
Service-oriented Middleware for Hybrid Environments

Andrew Harrison
School of Computer Science

Cardiff University
Cardiff, Wales, UK

a.b.harrison@cs.cf.ac.uk

Dr. Ian Taylor
School of Computer Science

Cardiff University
Cardiff, Wales, UK

i.j.taylor@cs.cf.ac.uk

ABSTRACT
This paper discusses the challenges facing hybrid, dynamic
environments with regard to handling stateful resources and
contextual interactions and describes strategies we have and
are developing to enable applications to exist in these diverse
environments. In particular we describe how combining
Grid computing and Web services technologies with Peer-
to-Peer technologies can be used to create flexible and dy-
namic Service Oriented Architectures that support stateful
interactions in a loosely coupled way. We describe WSPeer,
a SOAP based middleware that enables sophisticated mes-
sage exchanges in Peer-to-Peer environments, and introduce
WSKPeer, a micro-edition of WSPeer currently under de-
velopment.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

1. INTRODUCTION
Grid computing has traditionally focussed on distributed

data management and computation in environments con-
necting high-end resources with stable addresses across fast
networks. In recent years however, we have seen the concept
of the Grid expanding to include nodes that are resource
constrained or inherently unreliable in terms of connectivity
and addressability including nodes at the edges of the Inter-
net [31], mobile devices and sensors. The motivation behind
this expansion is the belief that both Grids and nodes at the
edges can benefit from the extended possibilities offered by
integration.

An example of a such a hybrid system that incorporates
diverse entities, from centralized, powerful and static com-
puters to mobile devices and laptops, down to sensors, is a
weather modeling system such as proposed by the LEAD [11]
project. In its normal running state, the system feeds data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ADPUC’06 November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-422-7/06/11 ...$5.00.

from the sensors in the field back to a static Grid infrastruc-
ture for monitoring. If the monitoring leads to the discov-
ery of a possibly emerging significant event, such as a severe
storm, a number of simulations to ascertain the likelihood of
adverse conditions arising are spawned. Depending on these
preliminary results, further simulations may be spawned at
a finer level of granularity. If these detailed simulations sug-
gest immanent adverse conditions, then events are propa-
gated back into the field to a heterogeneous set of nodes
such as civic centers, emergency vehicles, hospitals and doc-
tors, to enable them to prepare for an emerging situation.
The core characteristics this system must possess include:

• ability to traverse heterogeneous environments.

• ability to handle events.

• ability to dynamically expand and contract, i.e. dis-
cover new resources at runtime to perform process-
ing based on incoming events, retrieve the results and
make decisions based on these results.

We believe that Peer-to-Peer (P2P) technologies can make
significant contributions towards the realization of such sys-
tems because they have been developed to handle hetero-
geneous and unstable environments. Synergies between
Grid computing and P2P computing have been noted by
a number of authors [32] [12] [25] and P2P technologies
are perceived to be particularly useful to Grid computing
with regard to scalable resource distribution and discov-
ery [27] [21] [33] and CPU cycle scavenging [2]. Research
into the integration of mobile devices in Grid environments
is also ongoing [1] [19] which will enable users to manage
computations from limited devices as well as provide ag-
gregations of devices that can perform computations for the
Grid. P2P technologies are also being proposed for these en-
vironments [20] [29] to enable local scalable decision making.
The integration of sensors into Grids [14] [13] will extend
computational Grids by introducing real-time data acqui-
sition into the computational loop allowing systems to re-
spond dynamically to data driven events, and decentralized
architectures have been proposed in this context as well [34].

While the integration of these different environments
opens up many new possibilities, it also introduces new chal-
lenges, in particular how to facilitate complex interactions
that require the maintenance of state or context across nu-
merous communications despite heterogeneity and unrelia-
bility of nodes. Further, the ability for middleware and ser-
vices to span hybrid hosting environments is vital to address
application scenarios that span heterogeneous networks of

Grids, whilst maintaining the transparency of the resources
they wish to expose through common interfaces.

This paper discusses issues surrounding these challenges
and describe strategies we are employing to address them.
In particular we revisit the concept of Service Oriented Ar-
chitecture (SOA) and show how the combination of Web and
Grid services standards combined with P2P techniques for
discovery and addressing can be used to develop SOAs that
support complex interactions across heterogeneous environ-
ments. We discuss a framework called WSPeer [17] [16],
which directly addresses some of these issues, and we intro-
duce the micro-edition of WSPeer, called WSKPeer, which
is a framework under development aimed at providing sim-
ilar cross-environment service capabilities to WSPeer, but
for highly constrained devices.

The following section describes the challenges facing SOA
in hybrid environments, particularly the maintenance of
stateful interactions. Section 3 describes WSPeer and Sec-
tion 4 introduces WSKPeer and its three core modules. Sec-
tion 5 describes planned future research and development
and draws some conclusions from the issues discussed.

2. SERVICE ORIENTED ARCHITECTURE
Service Oriented Architecture (SOA) is perceived as an

ideal paradigm to integrate heterogeneous environments be-
cause of the loose coupling encouraged by services. In the
absence of a generally accepted definition of the term service
we suggest the following properties are central to the loose
coupling encouraged by the concept:

• A service is a view of some resource - a software asset,
a business, a hard disk, anything that provides some
capability. Implementation detail is hidden behind the
service interface.

• Services communicate using messages. The structure
of the message and the schema, or form, of its contents
are defined by the interface.

• Services are stateless. By this we mean that all the
information needed by a service to perform its function
is contained in the messages used to communicate with
it.

Services discover and communicate with each other us-
ing the publish, find, bind [15] [28] triad of operations. A
service publishes its interface definition to the network, a
service consumer finds the definition and, using the infor-
mation in the definition, is able to bind (resolve the address
and send messages), to the service. An important aspect of
SOA is the just-in-time integration of applications [22] facili-
tated by these three operations. In other words the interface
definition which describes the form of messaging combined
with facilities for publishing and discovering it enables late-
binding between entities to create dynamic aggregations of
services.

The move towards SOA in Grid computing via the Open
Grid Services Architecture (OGSA) is making interoper-
ability with similar initiatives such as the Sensor Web
Enablement (SWE) [6] initiative of the Open Geospacial
Consortium (OGC) and the Open SensorWeb Architecture
(OSWA) [5] more feasible. Although P2P systems have not
embraced Web services technologies in such a cohesive man-
ner as is represented by OSGA, OSWA and SWE, many ar-

chitectures such as Gnutella [3], Freenet [10] and JXTA [23]
are exponents of SOA:

• they follow the publish, find, bind pattern.

• they communicate using a message-oriented paradigm.
All information required to process a communication
is contained in the message.

• they perform just-in-time integration. In the case of
Gnutella for example, a dynamically created request
path represents an integration designed to fulfill the
request.

However, traditionally P2P systems only support simple
interactions such as file storage and retrieval.

2.1 Services vs Resources
Despite the huge difference between Grid computing re-

sources and those that make up mobile and sensor networks,
both types of environment can be seen as resource-centric.
In Grid computing hardware resource characteristics are im-
portant because the properties of a particular machine for
example - system configuration, memory capacity, load and
network link speed - play an important part in deciding
whether it can or should be used as part of a particular
computation. Furthermore resources such as jobs and files
may need to be tracked through time. Likewise in mobile
and sensor networks, because of resource constraints, con-
nectivity issues and location-awareness, resource character-
istics are tightly bound to service capability. In the case of
sensors the resource can often be viewed as almost analo-
gous to the service it provides. Furthermore hybrid systems
such as the weather forecast system described in Section 1
require sophisticated messages which encapsulate, not just
data, but the context in which this data is generated or com-
puted. This is essential for a number of reasons: The system
must be able to assess the trustworthiness of, not just other
nodes in the system, but the data generated by these other
nodes. Likewise events that encapsulate state need to be
understood in the context of a continuum.

The modeling of state in service-oriented Grid comput-
ing is an ongoing challenge. The Web Services Resource
Framework (WS-RF) [24] represents the latest incarnation
of OGSA. It comprises a suite of specifications that encom-
pass managing stateful resources, groups of services and
subscriptions to and notifications of topics. All these ca-
pabilities are highly relevant to the kind of hybrid environ-
ments under discussion. At the center of the specifications
is the concept of a WS-Resource. A WS-Resource is some
entity with state which is accessed through a service inter-
face. WS-Resources are used to represent, not just entities
such as files and jobs, but subscriptions to topics and group
membership tokens. However, a WS-Resource is modeled as
the combination of a resource identifier and a service end-
point. The service endpoint represents the service that will
be able to de-reference the resource id to some actual re-
source. This coupling encourages the WS-Resource to be
used as a global pointer to some entity that “resides” at
the given endpoint [26]. This is a false presumption par-
ticularly in dynamic environments because services and re-
sources may change address or physically move thus break-
ing the relationship between the two elements and invalidat-
ing the WS-Resource.

We suggest that the strict separation of services from re-
sources is required to ensure scalability and robustness in
dynamic, hybrid environments:

• heterogeneity is more easily masked because the ser-
vice interface is divorced from the underlying host or
back end resource.

• resource unreliability (failure, replacement, mobility,
address inconsistency) can more easily be accommo-
dated because a service can adopt a different resource
or a resource can adopt another service.

• A proliferation of global pointers to entities with state
produces fragile systems [37], particularly systems
characterized by high churn and mobility. The separa-
tion of instances of resources from exposed interfaces
allows multiple resources to be addressed by a single
service which may be an interface to a sub domain or
group of resources.

In the following section we describe the Web services
framework WSPeer and the strategies used by it to employ
the complex and stateful interactions supported by WS-RF
in hybrid environments while still maintaining a separation
between services and resources.

3. WSPEER
While Web services are considered an ideal means for

building SOA, most implementations are built for enter-
prise scale application servers. Furthermore, support for
more complex message exchange patterns such as those that
model state or enable publish/subscribe relationships are
rarely supported in light-weight implementations.

WSPeer began as a Web services API for the Triana prob-
lem solving environment [35] to allow the creation, pub-
lishing, discovery, invocation and composition of Web ser-
vices for its workflows. Triana uses a P2P-oriented appli-
cation level API called the GAP to abstract the implemen-
tation details of service-oriented middleware allowing arbi-
trary protocols to be implemented as GAP bindings as long
as they can fulfill the basic operations of publish, find and
bind. WSPeer constitutes the GAP Web services binding
and therefore is designed as a high level, P2P oriented API
to SOA, and in particular, Web services technologies. The
high-level API insulates an application from underlying pro-
tocol details while the P2P orientation means WSPeer treats
service provider and consumer roles symmetrically without
the need for a service container at the server side. Instead,
an application adds itself as a listener to events fired by the
system, for example, when a service is created, published,
discovered or when a message (service request or response)
arrives.

Apart from the usual HTTP transfer protocol bind-
ing, WSPeer supports JXTA, Peer-to-Peer Simplified
(P2PS) [36] and the Styx protocol. P2PS is a domain in-
dependent framework for developing P2P applications. It is
similar to JXTA in that it uses the pipe abstraction to define
communication channels and supports rendezvous peers for
advertisement caching and the creation of peer groups. An
important aspect of the use of JXTA and P2PS in WSPeer,
is to combine the strengths of P2P systems, namely de-
centralized publishing and discovery, with the strengths of

Web services technologies, namely the description of sophis-
ticated service interfaces and message exchanges. Further-
more both JXTA and P2PS use logical addressing to identify
endpoints. These logical addresses are resolved at runtime
to network addresses allowing for location transparency of
nodes. The WS specifications supported by the WSPeer
include WS-Security, WS-Addressing and WS-Transfer and
WS-RF (including WS-Notification).

In employing WS-RF and WS-Notification over P2P
topologies, we have employed the logical addressing capabil-
ities of JXTA and P2PS [18]. This allows the tight coupling
between resource identifier and a service endpoint apparent
in the WS-Resource construct to be de-coupled. The JXTA
addressing mechanism uses a unique peer id as the basis for
a logical address. P2PS uses two mechanisms. The first is
similar to JXTA, the second, still under development, uses
hierarchies of concepts to point to peers and peer groups.
The form of this naming scheme is a simple hierarchical
URL. Hierarchies represent traversals of the P2P network
via peers or groups associated with a given concept. This
mechanism is similar to naming schemes such as the Inten-
tional Naming Scheme [8] and the semantic ontology-based
scheme described in the context of a P2P hypercube topol-
ogy [30]. Concepts are not uniquely mapped to endpoints
as is the case with the peer id mechanism. This allows ad-
dresses to be resolved to different peers at different times
which is useful in the context of WS-Resources as it en-
ables mobility of both service and resource. Furthermore,
addresses may resolve to peer groups allowing local reso-
lution of the resource identifier in the WS-Resource. This
alleviates the problem of WS-Resources being interpreted as
global pointers.

The combination of a number of elements brought to-
gether through WSPeer addresses the properties defined in
Section 2 as characteristic of hybrid environments. The
high level API and P2P architecture allows an applica-
tion to seamlessly traverse heterogeneous environments us-
ing SOAP as a common language irrespective of the role
(provider, consumer) of the application in any particular
message exchange. Furthermore the integration of the sup-
port for Web services specifications that can describe com-
plex interchanges, including state management and event
notification, with P2P mechanisms of discovery and late
binding through logical addressing maintain the separation
of services and resources and therefore open up the possi-
bility for applications to manage unreliability as well as the
dynamic event-driven expansion and contraction of the sys-
tem.

4. WSKPEER
WSPeer is designed for environments that are not resource

constrained and is therefore not suitable for restricted de-
vices. The libraries required by WSPeer, including the Java
Runtime Environment itself, are simply too large. For exam-
ple WSPeer uses Apache’s Axis 1.5 [9] which in turn makes
use of XML libraries such as the Apache Xerces XML parser
which is itself a megabyte in size. As a result we have
been developing a package called WSKPeer that provides
the same high level interface to core SOA capabilities as
WSPeer, but for constrained environments.

WSKPeer builds on the lessons learned in developing
WSPeer and uses only a subset of core Java classes and
a minimal set of libraries - essentially the kXML [4] library

which includes an XML pull parser and some core DOM
classes. From these simple data structures we have been
building a Web services framework that can support service
description parsing, including complex types and sophisti-
cated message exchanges that support notions of state and
events, in particular WS-RF and related specifications, de-
spite the limited availability of processing power.

The core of WSKPeer is a simple transport and trans-
fer independent SOAP message processing API which can
be plugged into any back-end application. To receive mes-
sages, the application must add a listener component. Mes-
sage generation can make use of other WSKPeer components
such as service description and XML schema parsing, or can
use ‘hardcoded’ message types if the application knows these
messages at compile time or is to be deployed into a very re-
stricted environment. Likewise capabilities such as discovery
and publishing are optional depending on the circumstance.
Because WSKPeer is compatible with J2ME it can be used
with other J2ME classes such as the MIDP GUI classes, but
can also be used in situations where SOAP processing needs
to be lightweight and not reliant on the hosting environment,
for example mobile agents or distributed executables on a
Grid. The following sub sections describe the core WSKPeer
modules.

4.1 Messaging API
WSKPeer aims at message-orientation, a cornerstone of

SOA, and hence the Message abstraction is a top-level
citizen in the framework. Figure 1 shows the messaging
WSKPeer API. It is made up of four core classes:

• Message This class represents the actual SOAP mes-
sage. It contains a MessageEnvelope which in turn
contains kXML DOM Nodes defining the body and
header elements of the envelope. A Message can also
have metadata assigned to it via properties.

• MessageListener This interface is implemented by
components wishing to receive arriving Messages. It
defines a single receive(Message) method.

• Port This interface represents a component that is ca-
pable of optionally sending messages (send(Message)),
sending and receiving messages synchronously (ex-
change(Message):Message) and adding Message-
Listeners (addMessageListener(MessageListener)).
When a message arrives at a port, it notifies the
registered listeners.

• Context This interface performs some processing on a
message, either on its outward (processOut(Message))
or inward (processIn(Message)) journey. This may
constitute processing WS-Addressing, WS-Security or
WS-RF information as examples. A Context should
sit between the MessageListeners and the Port in the
message flow.

A Pipeline class is also defined. This is a composite of the
Port and MessageListener interfaces enabling the chaining
of contexts for compound and ordered message processing.
An application can create a Pipeline, give it a Port, add
itself as a listener to the Pipeline and construct a series of
contextual processes that the Pipeline should invoke.

Port
send(Message)

exchange(Message);
Message

addListener(Listener)

Context
e.g. WS-RF

processIn(Message)
processOut(Message)

Context
e.g. Policy

processIn(Message)
processOut(Message)

Context
e.g. Security

processIn(Message)
processOut(Message)

Message
getEnvelope():

Envelope
getProperty():Object
setProperty(String)

Listener
receive(Message)

Pipeline
send(Message)

exchange(Message):
Message

receive(Message)
addListener(Listener)

Figure 1: WSKPeer messaging API.

4.2 Data Binding
Message-orientation frees us from the trappings and over-

head that are often associated with the RPC model. With-
out the notion of a remote procedure being called we can
restrict ourselves to a document-centric view; that is, the
message being sent or received is simply an XML document.
Therefore, we presume a document-literal SOAP encoding
style. Experience in interoperability as well as the direction
of emerging WS-* standards suggests this encoding style
will become most widely used. Furthermore the generation
of stubs, i.e. local objects that represent instances of remote
objects, is not required as we are not conceptually invoking
a remote object.

Likewise the process of data binding usually involves gen-
erating and compiling code locally that models the schemas
defined for complex types. This generation requires a cer-
tain level of computational power as well as the memory to
store the libraries and compiler to perform the generation
which may not be accessible to constrained devices. Further-
more, stub generation, firstly, usually presumes a relatively
static environment in which well known types or services
are reused again and again for the lifetime of an applica-
tion. This cannot be presumed in a dynamic environment.
Secondly the conversion of an XML schema to a program-
ming language defined object usually implies the presence of
a programmer for whom handling a programming language
object is easier than handling an XML document. Again,
in an environment made up of mobile devices and sensors,
human intervention cannot be presumed. Therefore, as well
as not using stubs to represent remote services, we have de-
signed an infrastructure for parsing and accessing complex
types without the need for local Java classes or the intro-
spection of them. In fact, in WSPeer, we have found that
generating local Java objects does not add much function-
ality to dynamic message exchanges. Although WSPeer has
optimized this generation by creating Java classes directly as
an array of bytes, thus circumventing compilation, at run-
time these classes still need to be introspected (using the
Java reflection mechanism) to ascertain their capabilities.
Therefore one is limited to the reflection API. In WSKPeer
we use a generic Type class that provides its own reflection
mechanism for discovering and setting the content fields of
the type, as well as generating an XML serialization of the

type for inclusion in a message. The reflection mechanism
is analogous to the Java reflection API, however we do not
need to generate or compile Java classes to achieve the same
result.

As part of its modular architecture, WSKPeer provides a
MessageModule interface. These components are capable of
creating families of Messages, for example WS-Notification
related messages. This approach alleviates some process-
ing and coding complexity if an application knows it will be
handling certain types of messages because MessageMod-
ule instances hardcode some common elements of messages.
The interface defines a single method: public Message cre-
ateMessage(String name, Object[] params) which allows an
application to insert specific data into a message template.
This approach has been used to implement support for WS-
RF and WS-Notification message exchanges.

4.3 Service Description API
To achieve optimized service description generation,

WSKPeer defines a generic service and message descrip-
tion interface that captures a subset of properties of a de-
scription. This means the stored description and the ac-
tual description are not necessarily isomorphic as is usually
the case. This approach is also taken in WSPeer, but for
WSKPeer the interface has been honed down. The decision
to create a simplified and generic interface to service de-
scription is partly based on the belief that although WSDL
is currently the de facto language for describing Web ser-
vices, other emerging technologies, for example the SOAP
Service Description Language (SSDL) [7], are likely to play
a role in service description in the future, and partly because
certain protocols, in particular those designed for mobile de-
vices and sensors define their own description and discovery
mechanisms which may be more suitable for applications to
interpret. Therefore the application is shielded from these
protocol specific features through a high level interface. So
for example, when parsing WSDL we make the presump-
tion that the binding is a SOAP binding and its encoding
style is document-literal thus eliminating the requirement
to store this data. However the transport is of course not
presumed as we want to make WSKPeer available to any
number of transport and transfer protocols, and is stored
as an identifier in the service description so that a suitable
Port implementation can be used to send messages at a later
date.

This description interface is still work in progress as it
has not been applied to any other description technologies
beyond WSDL. We intend to develop support for SSDL as
the next step.

The API contains three components. The ServiceDescrip-
tion has a location (where the description itself was retrieved
from) and provides a service endpoint, a target namespace
and a transport name. This component has one or more
MessageExchanges. A MessageExchange encapsulates a se-
ries of messages that comprise a complete exchange. Each
exchange is uniquely identified by a qualified name (QName)
and a type of exchange. A MessageExchange in turn main-
tains one or more MessageTypes. MessageTypes likewise
have a QName as well as a QName representing the XML
element that it is constructed from. This can be cross ref-
erenced against the types generated from XML schema to
retrieve an actual XML element instance. A MessageType
also has a field representing how the message is used, for ex-

ample whether it is an incoming or out going message or a
fault. Finally it can have an action associated with it. This
defines some semantics of how the message should be inter-
preted. Currently this is used to house a WS-Addressing
Action URI which is a common way of defining message
semantics in a number of specifications.

5. DISCUSSION AND CONCLUSIONS
A general issue with regard to Web services technologies

and limited devices is of course the verbosity and process-
ing requirements of XML. XML optimization is an area of
active research and we will be exploring avenues for devel-
oping support for it. However there is currently no agreed
upon standard. We foresee the use of XML in constrained
environments being restricted to particular types of com-
munication. A potential usage for WSKPeer is in defining
standards-based negotiation and control layers. As an exam-
ple, [29] describes a scenario in the field of mobile paramed-
ical emergency operations in which mobile medical devices
acquiring patient data in real-time communicate with am-
bulance access points. Before data can be streamed to these
access points however, protocols need to be established dur-
ing a negotiation stage in which participants can be au-
thenticated, stream endpoints and binary formats defined,
and stream control and monitoring protocols established.
It is at this stage that standards based messaging support-
ing complex exchanges is particularly useful as it represents
a common means of defining diverse interactions and opti-
mizations. Likewise systems that are event based, such as
the scenario discussed in Section 1, benefit from standard
means of subscription and notification because events can
travel freely through the system despite the heterogeneous
nature of the participants. The support for WS-Notification
by constrained devices in such environments represents an-
other potential role for WSKPeer.

There are still a number of issues to address in WSKPeer.
Primary focus will now be on developing the P2P bindings
- a JXTA J2ME binding as well as P2PS for J2ME. These
will form the basis for defining the publish and discovery
APIs and address the separation of service interfaces from
stateful resources (see Section 2.1). A Bluetooth binding is
also currently under development. The core APIs described
in section 4 have been developed and, along with an HTTP
Port implementation, a WS-RF compatible WSDL parser
and required libraries, bundle into a jar file of approximately
65kb.

In this paper we have described how the requirement
for complex and stateful interactions can be supported in
heterogeneous environments through a combination of Web
and Grid service messaging standards and P2P technologies
of discovery and addressing. This combination provides a
mechanism for developing flexible and dynamic SOAs. We
discussed WSPeer in the context of this combination and
introduced WSKPeer - a micro-edition of WSPeer still in
development.

While we do not suggest that even the smallest, most lim-
ited devices should be able to process complex XML message
interactions, we do believe it is possible to push the responsi-
bility for generating and consuming interoperable messages
to the edges of the network. The deeper the shared messag-
ing languages penetrate the environment, the more flexible,
fault tolerant and inclusive the network can be.

6. REFERENCES
[1] AKOGRIMO Integrated Project. See

http://www.akogrimo.org.

[2] BOINC - Berkeley Open Infrastructure for Network
Computing. http://boinc.berkeley.edu/.

[3] Gnutella. http://www.gnutella.com/.

[4] kXML. http://kxml.sourceforge.net/.

[5] Open SensorWeb Architecture.
http://gridbus.cs.mu.oz.au/sensorweb/.

[6] Sensor Web Enablement Working Group.
http://www.opengeospatial.org/

projects/groups/sensorweb.

[7] SOAP Service Description Language (SSDL).
http://www.ssdl.org/.

[8] E. S. W. Adjie-Winoto and H. Balakrishnan. An
Architecture for Intentional Name Resolution and
Application-level Routing. Technical Report
MIT/LCS/TR-775, MIT, 1999.

[9] Apache Project. Apache Web Services Project - Axis,
July 2005. http://ws.apache.org/axis/.

[10] I. Clarke, S. G. Miller, O. Sandberg, B. Wiley, and
T. W. Hong. Protecting free expression online with
freenet. IEEE Internet Computing, pages 40–49,
January, February 2002.

[11] K. Droegemeier et al. Service-oriented environments in
research and education for dynamically interacting
with mesoscale weather. Computing in Science and
Engineering, 7(6):12–29, November/December 2005.

[12] I. Foster and A. Iamnitchi. On Death, Taxes, and the
Convergence of Peer-to-Peer and Grid Computing. In
Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS ’03), 2003.

[13] G. Fox et al. Management of Real-Time Streaming
Data Grid Services. In Invited talk at Fourth
International Conference on Grid and Cooperative
Computing (GCC2005), Bejing, China, 2005.

[14] M. Gaynor et al. Integrating wireless sensor networks
with the grid. Internet Computing, IEEE, 8(4):32–39,
July-Aug 2004.

[15] D. Gisolfi. Web services architect: Part 1.
http://www-128.ibm.com/developerworks/

webservices/library/ws-arc1/, April 2001.

[16] A. Harrison and I. Taylor. Dynamic Web Service
Deployment Using WSPeer. In Proceedings of 13th
Annual Mardi Gras Conference - Frontiers of Grid
Applications and Technologies, pages 11–16. Louisiana
State University, February 2005.

[17] A. Harrison and I. Taylor. WSPeer - An Interface to
Web Service Hosting and Invocation. In HIPS Joint
Workshop on High-Performance Grid Computing and
High-Level Parallel Programming Models, 2005.

[18] A. Harrison and I. Taylor. The Web Services Resource
Framework In A Peer-To-Peer Context. Accepted for
publication in Journal of Grid Computing, 2006.

[19] M. Humphrey and D. C. Chu. Mobile OGSI.NET:
Grid Computing on Mobile Devices. In Fifth
IEEE/ACM International Workshop on Grid
Computing (GRID’04), 2004.

[20] J. Hwang and P. Aravamudham. Middleware Services
for P2P Computing in Wireless Grid Networks. IEEE
Internet Computing, 8(4):40–46, 2004.

[21] A. Iamnitchi, I. Foster, and D. C. Nurmi. A
Peer-to-Peer Approach to Resource Location in Grid
Environments. In 11th Symposium on High
Performance Distributed Computing (HPDC 11),
2002.

[22] IBM Services Architecture Team. Web Services
architecture overview.
http://www-128.ibm.com/developerworks/

webservices/library/w-ovr/, September 2000.

[23] Project JXTA, July 2005. http://www.jxta.org.

[24] Karl Czajkowski et al. The WS-Resource Framework,
March 2004.
http://www.globus.org/wsrf/.

[25] J. Ledlie, S. J., S. M., and J. Huth. Scooped, Again.
In Peer-to-Peer Systems II: Second International
Workshop, IPTPS 2003, 2003.

[26] M. Little, J. Webber, and S. Parastatidis. Stateful
interactions in Web Services: a comparison of
WS-Context and WS-Resource Framework. Web
Services Journal, May 2004.

[27] C. Mastroianni, D. Talia, and O. Verta. A Super-Peer
Model for Building Resource Discovery Services in
Grids: Design and Simulation Analysis. In European
Grid Conference EGC 2005, Amsterdam, The
Netherlands, 2005.

[28] M. Papazoglou. Service-Oriented Computing:
Concepts, Characteristics and Directions. In Fourth
International Conference on Web Information Systems
Engineering (WISE ’03)., 2003.

[29] A. Riposan et al. Mobile Peer-To-Grid Architecture
for Paramedical Emergency Operations. In HealthGrid
2006, 2006.

[30] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. A
Scalable and Ontology-Based P2P Infrastructure for
Semantic Web Services. In Second IEEE International
Conference on Peer-to-Peer Computing (P2P2002),
2002.

[31] C. Shirky. Modern P2P Definition.
http://www.openp2p.com/pub/a/p2p/

2000/11/24/shirky1-whatisp2p.html, 2000.

[32] D. Talia and P. Trunfio. Toward a synergy between
P2P and grids. Internet Computing, IEEE, 7(4), 2003.

[33] D. Talia and P. Trunfio. Web Services for Peer-to-Peer
Resource Discovery on the Grid. In DELOS
Workshop: Digital Library Architectures, 2004.

[34] C. Tham and R. Buyya. SensorGrid: Integrating
Sensor Networks and Grid Computing. CSI
Communications, Special Issue on Grid Computing,
Computer Society of India, July 2005.

[35] The Triana Project. See web site at:
http://www.trianacode.org.

[36] I. Wang. P2PS (Peer-to-Peer Simplified). In
Proceedings of 13th Annual Mardi Gras Conference -
Frontiers of Grid Applications and Technologies, pages
54–59. Louisiana State University, February 2005.

[37] J. Webber and S. Parastatidis. Horses for Courses:
Services, Objects, and Loose Coupling - Integration
without compromise.
http://www2.sys-con.com/ITSG/virtualcd/

WebServices/archives/0401/webber/index.html,
2004.

