e

V o ic e c o n v e r t ed f r o m T ex t

iP A Q

 R e m o te G a tew ay
B lu e to o t h

A p p l i c a t i o n

 V o ic e
S y n t h es is e r

C a c h e

 R em o te
 G a t ew a y

Figure 3: Application: Mixed Media Chat

Chat with Serverless JMS: This is a chat system using ServerlessJMS over a
temporal network. Jurg subscribes ’Football news’ via JMS. When he obtains an im-
portant news, his PDA starts up a publisher application with the topic ’News’. The
application uses the auto-discovery function to find whether any subscribers are lis-
tening to the topic. After finding subscribers, it publishes a messages. Hedi and Willi
respond to this message and join the chat. The publisher application in Jurg’s device
removes the subscription by Hedi when she disappears from the network. The whole
process does not require any central access point. Once Jurg’s publisher application
disappears from the network the chat ends. See Section 5 for the details of Server-
lessJMS(see Fig.4).

 802.11B
 / Bluetooth

Jürg as publisher

Willi as subscriber

Hedi as subscriber

Bersel
won!

Score? Zurich ?

Serverless
 JMSClient

Serverless
 JMSClient

Serverless
 JMSClient

JMS Server

 Figure 4: Application: Chat over an temporary network

Time Series of Video Data Publishing over 802.11B Network: A video
camera takes 15 seconds of video every 30 seconds, and data are published under the
topic ’Video’. All subscribers receive the published video data. A Laptop/iPAQ user
is moving, leading to occasional disconnections. Gateway running on Laptop/iPAQ is
set to durable subscription, and all published data are cached within the Gateway. The
application subscribes the cache from Gateway and shows the video data via the media
player. Gateway’s caching provides the entire process without significant delay. At the
same time, Gateway plug-in functions, Email and SMS, send out the data. Data are
transcoded to the appropriate formats of the target devices(see Fig.5).

 Local Gateway Application

Cache

Publisher

JMSServer

 Subscriber

Laptop/iPAQ

Video Camera

Applet Subscriber

 802.11B

Email
 Bluetooth

SMS

Transcode

Figure 5: Application: Video Data Publishing over 802.11B Network

Gateway Cache and Message Selector: Fig.6 shows an application with Gate-
way and SmartCaching. Subscriber applications register topics and Message Selectors
(see Section 4 for the detail of Message Selector). A publisher publishes messages
containing income information for the people within a group. One application is of
interest only to people who earn over 100,000 Euro, whereas the other application is of
interest to all people regardless of salary. Gateway keeps the cache, and applications
obtain cache in the following manner:

 Remote Gateway
 Cache JMSServer

RMI

 802.11b

Publisher

Application A:
2. Subscribe topic “ Income”
3. At start-up, pull cache
4. Add cache subscription
5. When cache update is notified,

process message

Application B:
1. Subscribe topic “ Income”
2. Start Snapshot
3. Disconnected
4. When reconnected, pull snapshot

cache
5. Reset Snapshot base
6. Disconnected

LAN

Gateway:
1. When topic “ Income” registered,

create JMS subscriber
2. Snapshot on message
3. Cache subscribed message

RMI
RMI

Figure 6: Application: Gateway Cache and Message Selector

• Application A subscribes cache update and gets notified when messages with the
topic ’Income’ are added. It is interested only in messages containing information
of people earning over 100,000 Euro. Thus, the message selector is used, and A
only gets notification when the message matches the selection.

• Application B subscribes to the topic ’Income’. This device is disconnected most
of the times. B sets the Snapshot baseline (see Section 7 for details of Snapshot),
then disconnects from Gateway. While the device is disconnected, the Gateway
keeps receiving messages and caches them. When B is re-connected, it pulls the
Snapshot cache and resets the Snapshot base line.

Gateway Cascade: Multiple Gateways can be used to distribute messages to target

Gateways where they are sent to the devices. JMS bus is a Serverless JMS over a high-

speed bus. A high-speed bus can be LAN-based or WAN-based as far as the routers

allow IP multicast. Combination of Gateway and JMS bus offers powerful message

flow control and distributed filtering to minimize network traffic as appropriate for the

network characteristics. With increasing distance from the source, data are expected

to become more localized by deploying Gateways(see Fig.7).

Publisher (Stock Information)

J
M
S

B
U
S

J
M
S

B
U
S

Gateway

 Local
 Gateway Application

Subscriber

Mobile Device

 IEEE
 802.11B

IP net

 SMS

MobileIPNet

LAN

Cache

JMSServer Gateway

Gateway

 Gateway
(Subscribe only
Alert message)

Gateway

Gateway

Cache

Cache

Cache

Cache

JMSServer

Alert message
 via SMS

Figure 7: Deployment: Gateway Cascade

4 MobileJMS Client

MobileJMS Client is designed to follow the JMS API model. In Pronto, a mes-
sage is a lightweight object consisting of a header and body. The header contains
identification and routing information and is optimized for minimal size. The
body contains application data. Essential message types such as TextMessage,
BytesMessage, and ObjectMessage from the five message types defined in JMS
are implemented. Messaging services such as persistent delivery, durable sub-
scription, and the time-to-live option on a message show the range of delivery
methods. Durable subscription is essential to support disconnected operation.
Pronto implements the publish-subscribe paradigm for asynchronous messaging,
but not the point-to-point paradigm. A connection represents an open connec-
tion to the JMS server. JMS does not define any specific transport mechanism
and HTTP via TCP/IP is implemented in Pronto.

Message Selector (Content Based Subscription): Pronto currently pro-
vides Message Selector for content-based subscription as an extension of JMS
API. This gives greater flexibility for applications as there is less coupling be-
tween producers and consumers.Message Selector is a filter for a topic defined
by the consumer. In Pronto, this filter is implemented with an XML based
TextMessage. A message selector is a string, whose syntax is based on a subset
of SQL92 conditional expression syntax. In the example shown in Fig.8, only
the second message published will be delivered to the subscriber.

Publ i sher :

 Text Message msg1 = sessi on. creat eText Message
 (‘ <?xml versi on=\ ’ 1. 0\ ’ encodi ng=\ ’ UTF-8\ ’ ?><Li st >
 <Mi l l i onai re Name=\ ’ Bahl er I ncome=500\ ’ / ></ Li st >‘) ;
 Text Message msg2 = sessi on. creat eText Message
 (‘ <?xml versi on=\ ’ 1. 0\ ’ encodi ng=\ ’ UTF-8\ ’ ?><Li st >
 <Mi l l i onai re Name=\ ’ Gat es I ncome=10000\ ’ / ></ Li st >‘) ;
 publ i sher. publ i sh(msg1, Message. PERSI STENT) ;
 publ i sher. publ i sh(msg2, Message. PERSI STENT) ;
Subscr i ber :

 Connect i on. st ar t () ;
 subscr i ber = sessi on. creat eXMLSubscr i ber(t opi c, ‘ Mi l l i onai re. I ncome >= 5000 ‘) ;
 subscr i ber . set MessageLi st ener(new Li st ener(subscr i ber)) ;

Figure 8: Message Selector Use

5 Serverless JMS

Many underlying transmission media such as Ethernet provide support for mul-
ticast at the hardware level. Applications with Serverless JMS over such a
network leads to a significant performance improvement (see Section 8). Server-
less JMS currently implements basic functions, while some JMS features such as
persistent delivery and durable subscription were omitted, given the nature of
the network model and IP multicast protocol. Serverless JMS does not support
ad-hoc networks that have no IP multicast capabilities. Key features are shown
below:
Multicast Group: Each IP multicast address corresponds to a channel to iden-
tify groups of hosts interested in receiving the same content. Two channels are
used: the ManagementChannel serves administration purposes, while the Mes-
sageChannel serves message transmission. As an option, MessageChannel can
be defined on each topic.
Reliable Protocol: The basic service provided by IP multicast is an unreliable
datagram multicast service, and there is no guarantee that a given packet has
reached all intended recipients. Serverless JMS implements both reliable and
unreliable multicast transports. A novel protocol to support reliable multicast
is designed using a negative acknowledgment. A protocol itself is out of scope
of this paper. The transparent fragmentation and re-assembly of messages that
exceed a UDP datagram size is also implemented.
Flow Control: The speed of modern LAN transmission is high, and packet
loss will be rare with good network quality. However, due to the high speed,
the network buffer may be overwritten and messages discarded if it is not large
enough and the subscriber cannot keep up with the speed of incoming data. This

corresponds to packets being lost during the transmission. Thus, window-based
flow control between publishers and subscribers is implemented to prevent data
retransmission and to improve throughput.
Subscription Registration: Two subscription modes are defined: the admin-
istrated and non-administrated modes. In the non-administrated mode, pub-
lishers publish messages independently of the existence of subscribers. Admin-
istration mode maintains a subscription list and prevents publishing messages
without subscribers.
Auto Discovery: An auto discovery function is designed. A publisher runs
an independent thread for auto discovery, which sends management data that
require an echo from subscribers via ManagementChannel.

6 Gateway
Gateway distributes messages to other Gateways and applications. Multiple
gateways can be used, as appropriate for the network environment and client
characteristics. This allows the construction of a distributed messaging system
over JMS servers and offers load sharing and load reduction for good perfor-
mance. Gateway is designed as a framework to perform plug-in functions for
which two interfaces are defined:

• Transport: an interface for mobile device transport

• Transform: an interface for message transformation

The plug-in functions should follow these interface definitions. Gateway initially
creates Transport and Transform objects, according to XML-based configuration
data. The configuration contains the class names that implement the transport

and transform interface, and the target topic names indicate the message groups
to be transformed. The Encode-Decode component carries out the message
transformation as defined in the configuration. Gateway is also a MobileJMS
client sharing its configuration information with client applications. The config-
uration information has to be managed to be accessible by both parties. Specific
configuration utility is not implemented in Pronto.
Local and Remote Gateway: Gateway itself is defined as an interface, with
two implementations, LocalGateway and RemoteGateway. LocalGateway can
run as a separate thread or within the application. RemoteGateway is currently
implemented as a Java Remote Method Invocation (RMI) Object and can run
as a separate process. Mobile devices can take advantage of both Gateways de-
pending on the application.
Plug-In Components: For the Transform interface, caching, compression, and
semantic transcoding are good candidates to reduce data size and network traffic.
Security (encrypting/decrypting data) functions can also be plugged in. Seman-
tic transcoding offers more than simple data reduction. The information itself is
made more abstract (to provide compaction), and the data should be evaluated
whenever necessary. In a mobile environment, a reduction of data size on the net-
work dramatically increases performance, and the concept of semantic transcod-
ing is important. The data are linked to an annotation [6], which can be text
corresponding to a video clip, a document summary, or a linguistic description

of the content for voice synthesis or grayscale/downsized/low-resolution image
data. For Transport interface, device-specific transport for non-programmable
devices such as SMS(Short Message Service) function is a good candidate. The
registration of a Transport interface to Gateway activates a subscription to a
JMS server on the specified topic.

7 SmartCaching
Caching is essential for performance improvement by reducing network traffic
and improving latency. SmartCaching supports multi-tiered applications across
platforms and devices. It currently implements basic functions, while persis-
tent caching, cache validation, synchronization, and coherency management are
beyond the scope of this study. In SmartCaching, cached data are decoupled
from the data source, and cached data can be made active or up-to-date by
CacheHandler, which is responsible for updating the cache. For example, Gate-
way is a CacheHandler, and it uses SmartCaching to store subscribed messages.
Key functions to clients are the Pull, Subscribe, and Snapshot services. The
Subscribe service provides asynchronous notification of cached data to client ap-
plications, and applications do not need to request to pull data that have already
been requested. Snapshot provides a specified period that can be used by the
mobile application to obtain the last cache image after disconnection. CacheM-

anager is the main component in SmartCaching. It creates objects and manages
requests and responses to requesters. Cache is an object that contains a key and
the actual caching object. The Cache object contains the expiration date, and
the CacheManager will remove expired objects. Alternatively, the Cache object
can be removed after delivery.
Snapshot: If the data source sends messages via minimal delta information,
caching updates existing data, applying only the delta information. Snapshot
needs to know when the baseline starts. Each time a new message is received,
the Snapshot rule is applied and the data persist in the cache. If a client requests
Snapshot, it will receive the latest data only. During disconnection, the client
can continue to operate using its own local cache. After restoring communica-
tion, only the last image of the cache needs to be updated. This reduces the
need for reconnection by skipping all intermediate data. The Subscribe service
can then inform applications of later changes in the underlying cached data.
When Snapshot is on, cache update notification is done only when the last im-
age changes. The data flow of Snapshot is shown in Fig. 9.

1
Cache Manager

Recent
 Cache

 Data
 Source

Subscriber

Snapshot

 Updated
 Cache

New Data
Snapshot
Request

Data Handler
Application Cache

 Handler

Network

 1. Start Snapshot
 2. Delivery of new data on Key
 3. Snapshot and store Cache
 4. Return Snapshot Request

 Start
Snapshot

2

3

4

Client

Figure 9: SmartCaching: Snapshot Data Flow

8 Benchmark Test over 802.11B Network

A sample from the benchmark test is shown in Fig. 10 (for more benchmark
test results, see [11]). This test measures the capability of Serverless JMS. 20 of
250KB BytesMessages are to be published using Reliable option. No message
retransmission occurred in this test. The results show that:

• The number of subscribers does not have an impact on the performance in Server-
less JMS, whereas regular JMS delivery shows an impact proportional to the
number of subscribers.

• The number of packets over the network stays the same with increasing numbers
of subscribers.

0.0

1.0

2.0

3.0

Number of Subscribers

M
e

s
s

a
g

e
s

 p
e

r
S

e
c

o
n

d

Serverless JMS 1.10 1.00 0.94 0.91

MobileJMS 3.14 0.90 0.48 0.25

1- sub 5-subs 10-subs 20-subs

 (a) Throughput

0

5000

10000

15000

Number of Subscribers

N
u

m
b

er
 o

f
P

ac
ke

ts
 o

ve
r

N
et

w
o

rk

Serverless JMS 850 850 850 850

MobileJMS 1000 4500 8600 14800

1- sub 5-subs 10-subs 20-subs

 (b) Network Traffic

Figure 10: Performance comparison between MobileJMS and Serverless JMS
(The PCs used for testing were X86(Pentium III) 256-392MB RAM 600-800MHz.)

9 Related Work

Since the initial JMS specification was released in 1998 [8], the existing MOM
software have been rapidly integrated under the JMS API. Examples are TIBCO’s
TIB/Rendezvous [10] and Softwired’s iBus [7]. However, Softwired’s iBus/Mobile
is essentially the only one to extend JMS to mobile-tier. iBus/Mobile is designed
as an extension of J2EE application servers. In contrast, Gateway in Pronto is
a message hub that can reside in the device or anywhere in between. Pronto
provides a flexible N-tier layout, deploying multiple gateways instead of a tight
linkage with a server. Gateway in Pronto offers more than a transport protocol
as described above. Currently, several JMS products support multicast trans-
port such as TIB/Rendezvous, but JMS has not been tried on mobile ad-hoc
networks. Much research currently focuses on general datagram routing in both
unicast and multicast routing [4], but no definite solution to provide JMS se-
mantics using these protocols has been provided. For reliable transport over IP
multicast, various protocols such as SRM [1], and RMTP [5] have been proposed
and implemented. Pragmatic General Multicast (PGM) [2] is a reliable multicast
support protocol for applications that require ordered or unordered duplicate-
free multicast data delivery, providing a promising approach. However, the PGM
header is not yet supported by any Java package. A reliable protocol based on
negative acknowledgment is currently implemented in Pronto. Optimizing data
over a wireless environment has been successful, although most technologies are

tightly coupled with the applications based on a client-server model. For exam-
ple, IBM’s WebExpress [3] provides a web browser proxy between mobile clients
and a web server to optimize HTTP data. Caching is also tied to applications
in most cases. Java Temporary Cache (JCache) [9] has been proposed (but not
yet implemented practically) by Oracle and provides a standard set of APIs and
semantics including N-tier support.

10 Conclusion and Future Work
This paper presents various applications and deployments with Pronto to show
how the messaging can be extended over a wireless network and solve the prob-
lems arising. Deploying different plug-in functions with Gateway demonstrates
the construction of an efficient message flow over a publish-subscribe system.
Using disconnected operation and SmartCaching gives better flexibility for the
design of mobile applications. JMS is more complex than discussed here. Pronto
would need support for administration, security, error handling and recovery,
and distributed transactions. Most importantly, it is critical to establish a stan-
dard API for publishing, managing, and accessing public references to distribute
functionality over mobile environments, including security aspects such as en-
cryption, authentication, and access control on distributed objects.

Acknowledgments. I would like to thank Jean Bacon and Jon Crowcroft
(University of Cambridge) for critical reading and constructive comments.

References

[1] S. Floyd et al. A Reliable Multicast Framework for Light-weight Session and Ap-
plication Framing. ACM SIGGOMM Communications Review, 1995.

[2] J. Gemmell et al. The PGM Reliable Multicast Protocol. IEEE Network special
issue on Multicast:An Enablling Technology,2003.

[3] B. Housel and D. Lindquist. WebExpress: A System for Optimizing Web Browsing
in a Wireless Environment. Proc. of Int. Conf. on MobiCom, 1996.

[4] S. Lee et al. On-Demand Multicast Routing Protocol. In Proc. of IEEE WCNC
’99, 1999.

[5] J. Lin and S. Paul. Reliable Multicast Transport Protocol (RMTP). Proc. of IEEE
INFOCOM ’96, 1996.

[6] K. Nagao. Semantic Transcoding: Making the World Wide Web More Understand-
able and Usable with External Annotations. Proc. of Int. Conf. on Advanced in
Infrastructure for Electronic Business, and Education on the Internet, 2000.

[7] Softwired. iBus Messaging. http://www.softwired-inc.com/.
[8] Sun Microsystems. Java Message Service (JMS) API Specification.

http://java.sun.com/products/jms/.
[9] Sun Microsystems. JCache: Java Temporary Caching API.

http://www.jcl.org/jsr/detail/107.prt.
[10] TIBCO. TIB/Rendezvous Concepts. http://www.rv.tibco.com.
[11] E. Yoneki and J. Bacon. Gateway: a message hub with store-and-forward mes-

saging in mobile networks. Proc. of the First Int. ICDCS Workshop on Mobile
Computing Middleware(MCM03), May 2003.

[12] E. Yoneki and J. Bacon. Pronto: Messaging Middleware over Wireless Networks.

to appear in ACM/IFIP/USENIX International Middleware Conference (Work in

Progress), June 2003.

