
Spatio-Temporal Sensor Data Management for

Context-Aware Services

Designing Sensor-Event Driven Service Coordination Middleware

Akio Sashima	 Yutaka Inoue Koichi Kurumatani
ITRI, AIST / CREST, JST ITRI, AIST / CREST, JST ITRI, AIST / CREST, JST

1-18-13 Sotokanda, 1-18-13 Sotokanda, 1-18-13 Sotokanda,
Chiyoda-ku Tokyo, 101-0021, Chiyoda-ku Tokyo, 101-0021, Chiyoda-ku Tokyo, 101-0021,

Japan Japan Japan

sashima-akio@aist.go.jp yutaka.inoue@aist.go.jp k.kurumatani@aist.go.jp

ABSTRACT
How various kinds of sensor devices are handled, and how
numerous lower-level sensor data are managed and inte­
grated into higher-level context representations are impor­
tant issues to realize context-aware services. We have been
developing Sensor-Event-Driven Service Coordination Mid­
dleware (SENSORD) to fill coordination gaps between higher-
level services and lower-level sensors. The SENSORD sys­
tem obtains and stores sensor data into an in-memory data
container to achieve fast, complex analysis of the sensed
data. The facility of real-time analysis, which includes pe­
riodical evaluations of spatio-temporal conditions, enables
application developers to outsource context-aware mecha­
nisms. As described in this paper, we first examine mid­
dleware of context-aware services and our approaches. We
then show the outline of SENSORD and an exemplary ap­
plication: an indoor emergency response system in our lab­
oratories. Preparing for emergency situations, such as fire
emergencies, it manages sensor devices (thermometers, hy­
grometers, vision systems, microphone arrays, etc.) to de­
tect emergent situations.

Categories and Subject Descriptors
H.3 [Information Systems Applications]: Miscellaneous;
H.2.8 [DATABASE MANAGEMENT]: Database Ap­
plicationsSpatial databases and GIS

General Terms
Design

1.	 INTRODUCTION
Important applications of ubiquitous computing for users

in the real world are context-aware services. Such systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ADPUC’06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-422-7/06/11 ...$5.00.

are intended to recognize users’ contexts (e.g., locations,
profiles, current activities) based on sensor data, and pro­
vide suitable services according to users’ contexts. Although
various context-aware systems have been proposed, most of
them fill this gap in an ad-hoc manner. Their context rep­
resentations are bound strongly to the specific sensor data;
the services and the sensor devices are tightly coupled within
this system. Therefore, the manner in which various kinds
of sensor devices are handled, and the management and inte­
gration of numerous lower-level sensor data into higher-level
context representations are open problems that remain to be
considered.

2.	 MIDDLEWARE FOR CONTEXT AWARE
SYSTEMS

Middleware is a software that mediates between applica­
tion programs and low-level software or even hardware in­
frastructure. It encapsulates complexity and validity of low-
level interfaces of the infrastructure, and provides abstract
common interface layers to the applications. Middleware is
not merely a platform or a framework that is intended to
provide programmers with high-level APIs because middle-
ware is used to extract essential functions that have been
commonly used by the application systems, such as DBMS.
The extracted functions are outsourced to the middleware,
thereby simplifying the application programs. Therefore,
the questions are what functions of context-aware systems
should be extracted and outsourced, and what middleware
is required.

In this study, we specifically consider the following fea­
tures of middleware: handling various sensor data, spatio­
temporal sensor data management, and real-time sensor data
analysis. Although, we also assume that the context-aware
middleware should be heterogeneous, distributed, and se­
cure computing systems as with most modern middleware
system, this paper does not specifically address those com­
mon features.

2.1	 Handling Various Sensor Data and Inter­
faces

Some sensors, such as those in video surveillance systems,
continuously send many data for a long time; others, such
as fire alarm systems, only send data when they function.
In addition, some sensor devices only have poor low-level in­

mailto:sashima-akio@aist.go.jp
http:...$5.00

terfaces such as serial-interfaces; others have high-level net­
work interfaces such as web services. Therefore, middleware
must handle various kinds of data and interfaces of sensors
in ubiquitous computing environments.

2.2 Spatio-Temporal Sensor Data Management
In this study, we specifically examine management of sen­

sor data, including locations and histories. We call these
functions spatio-temporal sensor data management. Context-
aware systems require some sensors to be aware of users’ con­
texts. Any sensor data can be comprehensible with spatio­
temporal data. Such data shows when and where the sensor
data is obtained. Consequently, spatio-temporal manage­
ment is an inevitable function of context-aware systems. It
provides spatio-temporal APIs for accessing the sensor data.
The standardized formats of locations and times should be
desirable.

In addition, it requires functions that store, retrieve, and
analyze spatio-temporal trajectories of moving objects, such
as humans’ trajectories in indoor spaces. Although spatio­
temporal databases are proposed before, how the database
stores and retrieves such trajectories remains an open prob­
lem.

2.3 Real-time Sensor Data Analysis
Location-aware content delivery systems, such as guide

services in museum and navigation services, require real-
time processing that infers spatio-temporal relations of hu­
mans and other objects (e.g. pictures). In particular, for
emergency-response systems based on sensing environmen­
tal status, such as fire alarm services, immediate processing
of the spatio-temporal relations is desirable because quicker
response might prevent great damage. For that reason, the
facility of the real-time spatio-temporal processing for sen­
sor data is a very important feature of the context aware
systems.

3.	 SENSOR-EVENT-DRIVEN SERVICE CO­
ORDINATION MIDDLEWARE

To fill those requirements, we have been developing Sensor-
Event-Driven Service Coordination Middleware (SENSORD),
a middleware for sensor data analysis, which enables context-
aware application service access sensor data. It analyzes re­
sults in a coordinated and systematic manner. First, appli­
cation services can access sensor data by its spatio-temporal
attribute, which indicates the time and place where data
are detected. Second, services can make use of sensor data
through statistical and logical analyses of the data. More­
over, sensor-data-related services can be described uniformly
using SENSORDScript, which indicates the condition for
automatic control of activating, terminating, and executing
the services either in sequence or in parallel.

3.1 Overview
As described above, SENSORD is a middleware coordi­

nating lower-level sensor device with higher-level applica­
tions. Therefore, SENSORD functions cooperatively with
other software and sensors modules or programs within an
application system. A typical application system with SEN­
SORD consists of the following four modules: sensor devices,
sensor servers, SENSORD, and SENSORDScript (see Fig­
ure 1.)

Contents Delivery

System

Sensor

Devices

Sensor

Server

Sensor

Devices

Sensor

Server

Sensor

Devices

Sensor

Server

Sensor

Devices

Sensor

Server

Sensor

Devices

Sensor

Server

Sensor

Devices

Sensor

Server

SENSORD
API

SENSORDScript
API

XML Stream

XML Stream

Device

API

Device

API

Emergency Response

System

SENSORD

SENSORDScript

Figure 1: Applications of Sensor-Event-Driven Ser­
vice Coordination Middleware

3.1.1 Sensor Devices
Sensor devices are placed in a ubiquitous computing en­

vironment. They capture users’ context and monitor en­
vironmental information using thermometers, hygrometers,
vision sensors that tracks humans, microphone arrays, and
so on.

3.1.2 Sensor Servers
A sensor server mediates between sensor devices and SEN-

SORDs. We assume the servers are developed by application
programmers so as to connect with the sensor devices and
SENSORDs. The servers periodically seek or receive the
sensor data through low-level data channels, and send the
data to the SENSORD. In order to encapsulate the valid­
ity of the sensor data, the servers wrap up them in XML
documents; they then send the XML documents to SEN­
SORD through TCP/IP communication channels. A sensor
server can serve multi-SENSORD clients; the server opens
TCP/IP connections to more than one SENSORD client.

The following XML data are exemplary of the sensor event
of a USV Camera System (see section 4) that tracks users’
locations. This kind of frame data is always sent when a
sensor event occurs. The data are a part of an XML data
stream; the whole data stream can be interpreted as a valid
XML document.

<frame no="39267">
<line id="103"> -45 55 167</line>
<line id="104"> 105 35 107</line>

</frame>

The data show an event that detects two persons in a mon­
itoring area. In the line tag, an “id” attribute value is used
for identifications of the users in the monitoring area, and
line values represent three-dimensional locations of users.
The sensor server repeatedly sends this kind of XML data
to the SENSORD as an XML data stream.

3.1.3 SENSORD
A SENSORD obtains and stores sensor data sent from

sensor servers into its in-memory data container to real­
ize fast, complex analysis of the data. The facility of the
real-time analysis includes periodical evaluations of spatio­

Spatial Database

(PostGIS)

Persistence

Data Container

Sensor Data Recorder Service Scripts Manager

Sensor Database

(PostgreSQL)

Data Container Manager

SENSORDScript:

Spatial Data

Container (JTS)

In Memory

Data Container

Sensor Data Container

(Object Array)

Sensor Servers

Data Container

Replicate

Sensor Devices Users

SENSORD APPLICATION

Services

XML Stream

temporal conditions, and enables application developers to
outsource the context-aware mechanisms.

SENSORD also provides various APIs (e.g., sensor record
management, spatio-temporal access methods to various sen­
sor data, synchronization, etc.), which are used for develop­
ing sensor-based systems such as context-aware systems.

The spatio-temporal query API is used to store and re­
trieve sensor data. For example, the programmers can ask
SENSORD to retrieve sensor data using something like the
following query: “retrieve all sensor data of sensor devices
placed within 5 meters of me for the past 10 minutes.”

In addition, the spatio-temporal query API provides facili­
ties that store and retrieve the contents with spatio-temporal
features as with a spatio-temporal database. For example, a
photograph taken at a certain time and place can be stored
in a database in a relational manner along with its spatio­
temporal attributes.

The synchronization API provides interfaces for data syn­
chronization for multi-SENSORD scenarios; sensor data de­
tected by other SENSORDs, e.g., data detected by simplified
and smaller versions of SENSORDs on portable telephones,
laptop computers, or personal data assistants at a certain
time and place, can be stored in a database in a relational
manner with spatio-temporal attributes of the detected time
and place.

3.1.4 SENSORDScript
As mentioned earlier, SENSORDScript is a program writ­

ten by users to use facilities of SENSORD and call the
SENSORD API according to application logic, as with Java
Servlets that are used in application servers. They can pro­
gram the SENSORDScript to outsource the validation to the
SENSORD if programmers require continuous validation of
spatio-temporal relations to realize some context-aware ser­
vices. For example, SENSORD validates a rule like “when
a user is near a picture in a museum, send the guide infor­
mation of the picture to the user” instead of user programs.

The SENSORDScript API provides the following capabil­
ities:

•	 Template definitions of service plug-ins, which are pro­
vided as abstract classes (template definitions) to ac­
cess various remote services invocation interfaces, e.g.,
RMI, Web-Services, other SENSORDScript, and SEN­
SORD API.

Execution Control API: It includes interfaces for rule­•
based execution of services realized by rule-description
classes, which describe maps between conditions and
actions. SENSORD activates and terminates the ac­
tions (services) when conditions are true. The con­
dition can be ranges of sensor data, their statistical
analysis results, and logical conjunctions. The API
also includes interfaces of sequential and parallel exe­
cution of services.

From the programmer’s point of view, SENSORDScript API
provides a script-like programming style to realize context-
aware systems, by which they can write sensor-data-related
service execution control easily using a SENSORDScript
framework.

To start new context-aware services, programmers require
the following steps:

•	 writing a SENSORDScript to process sensor data to
realize context-aware services;

• registering it to SENSORD;

•	 setting up SENSORD to receive and process the re­
quired sensor data from appropriate sensor servers;

•	 requesting SENSORD to start the sensor recording
processes and the required SENSORDScript.

3.2 Architecture
Figure 2 depicts the SENSORD architecture. SENSORD

consists of some functional modules: Sensor Data Recorder
Module, Data Container Module, and Service Manager.

Figure 2: Architecture of SENSORD

3.2.1 Sensor Data Recorder
Each sensor data recorder connects to a sensor server. A

SENSORD has sensor data recorders as multi-thread pro­
cesses that access the sensor server, and receive sensor data
through XML data streams from sensor servers. Receiving
and parsing XML streaming data on TCP/IP communica­
tions, the recorder binds them to Java objects, which is a
process known as XML/Object Binding. For that purpose,
we use XML Pull Parser [10], a streaming pull XML parser,
and JiBX [11], a framework for binding XML data to Java
objects. The mapping processes are not only highly config­
urable, but they are very fast. Thus, using these modern
Java-XML technologies, SENSORD can efficiently receive
various kinds of sensor data.

3.2.2 Data Container Manager
Data container managers manage data containers that are

stored with sensor data and spatio-temporal information,
and provide spatio-temporal API for application program­
mers. Currently, we have developed four types of data con­
tainers: an in-memory sensor data container, an in-memory
spatial data container, a persistent sensor data container,
and a persistence spatial data container.

The in-memory sensor data container is stored with the
objects converted by sensor data recorder. The container is
a ring-buffer where sensor data are stored in chronological
order. SENSORD overwrites the oldest data in it with new
data if it is full. The container is implemented by Java
object Collection classes.

The in-memory spatial data container is stored with spa­
tial or geometric information, specifically locations of ob­

S
E

N
S

O
R

D
S

crip
ts

Users

Rule Manager

Data Container Manager

S
erv

ice M
an

ag
er

S
E

N
S

O
R

D
S

crip
ts

S
E

N
S

O
R

D
S

crip
ts

S
E

N
S

O
R

D
S

crip
ts

Rule

Rule

Rule

Spatio-Temporal

Queries
Spatio-Temporal

Queries

Notification of

Matched Rules

Registration of

Rules

jects, humans and sensor devices. SENSORD overwrites
information of areas that have not been accessed for a long
time with new information if it is full. The information
is described by XML configuration files1. The locations are
represented as using a widely used coordinate system, “Lon­
gitude / Latitude (WGS 84).” The container is implemented
as collections of geometry objects of JTS Topology Suite
(JTS) [12]. Also, JTS is an API of 2D spatial predicates
and functions. It conforms to the Simple Features Specifi­
cation for SQL published by the Open GIS Consortium, and
provides a two-dimensional spatial query API.

The persistent sensor and spatial data containers are copies
of the in-memory sensor and spatial data containers. The
data container manager replicates the in-memory data to
persistent data containers implemented by relational databases
when load-averages of SENSORD are not high, such as at
midnight. We have implemented persistent data contain­
ers by PostgreSQL [3] and PostGIS [9]. PostgreSQL is a
well-known open source object-relational database. Further­
more, PostGIS adds support for geographic objects to the
PostgreSQL. PostGIS also conforms to the Simple Features
Specification for SQL. Thus, sensor data and spatial data
are stored as tables in the PostgreSQL database extended
by PostGIS.

3.2.3 Service Manager
Service Manager manages life-cycles of the SENSORD-

Scripts, such as registration, starting, stopping, and dereg­
istration of the SENSORDScripts. The manager initiates
SENSORDScripts based on XML configuration files. We
have implemented Service Manager as a lightweight con­
tainer of SENSORDScripts.

Figure 3 illustrates management architecture of the SEN-
SORDScript and their rules. The SENSORDScripts are
managed by “Service Manager”, execute spatio-temporal
queries programmed by the users, and send the results to
the users. Executing the SENSORDScript with rules, such
as spatio-temporal service rules, SENSORDScript registers
the rules to “Rule Manager” at the initial stage. The rule
manager repeatedly evaluates the registered rules with new
sensor data, and notifies the client scripts of the matched
rules.

Figure 3: SENSORDScript and Rule Manager of
the SENSORD

4.	 EXPERIENCES: INDOOR EMERGENCY
RESPONSE SYSTEMS

We have been developing SENSORD and its application,
an indoor emergency response system, in our laboratories[6].
The emergency response system has been prepared for emer­
gency situations. It manages sensor devices (e.g., thermome­
ters, hygrometers, video surveillance systems, and micro­
phone arrays) and monitors their respective environmental
statuses to detect abnormal events, such as fire emergencies.
It then counts the people remaining in an area (floor of a
building) to provide navigation and evacuation services for
them.

Figure 4: Overview of the indoor emergency re­
sponse system

Figure 4 displays an overview of the system developed
for a floor of our laboratory building. The experimental
area of the floor is about 700 square meters. There are 20
thermometers and hygrometers 1, and 9 video surveillance
camera systems that count humans who cross predefined
border lines in the monitoring areas 5. We use three video
surveillance systems: Vitracom SiteView EP2, Ubiquitous
Stereo Vision System (USV)3, and IBS Counter 4).

The SENSORD system communicates with these sensors,
receives the sensor-events (e.g. the events detecting passers
in the monitoring area) from them, and infers the status of
the environment (e.g. the number of people staying in closed
areas) by analyzing the events.

In our experiments, the SENSORD system counted the
number of people staying in four different rooms, such as a
“meeting room”. Figure 6 shows a snapshot of the system
GUI. In the figure, a 2D Map at the center shows our office
floor; a table on the right-hand side shows the number of
people staying in each room. A graph in the lower part
shows histories of temperature and humidity of a selected

1TR-72W; T&D Corp. http://english.tandd.com/
product/tr_7w/tr_7w_01feature.html
2Vitracom SiteView EP: http://www.vitracom.de/
downloads/siteview-st-ep-en.pdf
3Ubiquitous Stereo Vision: http://staff.aist.go.jp/
i-yoda/usv/index.html
4CED System, Inc. IBS Counter: http://www.ced.cp.jp/
IBS_CT_CAT.pdf

http://english.tandd.com/
http://www.vitracom.de/
http://staff.aist.go.jp/
http://www.ced.cp.jp/

Figure 5: Raw image of the video surveillance sys­
tem (SiteView EP)

sensor device.

Figure 6: Snapshot of the Indoor Emergency Re­
sponse System. No one occupies the meeting room
at the left side of the floor map.

A video surveillance camera system, Ubiquitous Stereo Vi­
sion (USV), has facilities by which it tracks locations of users
and records their trajectories [14][15]. The SENSORD com­
municates with USV systems and stores the data into the
data containers of the SENSORD. Figure 7 shows a snapshot
of a graphical viewer for the stored human trajectories ob­
tained by USV. The viewer has a simple interface to retrieve
sensor data obtained in a specific period. The retrieved tra­
jectories are played back in chronological order.

5. RELATED WORK
Various types of databases related to this research, spatio­

temporal databases [7][13], in-memory databases [1], and
sensor databases [4], are proposed under the context of sen­
sor networks. However, they did not provide service coordi­
nation facilities of SENSORDScript.

Figure 7: A snapshot of the human trajectory
viewer. It shows two stored trajectories retrieved
from the system. In the figure, a trajectory at the
right side shows a man has been staying there. The
other shows a man has been moving through the
center area.

In ubiquitous computing, infrastructure for real-world ser­
vice systems is drawing the attention of researchers. Those
systems are developed as a service infrastructure for context-
aware services. For example, QoSDream [2] coordinates
multimedia contents for various user devices. GAIA [8] is
intended to provide various services for ubiquitous comput­
ing. Solar aggregates sensor information for context-aware
services. Context Toolkit [5] is intended as a widget for
developing ubiquitous computing services. However, these
systems have no spatio-temporal sensor data management
facilities that we have proposed in this paper.

6. CONCLUSION
In this paper, we have described the requirements of mid­

dleware for context-aware systems in the context of han­
dling sensor data. We have proposed a spatio-temporal in-
memory sensor data management system (SENSORD) that
facilitates use with context-aware application services. It
helps their implementors to access sensor data, its statisti­
cal and logical analysis, and automatic control of execution
of application services by providing a plug-in called SEN-
SORDScript. We have described SENSORD and an exem­
plary application, an indoor emergency response system in
our laboratories. Preparing for emergency situations, such
as fires, it manages sensor devices, monitors environmental
status, and counts people staying in an area to provide them
navigation and evacuation services.

7. REFERENCES
[1] Oracle Times Ten In-Memory Database.

http://www.oracle.com/database/timesten.html,

2001.

http://www.oracle.com/database/timesten.html

[2] QoSDream.

http://www-lce.eng.cam.ac.uk/qosdream/, 2003.

[3] PostgreSQL. http://www.postgresql.org/, 2006.
[4] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and

Y. Yao. The cougar project: a work-in-progress
report. SIGMOD Rec., 32(4):53–59, 2003.

[5] A. K. Dey. Providing architectural support for building
context-aware applications. PhD thesis, 2000. Director:
Gregory D. Abowd.

[6] Y. Inoue, A. Sashima, and K. Kurumatani. Indoor
navigation system for emergency evacuation in a
ubiquitous environment. In Ubicomp 2006 (Poster), to
appear. ACM Press, 2006.

[7] D. H. Kim, K. H. Ryu, and C. H. Park. Design and
implementation of spatiotemporal database query
processing system. Journal of Systems and Software,
60(1):37–49, 2002.

[8] M. Roman, C. Hess, A. Ranganathan,
P. Madhavarapu, B. Borthakur, P. Viswanathan,
R. Cerquiera, R. Campbell, and M. D. Mickunas.
GaiaOS: An infrastructure for active spaces. Technical
Report UIUCDCS-R-2001-2224
UILU-ENG-2001-1731, University of Illinois at
Urbana-Champaign, 2001.

[9] S. Santilli, C. Hodgson, P. Ramsey, and J. Lounsbury.
PostGIS. http://www.postgis.org/, 2006.

[10] A. A. Slominski. MXP1: XML Pull Parser 3rd Edition
(XPP3). http://www.extreme.indiana.edu/xgws/
xsoap/xpp/mxp1/index.html, 2006.

[11] D. Sosnoski. JiBX: Binding XML to Java Code.
http://jibx.sourceforge.net/, 2006.

[12] JTS Topology Suite. http://www.postgresql.org/,
2006.

[13] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang.
Moving objects databases: Issues and solutions. In
Proceedings of the 10th International Conference on
Scientific and Statistical Database Management, pp.
111–122, 1998.

[14] I. Yoda, D. Hosotani, and K. Sakaue. Ubiquitous
stereo vision for controlling safety on platforms in
railroad stations. In Proceedings of the Sixth Asian
Conference on Computer Vision (ACCV 2004), vol. 2,
pp. 770–775, 2004.

[15] I. Yoda and K. Sakaue. Concept of ubiquitous stereo
vision and applications for human sensing. In
Proceedings 2003 IEEE International Symposium on
Computational Intelligence in Robotics and
Automation (CIRA2003), pp. 1251–1257, 2003.

http://www-lce.eng.cam.ac.uk/qosdream/
http://www.postgresql.org/
http://www.postgis.org/
http://www.extreme.indiana.edu/xgws/
http://jibx.sourceforge.net/
http://www.postgresql.org/

