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Error Detection in Content Word Combinations

Ekaterina Kochmar

Summary

This thesis addresses the task of error detection in the choice of content words focus-

ing on adjective–noun and verb–object combinations. We show that error detection in

content words is an under-explored area in research on learner language since (i) most

previous approaches to error detection and correction have focused on other error types,

and (ii) the approaches that have previously addressed errors in content words have not

performed error detection proper. We show why this task is challenging for the existing

error detection algorithms and propose a novel approach to error detection in content

words.

We note that since content words express meaning, an error detection algorithm should

take the semantic properties of the words into account. We use a compositional distribu-

tional semantic framework in which we represent content words using their distributions in

native English, while the meaning of the combinations is represented using models of com-

positional semantics. We present a number of measures that describe different properties

of the modelled representations and can reliably distinguish between the representations

of the correct and incorrect content word combinations. Finally, we cast the task of error

detection as a binary classification problem and implement a machine learning classifier

that uses the output of the semantic measures as features.

The results of our experiments confirm that an error detection algorithm that uses se-

mantically motivated features achieves good accuracy and precision and outperforms the

state-of-the-art approaches. We conclude that the features derived from the semantic rep-

resentations encode important properties of the combinations that help distinguish the

correct combinations from the incorrect ones.

The approach presented in this work can naturally be extended to other types of content

word combinations. Future research should also investigate how the error correction

component for content word combinations could be implemented.
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Chapter 1

Introduction

This thesis presents work on error detection in content word combinations in non-native

writing of English. This research is related to a number of topics ranging from second

language acquisition (SLA), to learner language, to learner data annotation, to automated

error detection (ED) and error detection and correction (EDC). In this chapter, we give

a brief overview of the areas involved in this research.

Research on SLA and learner language has a long history. People have always been inter-

ested in speaking other languages in order to communicate with each other, and English

has become a widely used lingua franca for people from different countries not sharing

a common native language. In addition, in certain spheres of life a good command of

English is a vital requirement. For example, the number of students entering educational

programs in foreign universities is growing every year. Universities offering international

programs run courses in English, and in order to enter such courses students are required

to pass language tests such as the International English Language Test System (IELTS)

administered by Cambridge English Language Assessment to demonstrate adequate com-

petence in English. Science and research is another sphere in which good command of

English is of great importance as researchers should be able to convey and exchange their

ideas with their colleagues from all over the world. This issue has been a focus of two

shared tasks on EDC – Helping Our Own (HOO) 2011 and 2012 – which aimed at promot-

ing the use of Natural Language Processing (NLP) tools and techniques to help improve

the textual quality of academic papers on NLP written by non-native speakers in the

field (Dale and Kilgarriff, 2011; Dale et al., 2012).

English is a non-native language for the majority of people who use it: according to Crystal

(2003, p. 69), non-native speakers of English outnumber native speakers by a ratio of three

to one, and according to Chodorow et al. (2010), they are a large and growing section of

the world’s population. It is estimated that in China alone 300 million people are currently

studying English. Guo and Beckett (2007) report that over a billion people speak English

10



CHAPTER 1. INTRODUCTION 11

as a second or further language. Tetreault and Chodorow (2008a) report that even in

predominantly English-speaking countries, the proportion of non-native speakers can be

substantial, and in 2002, the US National Center for Educational Statistics reported that

nearly 10% of students in the US public school population speak a language other than

English and have limited English proficiency. It is conventional to distinguish between

English as a Second Language (ESL) and English as a Foreign Language (EFL) with the

former being used for English learned in places where it is spoken on a par with one or

more other languages and where learners have constant exposure to it, and the latter being

related to countries in which English is not spoken. In this research, we do not distinguish

between ESL and EFL and focus on non-native English in general, or on English as a

Second or Other Language (ESOL).

Due to the diversity of languages in the world, the learning of English proceeds at various

rates. Research on SLA has addressed a wide variety of questions related to language

learning such as how difficult it is for native speakers of different languages to learn

English, how much their progress in learning relies on their native language (or L1),

whether the errors they commit could provide valuable information and guide further

learning, and to what extent these errors can be predicted. Answers to these questions

could lead to better language teaching strategies and help improve learners’ English. We

review previous SLA research in §1.1.

The growing number of non-native speakers of English, the wide-ranging difficulty of

learning and the demand for good language skills create a constantly increasing need

for tools to support English language learning and instruction at all levels and in all

countries (Chodorow et al., 2010). In addition to the tools for language learning such as

self-tutoring systems, there is a constant demand for tools that can improve one’s writing

by automatically detecting and correcting errors. Not surprisingly, automated EDC is a

developing field of research. We review this field in §1.2.

Most previous research in EDC has focused on function words (Leacock et al., 2010, 2014).

Function words, being some of the most frequently used elements of language as well as

some of the most difficult to master in a foreign language (or L2), cover a substantial

portion of learner errors. Errors in the choice of content words, such as nouns, verbs,

adjectives and adverbs, also constitute a substantial part of learner errors – they are the

third most frequent error type after errors in determiners and prepositions (Leacock et al.,

2010). Moreover, content words convey essential elements of meaning, so the appropriate

choice of content words is crucial for successful writing. Yet to date EDC for content

words is mostly under-explored and offers much room for improvement. In this thesis,

we focus on errors in content word combinations and discuss the specific challenges and

goals for EDC of content words. We show that the errors in the use of content words and

function words have to be tackled differently.

The availability of learner corpora and texts produced by language learners is central
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to any research on EDC. In this project, we use the Cambridge Learner Corpus (CLC)

which is a collection of texts written by non-native speakers in response to prompts as

part of Cambridge ESOL examinations. These essays represent freely generated text only

restricted by the topic of the essays, and this data is valuable for error-related research.

As there has not been much research on content word combination errors, one of the

important steps of this project has been the collection and thorough annotation of a

dataset of learner errors in content word combinations. This dataset has been extracted

from the CLC and represents real-life learner errors. The annotations provide information

about specific error types in content word combinations. §1.3 summarises the main goals

and motivation for the research presented in this thesis.

1.1 Second Language Acquisition

Second Language Acquisition focuses on how English as an L2 is acquired and what

the underlying mechanisms of language learning are. The communicative goal can be

seen as the ultimate goal of language learning: it is important for learners to express

themselves clearly in the L2 so as to be understood by native speakers of English as well

as by speakers with other L1s. Hence, learners might aim to speak and write in a World

Standard English, or a norm of English. Definitions of a norm and an error are central

to EDC research.

Corder (1971) suggests not considering the text produced by learners ‘erroneous’ as the

term ‘error’ implies wilful breach of rules that are supposed to be known, whereas no

wilful breach can occur when learners do not know the relevant rules of the L2. As

Corder points out, what appears to be deviant in comparison to the L2 might be correct

within the learner’s idiosyncratic dialect (or interlanguage as per Selinker (1972, 1992))

and conform to the rules the learner knows at a certain point of their L2 acquisition

process. However, if we adopt the communicative goal as the ultimate goal of language

learning, we see that it is the rules of the L2 that the learner should conform to in

order to be understood by a wide community of speakers with different L1s. Therefore,

the definition of learner error should address the discrepancies between what learners

produce and what native speakers of the target L2 produce. James defines an error as

“an unsuccessful bit of language” (James, 1998, p. 1) or as “an instance of language that

is unintentionally deviant and not self-corrigible by its author” (James, 1998, p. 78), and

Frei (1929) suggests distinguishing between rules of grammar and rules or laws of society,

as certain language conventions are not clearly defined. As we shall see later, certain

errors including some content word errors are explained by the breach of such language

conventions rather than strictly defined rules.

The crucial step in defining a learner error is setting the norm of English. A norm

stabilises language around one accepted variant of language making it more efficient and
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less variable, thus facilitating communication. Andreasson (1994) argues that without

a norm, language, being based on a set of arbitrary conventions, would break down.

James (1998, p. 35) advocates the use of the ‘official’ or national norm, referred to as

standard English, which should be established as a pedagogic norm of native-speaker

English and should be taught at schools. The norm is contrasted with other varieties of

native-speaker language – nonstandard dialects, or nonstandard ‘home’ languages – and

students’ performance should be measured against the accepted norm. The definition of

a norm is more important for written than for spoken English, since spoken language is

often more variable: speech allows for interaction between speakers, while the purpose of

a written text is usually to transfer the message to the reader in a non-interactive way.

James (1998, p. 39) also notes that there are different varieties of standard English spoken

around the world, including the older Englishes (British, American, Canadian, Australian,

and New Zealand) which are the original norm-providers for those who learn English as

an L2. In this work, we use British English as the norm.

The definition of a norm is, thus, based on the language used by native speakers. Native

speakers are assumed to be perfect in their mastery of language and are allowed, unlike

non-native speakers, to make up their own rules: “We believe, as most linguists, that

native speakers do not make mistakes. Native speakers for the most part speak their native

language perfectly” (Andersson and Trudgill, 1990, p. 111). However, text produced by

native speakers is not always error-free, and it is common for them to make mistakes, use

non-standard language or innovate. Native speakers constantly introduce novel forms and

words, some of which then become rooted in the language and are eventually considered

part of the norm. Non-standard use is common for figurative language, poetry, jargon,

and similar: for example, fun-size Chokko bars used in advertising, or Dylan Thomas’

“Once below a time...”. Since native speakers are considered to be experts in their own

language, whenever they use borderline word constructions, it is attributed to reasons

other than mere incompetence: for example, to creativity in using language.

One distinction between native and non-native speakers is the amount of authority as-

signed to them. Mey (1981) suggests that there is a natural scale reflecting the native

speakers’ authority: they are at their most authoritative on matters of phonology, less

so on morphology, less still on syntax, and least on semantics. Semantics occupies the

extreme end of this scale as it is the most diverse and changing area in linguistics with new

meanings and new words being created all the time. The same scale reflects native speak-

ers’ tolerance of linguistic deviance: they are least tolerant to phonological deviance and

most tolerant to semantic deviance. Phonetic deviance is almost exclusively interpreted

as mere incompetence with little creativity allowed in this area. James (1998, p. 146) also

points out that the claim that native speakers know their own language perfectly might

be true for some linguistic levels (e.g., syntax), but not necessarily for others (e.g., lexis).

Native speakers can be ignorant of some of the lexical stock of their own language, and

they continue to accumulate lexical knowledge throughout their lives.
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James (1998, p. 64) distinguishes between several categories of learners’ ignorance, and

in particular distinguishes between grammaticality and acceptability:

• Grammaticality or well-formedness has to be judged on objective grounds and on

the basis of violation of clearly defined rules of language use. If for some piece of

language one can say that there are no circumstances in which it could be formulated

in this way, the construction is ungrammatical: for example, he *jump or important

*informations. This category is context-independent. James (1998, p. 66) concludes

that some semantic and collocational anomalies like The milk turned *rotten or A

*flock of elephants do not belong to this category as the conclusions about such

word combinations are not within the sphere of grammar, but rather have to do

with the speaker’s intentions and hearer’s judgements. It depends on whether the

speaker meant rotten or sour, flock or herd as, for example, might be the case if the

words were used metaphorically. James (1998, p. 66) concludes that in such cases we

are dealing with the user’s viewpoint, or with acceptability. This view is similar

to that of Chomsky who noted that “the notion ‘grammatical’ cannot be identified

with ‘meaningful’ or ‘significant’ in any semantic sense” and that “any search for a

semantically based definition of ‘grammaticalness’ will be futile” (Chomsky, 1957,

p. 15).

• Acceptability has to do with non-linguistic factors, but grammaticality is seen as

a prerequisite for acceptability: “An acceptable utterance is the one that has been,

or might be, produced by a native speaker in some appropriate context and is, or

would be, accepted by other native speakers as belonging to the language in ques-

tion” (Lyons, 1968, p. 137), and “To understand a sentence, then, it is first necessary

to reconstruct its analysis on each linguistic level; and we can test the adequacy of a

given set of abstract linguistic levels by asking whether or not grammars formulated

in terms of these levels enable us to provide a satisfactory analysis of the notion of

‘understanding’” (Chomsky, 1957, p. 87). De facto use and unproblematicity are the

tests for establishing acceptability: to decide whether an utterance is acceptable or

not, one should try to think of the context where it can be used appropriately. James

(1998) offers the following example: suppose a native speaker is asked to judge the

acceptability of the utterance Pele (the Brazilian footballer) wore a green dress. If a

native speaker is asked to judge whether this is grammatically correct, they might

reply “Yes, if he were taking part in the Rio carnival celebrations”. A particular

context of use might reveal that the learner meant ‘shirt’ rather than ‘dress’ as they

were talking about the player’s outfit during a football match. To decide whether

something is acceptable, even when it satisfies the grammaticality test, is seldom

clear-cut and takes some thought or even imagination. Besides ungrammaticality

and failure to fit the intended context as in Pele wore a green ?dress and ?made three

goals, a phrase is unacceptable if it, for example, expresses an unconceivable idea
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(as in My lawnmower ?thinks that I don’t like it). Acceptability can also be equated

with processibility, an ability of the listener or reader to extract the meaning of the

message transferred.

Different error types can be attributed to different categories in this scheme. Most gram-

matical errors and errors in the use of articles are caused by violations of grammaticality

as they breach clear-cut rules of language. Errors in content words are related to ungram-

maticality if there is no context where a given word combination can be used appropriately,

and unacceptability if the combination in question does not fit the intended context.

The incompleteness hypothesis states that full mastery of an L2 might not be attainable

for non-native speakers. Even when a text is correct, learners with different L1s can

produce the same text based on different assumptions from their interlanguage. One of

our goals is to identify, as far as possible, the reasons for the content word selection errors

committed by language learners. However, we recognise that learner language might

never achieve nativeness and in that respect we follow some researchers who advocate

that the goal of ESOL learning should be a competent rather than native-like knowledge

of English. For example, Chomsky (1986, p. 16) advocates a ‘scientific’ approach to

describing the learner’s English that would “say that the person has a perfect knowledge

of some language L, similar to English but still different from it”, and Cook (1991, p.

114) states that “The model for language teaching should be the fluent L2 user, not the

native speaker”. Our primary goal is to identify clearly deviant uses of content words that

impede understanding and that would be identified by native speakers as unacceptable.

1.2 EDC in Learner Data: Challenges and Benefits

1.2.1 General principles

James (1998, p. 91) distinguishes between the following steps in error detection:

• error detection proper which is concerned with identifying whether something

is an error or not;

• error location which is concerned with identifying the exact location and span of

an error;

• error description or the choice of a meta-language for describing an error with

the purpose of explaining, preventing and repairing errors;

• error classification or categorisation aimed at categorising and counting errors

by type that can further be used to investigate ED for type-specific errors and to

alert learners to the type-specific problems;
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• error diagnosis which attempts to explain potential reasons for the errors com-

mitted: for example, interlingual or intralingual.

Each of these steps presents different challenges. James (1998, p. 91) points out that it

is easier for people to spot errors in written rather than spoken language, and also in

somebody else’s writing rather than in one’s own. For that reason, error annotation is

usually performed by human experts in the field: by teachers of English in a classroom

environment, or by trained experts. The performance of an automated ED system is then

compared to human judgements on the same task, as is the usual practice in NLP. It

is unrealistic to expect that an automated system would perform better than humans,

therefore the inter-annotator agreement on ED and EDC can be used as an informative

upper bound for an automated system.

Studies show that neither error detection nor error location are straightforward tasks

for humans. Agreement between human annotators varies depending on the error type:

it is easier to agree on certain grammatical errors, but errors related to discourse and

semantics may be harder to agree upon. This is related to the different level of tolerance

towards different types of errors (see §1.1): the more variability is allowed in a certain

linguistic domain, the less clear-cut are the rules defining the correct usage. The natural

difficulty of detecting the span and type of an error can be illustrated by overlapping and

interacting errors: for example, *Book inspire me allows for two competing corrections –

an article error and a subject-verb number agreement error with the correction The book

inspires me, or a subject-verb number agreement error with the correction Books inspire

me (Leacock et al., 2014, p. 35). In some, but not all, cases the surrounding context may

help choose one correction over the other.

Error taxonomies used for error categorisation can be built using different principles: they

can be based on linguistic categories (e.g., parts of speech), or on surface structure. The

latter can include the following categories:

• omission of a word or phrase;

• addition of unnecessary bits of text;

• misformation or misselection which corresponds to a wrong word choice and in-

cludes, among others, archiform errors discussed below;

• misordering which corresponds to the wrong word order and often results from

word-for-word translation from one’s L1; and

• blends which result from contamination of more than one well-defined target in the

learner’s mind.

Omission is more typical for function words, whereas when it comes to the use of content

words, learners tend not to omit words but rather paraphrase. Addition manifests itself
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differently in different linguistic categories: addition with respect to determiners means

using an unnecessary determiner when none is needed, whereas with respect to content

words it covers verbosity in an attempt to describe something for which a learner has no

suitable word in their mental lexicon as in things that come every week on TV for TV

serials.

Dulay et al. (1982, p. 160) discuss misselection errors and, in particular, talk about

archiform errors which they define as “selection” by the learners “of one member of a class

of forms to represent others in the class”. This occurs in both function and content words.

For example, learners tend to choose that to represent the class [this/that/those/these]. As

a result, that tends to be overrepresented in learner language, while the other members are

underrepresented. A number of errors in the choice of content words can also be explained

by misselection of archiform as we shall see in §2.3.2: it is common for learners to choose

a word with a more general meaning, for example big, to represent a whole class of words

related to size, and inappropriately use it instead of more specific terms like broad, long

or wide.

Blends describe the phenomenon of error hybridization when a learner says, for example,

*according to Erica’s opinion instead of either according to Erica or in Erica’s opinion,

or when a typical Indian meal comprises rice, dhal... is blended with a typical Indian

meal is comprised of... and results in a typical Indian meal *comprises of... (James, 1998,

p. 112). This error can be viewed as a blend of the two structures, and could also be

caused by similarity to the semantically close verb composed. Semantic issues play an

important part in such errors, but identifying a particular source for the error in such

cases is a difficult task for human annotators.

We primarily focus on misselection as it is the most frequent error category in content

words.

With respect to error correction, James (1998, p. 236) distinguishes between the follow-

ing types:

• feedback which aims to inform learners that there is an error, and leave them to

discover and repair it themselves;

• correction proper which aims to indicate that the present attempt is wrong, speci-

fying how and where it is wrong, and suggest an alternative or give a hint;

• remediation which aims to provide learners with information that allows them to

revise or reject the wrong rule they were operating with when they produced the

error token.

Similar feedback type taxonomies have been used elsewhere in literature with some dif-

ference in terminology: what James (1998, p. 236) refers to as feedback is often called
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indirect feedback, while correction proper is also referred to as direct corrective feedback,

and remediation as direct corrective feedback with additional meta-linguistic information.

Each of these types serves a particular purpose, and the choice of the feedback type to

provide with an EDC system will depend on the goals as well as the complexity of the

algorithms used. It can be argued that feedback in James’ terminology is the most general

of the three types, while remediation is arguably the most difficult and costly to provide

automatically. Feedback and correction proper usually serve a short-term goal of detecting

and correcting errors in a particular piece of writing and are realised by teachers correcting

students’ writing as well as by automated EDC systems and spell- and grammar-checkers.

Remediation is oriented more to the long-term effect, and is realised by teachers provid-

ing further explanations and automated tutoring systems which aim to detect the source

and reason for an error and provide instructions on how to prevent such errors in the

future. Depending on the type of error committed and on the learner’s level of English,

some learners might benefit more from feedback while others might need correction and

remediation.

1.2.2 Usefulness of Corrective Feedback

The question that has to be answered within EDC is whether learners benefit from the

feedback provided, whether it improves the accuracy of their writing and facilitates lan-

guage learning, in particular when the feedback is provided by an EDC system. For

automated feedback to be useful, it should be accurate enough, as well as clear and

informative for learners to understand and attend to the system’s suggestions.

The relevant issues for corrective feedback on learner writing include:

• goal: short-term aimed to improve the quality of a given piece of writing, or long-

term aimed to facilitate language learning;

• focus: focused on one particular error type, or unfocused covering several error

types;

• type: direct comprising both detection and correction, or indirect consisting of an

indication that there is an error without further specification;

• source of feedback: whether it is provided by a teacher or by a tutoring or EDC

system;

• amount of supporting information: learners can additionally be provided with

explanatory examples scraped from the Web, as was implemented in the ESL As-

sistant (Chodorow et al., 2010), or pointed to the relevant chapters in a grammar

book as in Criterion (Lipnevich and Smith, 2008), or they can be provided with a

short explanation or an oral session by a teacher.
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EDC systems can be evaluated in a system-centric or in a user-centric manner (Chodorow

et al., 2010). The former focuses on how well the system detects and corrects the errors

that it is supposed to detect and correct, and it is this aspect of EDC systems that is

most commonly examined. The latter is also important as it focuses on how the system

impacts the quality of writing and whether learners actually benefit from the feedback.

An early study by Truscott (1996) claimed that grammatical error correction in L2 writing

is actually ineffective and harmful for language learning. This motivated a number of

researchers to question whether corrective feedback is helpful for learners, and if so, which

type of feedback is most helpful. Some of these studies looked into feedback provided by

teachers (Bitchener, 2005; Sheen, 2007; Bitchener et al., 2008; Ellis et al., 2008). A

number of studies in recent years looked into the usefulness of computerised feedback and

evaluated the systems in a user-centric manner (Attali, 2004; Lipnevich and Smith, 2008;

Chodorow et al., 2010; Nagata and Nakatani, 2010; Andersen et al., 2013).

The key findings of these studies can be summarised as follows:

• All studies confirmed a positive effect of corrective feedback: a significant improve-

ment in accuracy was retained between the immediate and delayed post-tests, as

opposed to the control group which received no feedback and either showed a de-

cline in accuracy or inconsistent performance (Bitchener et al., 2008; Ellis et al.,

2008) or was able to show only an insignificant improvement over time which might

be attributed to a self-learning effect when learners pass multiple writing tests of

a similar kind (Sheen, 2007). This refutes the original claim by Truscott (1996)

concerning the ineffectiveness of corrective feedback.

• The studies that included meta-linguistic information and compared direct feedback

alone to direct feedback with additional meta-linguistic explanation showed that

the latter results in stronger effects over time (Sheen, 2007). It can be argued that

whereas both types of feedback are likely to promote learners’ awareness as noticing,

only direct corrective feedback with meta-linguistic comments promotes awareness

with understanding and facilitates learning.

• Some studies assumed that focused feedback for a single or limited number of gram-

matical issues can be more beneficial for language learners who have limited pro-

cessing capacity and are not able to deal with information overload when presented

with unfocused corrective feedback (Sheen, 2007). The results of Ellis et al. (2008)

who compared the performance of learners who received focused feedback on articles

with those who received unfocused feedback on multiple error types show that there

is a substantial improvement in accuracy in both groups, while the differences in

improvement between the groups are not statistically significant. The accuracy is

maintained over time in the unfocused feedback group and improves in the focused
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feedback group, which suggests that in the long run focused feedback might, indeed,

be more informative and useful.

The results of these studies can be interpreted as proof that high quality corrective feed-

back facilitates language learning and results in improved accuracy in the use of certain

linguistic categories, with this positive effect being retained over time. When it comes

to implementation of an EDC system, an additional challenge arises: the feedback pro-

vided by the system should be of high quality, comparable to that provided by a teacher.

Meta-linguistic explanation is also harder to generate automatically.

The usefulness of the diagnostic feedback provided by three automated systems has been

shown so far: Attali (2004), Lipnevich and Smith (2008) and Chodorow et al. (2010) dis-

cussed the usefulness of the feedback provided by CriterionSM developed by Educational

Testing Service; Chodorow et al. (2010) also showed the usefulness of the ESL Assistant

developed by Microsoft Research; and Andersen et al. (2013) presented and discussed a

self-assessment and tutoring (SAT) system developed by the University of Cambridge and

aimed at intermediate learners of English.

The usefulness of an EDC system can be proved by a decreased error rate in the writing

of learners who use the system, while negative findings might suggest that learners have

difficulties in understanding the automatically generated feedback or the suggested cor-

rections. All studies confirmed an improvement in learner writing resulting from the use

of these automated systems.

The systems use different approaches to error correction: for example, Criterion uses

meta-linguistic feedback, labelling the type of error and pointing the learner to the rel-

evant chapter in a grammar book. ESL Assistant incorporates web search for both the

original string and the suggested correction if the system identifies the original use as

an error. This type of feedback mimics non-native speakers’ behaviour when they use

web search in order to verify correct usage of English expressions, and has the additional

advantage of allowing learners to make the final decision about the correct linguistic form.

Chodorow et al. (2010) investigated how often learners found examples useful, how of-

ten they accepted the suggestions and whether the acceptance was informed rather than

blind. The study confirmed that the learners indeed make selective decisions, and more-

over, can distinguish between valid and invalid system suggestions. While confirming

that ED can be automated, this study also showed that the correction step can be im-

plemented as an interactive process, especially when the errors are related to semantics.

The SAT system (Andersen et al., 2013) provides automated feedback of three types and

at different levels of granularity: an holistic score reflects learners’ proficiency and rep-

resents evaluative feedback, a score for each sentence highlighting well-written as well as

less well-written passages represents indirect corrective feedback, while specific comments

on local issues including spelling and word choice represent direct corrective feedback. At

the sentence level, learners are made aware of the problematic areas but have to figure out
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the corrections themselves, while at the level of individual errors they are provided with

suggestions rather than prescriptive corrections, so the system involves a great deal of

interactivity and makes the learners think and analyse rather than automatically accept

the system’s suggestions. A user questionnaire revealed that learners found this approach

useful, facilitating their critical thinking and analytical skills.

It should also be noted that all three systems aim at high precision in ED (Chodorow

et al., 2010; Andersen et al., 2013): Chodorow et al. (2010) reported precision of about

90% for article ED and 80% for preposition ED for Criterion, while the ESL Assistant

achieved 91% precision for article ED and 78% precision for preposition ED. It has been

noted before (Leacock et al., 2014) that false positives, or correct instances misidentified

by an ED system as errors, are notoriously annoying for users. It could be argued that

false positives are also highly misleading for language learners, and this could result in a

negative effect on learning. Nagata and Nakatani (2010) argue that when only a limited

number of errors is detected with high precision, learners can detect the other incorrect

instances by generalising the system’s feedback to more instances of the same kind using

their knowledge of English, and such activities facilitate language learning. In contrast, if

a system detects errors with only limited precision, learners focus on judging whether the

given results are trustworthy or not, and do not learn much from such feedback. Their

findings confirm that imprecise feedback misleads learners more than no feedback.

The studies on usefulness of automated corrective feedback have so far mostly focused

on certain error types and there is no conclusive evidence about what type of feedback is

most useful for error categories involving content words. However, it is possible to draw

some general conclusions:

• Automated corrective feedback helps improve accuracy of learners’ writing provided

that it is accurate and precise. The studies report precision above 0.80.

• An EDC system should aim for high precision as imprecise feedback misleads learn-

ers and has a negative effect on their learning progress.

• Learners are able to attend to the systems’ comments and make informed choices

when presented with possible corrections and additional information on those. Error

correction, especially for errors related to semantics such as the ones in the choice of

content words, can be implemented as an interactive process, while error detection

should be automated.

• Learners are able to use indirect automated feedback and report that they find it

useful.

We aim to implement an ED system with the focus on errors in content word combinations.

ED can be seen as serving the short-term goal of detecting errors in a particular piece of
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writing; however, if an automated system detects errors with high precision it also serves

the long-term goal of language learning.

1.2.3 ED in Content Words

Tools for grammatical analysis and correction in written text have been around for sev-

eral decades. At the earlier stages of research on EDC, grammar checking tools were

based on string matching and involved little, if any, linguistic analysis (for example, the

Unix Writer’s Workbench (Macdonald et al., 1982)). Later systems, such as Correct-

Text (Houghton Mifflin Company) and Grammatik (Aspen Software) performed some

linguistic analysis, while some other tools like IBM’s Epistle (Heidorn et al., 1982) and

Critique (Richardson and Braden-Harder, 1988) ran full linguistic analysis using sophis-

ticated grammars and parsers (Leacock et al., 2014, p. 7). The use of grammars and

parsers allowed these systems to target a wide range of grammatical errors; still the al-

gorithms relied heavily on hand-coded rules. As of today, some grammar checking tools

still involve some rule-based heuristics. Rule-based approaches to grammatical analysis

are efficient for the types of learner errors that can be described and corrected using a

clearly defined set of rules, for example subject-verb agreement. For instance, ESL As-

sistant used a combination of rule-based and statistical machine-learning approaches: the

former were applied to the error types amenable to simpler solutions, such as noun num-

ber, verb formation or irregular verb errors, and the latter were used for the error types

that are difficult to identify and resolve without taking into account complex contextual

interactions, such as article and preposition errors (Leacock et al., 2009).

With the emergence of large-scale annotated treebanks and other resources, as well as sta-

tistical parsers trained on these resources, statistical approaches to grammatical analysis

as well as to EDC in learner data began to dominate the field. Statistical systems assign

high probabilities to the sequences of words that are seen or are substantially similar to

the sequences seen during training, while unobserved sequences receive low probabilities

and have a higher chance of being identified as errors. This approach is efficient for EDC

in cases when usage is reliably covered by the data. For example, idiomatic expressions

can be expected to have reliably high counts in native data. As Nunberg et al. (1994)

point out, idioms are often considered to “typically appear only in a limited number of

syntactic frames or constructions, unlike freely composed expressions” (Nunberg et al.,

1994, p. 492). This property has been shown to not always hold for idioms (Nunberg

et al., 1994; Riehemann, 2001). However, Riehemann (2001, p. 32) still points out that

“for each idiom there is a particular fixed phrase (modulo inflection of the head) which

is recognized by speakers of the language as the normal form this idiom takes, and which

is used much more frequently than would be predicted from independent factors”. Riehe-

mann (2001, Chapter 3) shows with a number of examples that the canonical forms of the

idioms are used in the native data much more frequently than modified forms. Extending
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the argument about the native speakers’ authority from §1.1, we can also assume that

while native speakers can use modified idioms, language learners will still be expected

(or even encouraged) to use the idioms in their canonical rather than modified form.

Therefore, statistical approaches can help identify that hit the bucket used by a language

learner is potentially a failed idiom with a possible correction being kick the bucket. The

key problem with statistical approaches aimed at replicating observed combinations is

that human language is highly productive, especially when it comes to the use of content

words in freely composed expressions, and no corpus can effectively sample all possible

content word combinations (see the discussion in Chomsky (1957, p. 15)).

The increasing availability of learner corpora in recent years has allowed the extraction

of information about the typical errors committed by language learners of different L1

backgrounds at various stages of their language proficiency. This information has various

applications in EDC: from training statistical classifiers on incorrect rather than correct

uses (Han et al., 2010; Dahlmeier and Ng, 2011b), to using typical error confusion patterns

and adapting machine learning classifiers to L1-specific priors (Rozovskaya and Roth,

2011), to developing systems that can identify with high precision frequently occurring

errors in learner writing (Kochmar et al., 2012; Andersen et al., 2013).

The field of EDC in recent years has mainly focused on function words such as determiners

and prepositions since they are notoriously difficult for language learners to master and

as such represent a large subset of learner errors. Certain properties of these linguistic

elements make it possible to treat EDC of function words as a classification problem and

detect and correct such errors using machine learning classifiers. For instance, since these

words belong to closed classes, the likely error patterns represent a small finite set. A

classifier can be trained on well-formed text to learn a model of the correct use for an

article or preposition. The features for the classifier are extracted from the surrounding

context which is usually highly informative for function words. At application time, the

classifier compares the class returned based on information learned from the training data

with the word (class) originally used by the learner, and detects an error if the classes do

not coincide. This approach proves to be efficient for function words due to the limited

number of the classes representing closed-class words such as articles and prepositions,

and due to the fact that the surrounding context can provide information about correct

usage and generalise to new data. The same is not applicable to errors in content words,

which cannot be described in terms of a finite set of possible confusions, while the correct

use of the content word itself is defined by language conventions and semantics rather

than syntax or grammatical relations between words.

Leacock et al. (2010, 2014) note that errors in content words and collocations represent a

substantial portion of learner errors. According to them, these errors are the most common

after the incorrect use of articles and prepositions.1 In addition, errors in content words are

1Precise figures depend on errors covered by the term “collocation errors”. For example, Dahlmeier
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also potentially more harmful as they change the intended meaning of the text and impede

understanding. Leacock et al. (2014, p. 21) mention an experiment in which teachers of

English were asked to rank errors according to their gravity. “The teachers had high

agreement, ranking the two most serious errors as being word choice (sky versus heaven)

and preposition errors”. Leacock and Chodorow (2003) built a regression model to match

the error types with holistic scores in the Test of English as a Foreign Language (TOEFL).

Errors resulting from confusion between homophones and confusion of morphologically

related forms were among the top five most useful predictors of the score in their study,

which confirms that errors in content words have a direct impact on overall results.

In spite of being very frequent in learner writing and impeding understanding, errors in

the choice of content words have received much less attention and to date remain an

under-explored topic in the field of EDC. Certain properties of the use of content words

make these error types very challenging for EDC algorithms. We aim to fill this gap in

EDC research and explore methods of detecting and correcting errors in content words.

1.3 Project Goals

1. The current work focuses on ED in the choice of content words. We address errors

in two particular types of content word combinations – adjective–noun (AN) and

verb–object (VO) combinations, as they cover a substantial portion of learner errors

in the use of content words. The approaches to ED presented in this work can

naturally be extended to other types of content word combinations.

2. Content word combinations allow for higher variability and do not follow any clear-

cut rules of English. Therefore, we argue that with respect to content words learners

benefit most from error detection and should be notified of incorrectly chosen content

words in their writing. Error correction, on the other hand, can be performed in

an interactive way, and final decisions about corrections can be left to the learner.

An ED algorithm fulfils a short-term goal, but provided that error detection is

performed with high accuracy, it also facilitates language learning and should lead

to long-term effects.

3. It has been shown that precision-oriented ED approaches facilitate language learn-

ing. In this research, we aim for high precision in error detection.

4. In view of the lack of error-annotated datasets on content word combination errors,

we collect and annotate a dataset of AN and VO combinations. For that, we anal-

yse learner errors in the texts produced by language learners in response to essay

et al. (2013) list the “wrong collocation” error type among the five most frequent error types in the

NUCLE corpus, but they combine a wide variety of errors including ones in the use of prepositions and

particles under one error-type label.
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prompts, which means that the errors are extracted from freely-generated texts and

exemplify typical learner errors. The annotation scheme is devised to cover, describe

and explain the errors committed. The collected and annotated datasets are freely

available and are useful from both theoretical and practical points of view: they can

be used to investigate error categorisation in content word combinations as they

represent typical errors committed by language learners, and they can also be used

as a testbed for EDC algorithms applied to content words.

5. We argue that incorrect content word combinations often exhibit semantic mismatch

between the words chosen, and that approaches based on semantics are suitable for

detecting errors in content word combinations. We implement compositional distri-

butional semantic models, and we show how they can be applied to the learner data

to detect errors in the choice of content words. We use the output of these models

and derive “semantically informed” features which we use with a machine learning

(ML) classifier. We show that this semantically motivated approach outperforms

the other approaches that currently represent state of the art.

1.4 Thesis Structure

• Chapter 2 presents the theoretical background of the current work. We overview

the related areas in EDC, and discuss learner corpora collection in §2.1, learner

data annotation principles in §2.2, approaches to EDC in function words as well as

in content words in §2.3. We motivate the usefulness of models of compositional

distributional semantics for ED in content word combinations in §2.4, and finally

discuss how the systems are evaluated in §2.5.

• Chapter 3 presents the datasets of learner errors in AN and VO combinations. In

the experiments presented in this thesis we use datasets extracted from the publicly-

available and error-annotated Cambridge Learner Corpus First Certificate in En-

glish (CLC-FCE) dataset, and we describe these datasets in §3.1. We also present

new datasets of AN and VO combinations that are extracted from the full CLC

and contain combinations that are not attested in a native corpus of English. We

discuss these datasets in §3.2, and show that these datasets contain both correct

and incorrect content word combinations which are challenging for ED algorithms.

The datasets have been annotated using an annotation scheme that describes the

typical confusion patterns in learner use of content words. Chapter 3 presents the

annotation scheme and the results of the annotation experiment.

• In Chapter 4 we describe a simple algorithm for ED in content words that is based

on the previous approaches to this task. The algorithm performs EDC by comparing

the original combinations to their possible alternatives and selecting the most fluent
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one according to the chosen measure of collocational strength. We present the

theoretical background for this algorithm in §4.1, and discuss the implementation

in §4.2. We apply this algorithm to the AN and VO datasets and show that it

performs poorly on learner data, and in particular on word combinations previously

unseen in native corpora. The results are presented in §4.3.

• In Chapter 5 we present a novel approach to ED in content words which is based on

the observation that many errors are caused by a semantic mismatch between the

words within a combination. We refer to the previous work on semantic anomaly

detection and show that a similar approach can help detecting errors in content

word combinations in learner writing. We discuss the implementation of the models

for AN combinations in §5.1 and §5.2. We present and discuss a number of measures

that help distinguish between semantic representations of the correct and incorrect

combinations in §5.3, and present the results in §5.4. Application of the models of

compositional distributional semantics to VO combinations is discussed in §5.5 to

§5.8. The approach presented in Chapter 5 shows promising results, and we discuss

the directions for future work in §5.9.

• We use the output of the semantic models and the measures for detecting semantic

anomaly to derive features for an ML classifier. Experiments with the ML classifier

are presented in Chapter 6: we discuss the theoretical background for this algorithm

in §6.1, the implementation in §6.2, and the results in §6.3. We show that an ML

classifier that uses a small number of semantic features outperforms state-of-the-art

approaches to ED in content words and shows good performance on this task. We

discuss the performance of the algorithm in more detail in §6.4, and summarise in

§6.5.

• We conclude with Chapter 7 which summarises the contributions of this work and

discusses future work on ED and EDC in content word combinations.



Chapter 2

Theoretical Background

In this chapter, we give an overview of previous research on the EDC of learner errors. In

§2.1, we discuss the learner corpora that are available for research including the ones that

we use in this project, and review the general principles of learner data collection. The

underlying principles and guidelines for learner data annotation are discussed in §2.2. We

rely on these principles in annotating the data for this project.

In §2.3, we discuss the previous approaches to EDC. We consider the ML techniques

used for EDC in function words and discuss whether these techniques can be reapplied to

content words. §2.3.2 presents previous research on EDC in content word combinations.

We note that most research in this area has either (a) assumed that errors have already

been detected and performed error correction only, or (b) performed writing improvement

with the goal of suggesting the most fluent word combinations to the learners rather than

assessing the acceptability of the original combination, or (c) relied on manually created

databases of previously seen errors and their corrections. We discuss the limitations of

these approaches and conclude that none of them have addressed ED in content words.

§2.4 presents methods of distributional and compositional semantics, discusses the appli-

cation of these methods to a related task of semantic anomaly detection, and outlines

how these models can be applied to the current task.

Finally, we discuss how EDC systems should be evaluated in §2.5.

2.1 Learner Corpora

Since nowadays learner corpora are widely available, it is possible to analyse actually

occurring learner errors and perform error analysis (EA) on texts freely produced by

language learners. EA has certain limitations that should be taken into account. Since

it is performed on actual texts and uses a one-sided practice of “analysing out the errors

and neglecting the careful description of the non-errors” (Hammarberg, 1974), it only

27
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considers occurring errors and not the “uncommitted” ones – the potentially problematic

cases that learners might be unsure of even if they manage to not commit an error. Nor

can this approach deal with the potential errors that are never realised due to avoidance

strategies. From the pedagogical point of view, such cases that are missed through EA are

of high value. It is also important to keep these issues in mind when drawing conclusions

about the typical errors of language learners: for example, Leacock et al. (2014, p. 19)

mention that the most frequent errors in the writing of U.S. college students, all native

speakers, involve certain punctuation and sentence structure-related errors, while those

error types represent only a minor portion of errors in texts written by language learners.

The reason for that is not that non-native speakers master these aspects of writing more

successfully than native speakers, but rather that they avoid using the structures in which

such errors can occur since they are unsure of the correct use in these cases.

In spite of these issues, learner corpora allow the investigation of real ‘living’ learner errors

as well as contexts in which they commonly occur, and EDC research benefits greatly from

the availability of such corpora. The usefulness of annotated learner corpora has been

acknowledged since the time of their appearance (see Dagneaux et al. (1998), Granger and

Leech (1998), Tono (2003), among others). Learner corpus research is also overviewed

in Granger (2007), Nesselhauf (2004) and Pravec (2002).

The availability of large annotated learner corpora in combination with the advances in

ML of recent years also determined the success of statistical methods in EDC.

2.1.1 Cambridge Learner Corpus

The CLC1 is a 52.5 million-word corpus (16 million-words in 2003) of learner English

collected by Cambridge University Press (CUP) and Cambridge English Language As-

sessment since 1993 (Nicholls, 2003). It comprises essays produced by English language

learners sitting examinations in English and written in response to examination prompts.

At the moment, the CLC contains over 200, 000 exam scripts from students speaking 148

different L1s living in 217 different countries or territories. For comparison, in 2003 the

corpus contained texts written by speakers of 86 L1s, and more than 15 L1s were repre-

sented with more than 350, 000 words (Nicholls, 2003). The examination scripts have been

transcribed retaining all errors, and a part of the corpus (a 25.5 million-word component

currently, and a 6 million-word component in 2003) has been manually error-coded by

two coders using an error annotation scheme devised specifically for the CLC. The scheme

contains 88 distinct error codes (Nicholls, 2003). Since a growing number of non-native

speakers undertake language examinations every year, the corpus and its error-annotated

section have also grown over time.

1http://www.cambridge.org/gb/elt/catalogue/subject/custom/item3646603/

Cambridge-English-Corpus-Cambridge-Learner-Corpus/?site_locale=en_GB
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Each examination script contains meta-information about the learner, including one’s L1,

age, sex, education history and years of English language study. This information, as

well as the error coding, can be used to create subcorpora representing particular subsets

of learners (for example, speakers of certain L1s) or particular error types (for example,

content word combinations).

The aim of coding in the CLC was not to create a systematic error taxonomy, but rather

to capture, where possible, all errors of a certain type under one heading (Nicholls, 2003).

This allows further investigation of the corpus, searching for recurrent error types occur-

ring in similar contexts. The annotation scheme is flexible enough to allow search on

clusters of errors: for example, on all noun-related errors en masse. The constructions of

interest can be extracted using these properties of the corpus and the annotation scheme,

while more detailed annotation can be performed on the extracted data. Such a strategy

has been used in this research project.

Corrections for the annotated errors are provided whenever possible. The general ap-

proach to error correction in the CLC was for the annotators to not try to ‘interpret’ or

paraphrase the original learner’s input, but to only provide a ‘correct’ version when there

is only one clear replacement possible. The availability of the corrected version supports

further functionality: for example, comparative analysis of the original (errorful) and the

corrected (error-free) version can reveal certain properties of learner language, especially

with respect to missing words and constructions.

The annotation and corpus-construction principles used in the CLC include:

• avoiding over-coding and ‘creating’ errors, when annotators are specifically instructed

to not try to paraphrase, interpret or rewrite the scripts into perfect English – only

the absolutely incorrect use is corrected;

• choosing codes and corrections so that they result in a minimum change in the

original text and keep it as close as possible to the original. This is especially

important in case of competing or ambiguous errors when several corrections and

various amount of change are possible. For example, *He said me that... could be

annotated as either a wrong verb choice error (RV) and corrected to told, or as a

missing preposition error (MT) and corrected to said to me. The latter, it can be

argued, introduces less severe changes to the text and should be chosen in this case.

Besides, it is more helpful to teach the students how to use the chosen verb correctly

rather than how to avoid using a verb that they use incorrectly. This is achieved by

imposing a hierarchy on the use of the error codes.

The CLC is available for research, and a subset containing the FCE scripts from the years

2000 and 2001 has been made publicly available (see §2.1.2).
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Error Annotation in the CLC

The majority of the error codes in the CLC are two-letter-based with the first letter

representing the general type of the error (for example, wrong form or omission) and the

second letter representing the word class of the required word (for example, noun). Errors

are tagged using the following convention:

<NS type=#CODE><i>incorrect word</i><c>corrected word</c></NS>

The set of first letters in the error codes includes F for wrong Form used, M for something

Missing, R for the word or phrase needing Replacing, U for word or phrase Unnecessary or

redundant, and D for word wrongly Derived. The set of second letters includes N for Nouns,

J for adJectives and V for Verbs, among others.

This two-letter convention makes it possible to extract contexts exemplifying certain sub-

types of errors. For example, by specifying that the error code should contain N as the

second letter, one could extract all noun-related errors, or by specifying that the error

code should start with an R one could search for all words and phrases needing replace-

ment in learner texts. A search for all the instances tagged with RN, for example, would

return all the nouns used incorrectly by the language learners.

2.1.2 CLC-FCE Dataset

The FCE dataset is a subset of the CLC which was released in 2011 (Yannakoudakis et al.,

2011) and is publicly-available.2 The scripts included in the dataset have been produced

by learners taking the FCE exam, which assesses English at an upper-intermediate level.

The scripts have been anonymised and annotated using XML, with the original metadata

about the question prompts, the candidates grades, L1 and age retained. Each script

contains two essays of the length 200–400 words, written in response to tasks asking

learners to write a letter, a report, an article, a composition or a short story. The scripts

contain the original error annotation from the CLC (Nicholls, 2003), marks for each of

the two answers and an overall score in the range 1–40 assigned to each script.

The released dataset contains 1, 244 scripts from the years 2000 and 2001. The prompts

are released with the dataset. A typical prompt is shown below:

Your teacher has asked you to write a story for the school’s English language magazine.

The story must begin with the following words: “Unfortunately, Pat wasn’t very good at

keeping secrets”.

We use the dataset for the experiments on content word ED in our project. Previously, it

has been used for experiments on automatically grading (Yannakoudakis et al., 2011) and

modelling coherence in ESOL learner texts (Yannakoudakis and Briscoe, 2012), as well as

2http://ilexir.co.uk/applications/clc-fce-dataset/
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on grammatical EDC (Dale et al., 2012; Yuan and Felice, 2013; Felice et al., 2014), and

L1 detection (Brooke and Hirst, 2011; Kochmar, 2011; Brooke and Hirst, 2012), to name

just a few.

2.1.3 Other Corpora

Some other learner corpora that are available for research on EDC include:

• The NUS Corpus of Learner English (NUCLE) (Dahlmeier et al., 2013). It con-

tains about 1, 400 essays from undergraduate university students totalling over 1

million words, completely annotated with error tags and corrections. The annota-

tion and correction have been performed by professional English instructors. The

tag set contains 27 error categories grouped into 13 categories, which is considered

to be a sufficiently fine-grained tag set while not too complex for the annotators

to efficiently apply it. Collocation errors are reported to be among the top five

error categories, although the Wcip tag used for wrong word choice errors stands

for wrong collocation/idiom/preposition and, thus, covers various types of wrong

word choice errors, with content words as well as prepositions involved. Together,

they account for 15.69% of all the errors in the corpus. Dahlmeier and Ng (2011a)

reported that collocation errors alone account for about 6% of all errors in NUCLE,

which makes these errors the 7th largest class of errors in the corpus after article

errors, redundancies, prepositions, noun number, verb tense, and mechanics.

• International Corpus of Learner English (ICLE) (Granger, 2007) – a non-annotated

learner corpus.

• Chinese Learner English Corpus (CLEC) (Gui and Yang, 2001) – a 1-million-word

corpus of Chinese learner English annotated for error types but not containing error

corrections.

• The annotated smaller corpora used for HOO’11 (Dale and Kilgarriff, 2011), HOO’12

(Dale et al., 2012), grammatical EDC shared tasks (Ng et al., 2013, 2014).

2.1.4 Content Word Error Datasets

The collection and annotation of a dataset representing learner errors in the choice of

content words is an important step in this project. In spite of the availability of learner

corpora in the past years, there have not been many datasets aimed at representing errors

in content words. Such datasets can be extracted from learner corpora, but they do not

contain any annotation specific to content word errors.

Below we list the datasets relevant for EDC in content words that have been previously

released:
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• Dahlmeier and Ng (2011a) presented a dataset of collocation errors extracted from

real-world learner data and representing errors in one L1 (Chinese) only. They

used the dataset to show that L1-induced paraphrases outperform traditional ap-

proaches based on edit distance, homophones, and WordNet synonyms. The subset

of collocation errors was extracted from the NUCLE corpus using the Wcip error

tag. After filtering, errors involving function words were removed, as well as the

instances where the original or the correction was longer than 3 words. Dahlmeier

and Ng (2011a) report that the collocation error dataset contains 2, 747 errors and

their corrections (2, 412 distinct pairs), and that these instances account for about

6% of all errors in the NUCLE. It was also noted that a substantial number of errors

in this dataset can be traced to L1-transfer.

Limitations:

– The NUCLE corpus has been released, but the particular dataset of the collo-

cation errors is not available as a separate resource and it must be extracted

from the NUCLE corpus.

– As the work is aimed at error correction rather than detection and correction,

it only represents errors and does not contain originally correct examples. It

is suitable for exploring the correction step, but real learner data contains

both correct and incorrect instances, and is typically skewed towards correct

examples.

– The dataset exemplifies only one L1.

• Vecchi et al. (2011) focused on detecting semantic anomaly in AN combinations and

compiled a dataset of ANs not encountered in native corpora of English, including

the Web-derived ukWaC corpus,3 a mid-2009 dump of the English Wikipedia4 and

the British National Corpus (BNC).5 First, they focused on 30 randomly chosen

adjectives and 100 randomly selected ANs for each of the adjectives (3K ANs in

total). Two authors went through this list, marking ANs as semantically acceptable,

intermediate or semantically anomalous. As a result, they collected a set of 456 ANs

where both judges agreed the AN was odd and 334 where both judges agreed the

AN was acceptable. Then 5 adjectives were discarded for either technical reasons or

for having less than 5 agreed deviant or acceptable ANs. The final set contained 413

deviant AN combinations (e.g., academic bladder, blind pronunciation, parliamen-

tary potato and sharp glue), and 280 acceptable but unattested AN combinations

(e. g., vulnerable gunman, huge joystick, academic crusade and blind cook).6

We note that this dataset exemplifies a closely related problem in native English

3http://wacky.sslmit.unibo.it
4http://en.wikipedia.org
5http://www.natcorp.ox.ac.uk
6The sets can be downloaded from http://www.vecchi.com/eva/resources.html
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– semantic anomaly. The errors in content word combinations committed by lan-

guage learners often stem from a semantic mismatch between the chosen words, a

phenomenon analogous to ‘semantic anomaly’ in the language of native speakers.

However, we also note that native speakers know how to choose content words in

their language and are usually assumed to not commit errors, while language learn-

ers might only unintentionally produce a semantically anomalous combination, as

they still try to transmit a sensible message. Therefore, we consider that this dataset

cannot be used for research in content word ED, since it exemplifies a similar but

not exactly equivalent problem.

As there has been no previously released dataset of content word combinations annotated

with respect to learner errors, we consider this to be an important contribution of this

work, filling a gap in learner language research.

2.2 Learner Data Annotation

According to Corder (1974) and Ellis (1994), EA comprises four steps: error data col-

lection, error identification – selection of the text spanning an error, error classification

and description, and finally explanation and correction.7 Error annotation follows a sim-

ilar procedure: errors are readily available in learner text, and annotators are asked to

identify, classify and correct errors.

Certain annotation principles can be adopted from previously employed annotation schemes.

For example, the annotation scheme used for the CLC was primarily aimed at grouping

errors of a certain type under one heading (Nicholls, 2003). The annotators were also

instructed not to paraphrase the original content, and to use a tag hierarchy to resolve

ambiguous cases. Annotators of the CLC (Nicholls, 2003), as well as annotators of the

NUCLE (Dahlmeier et al., 2013), were instructed to identify a minimal text span for an

error, in order to minimise changes made to the original text to correct it. In what follows,

we discuss some other issues relevant for data annotation.

Lüdelig et al. (2005) advocate a multi-level standoff rather than a flat token-tag archi-

tecture that is currently used in most learner corpora. They demonstrate that standoff

annotation allows for encoding of several competing hypothesis at a time, as well as tag-

ging of interacting and overlapping errors, which is useful when a number of different

errors are present in a learner corpus. For example, both I like reading and I like to read

are suitable corrections for *I like read, even though only an annotation format allowing

for multiple hypotheses can encode both corrections at once. The recent shared tasks on

grammatical EDC have also used standoff annotation (Ng et al., 2013, 2014). Encoding

several competing hypotheses helps cover multiple possible corrections, but we note that

7James (1998) suggests a similar approach (see §1.2.1).
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for detection the number of correction hypotheses is not directly relevant. We focus on a

particular error type and the issue of overlapping errors does not arise in our dataset.

The next question is how many annotators should be used for comprehensive data annota-

tion. Dahlmeier et al. (2013) note that error annotation is not an easy task even for trained

annotators, which is confirmed by the low inter-annotator agreement reported. Madnani

et al. (2011) note that most usage errors such as those in articles and prepositions are a

matter of degree rather than simple rule violation as, for example, in the case of number

agreement. As a result, two native speakers might have different judgements of usage,

and this makes error annotation a difficult task and leads to low inter-annotator agree-

ment. This is the main argument for using multiple annotators for gold standard error

annotation in learner data, because multiple judgements can be aggregated in a single

score representing the degree of correctness.

Usually, learner corpora are annotated by one or two professional annotators, since an-

notation is both time-consuming and expensive. Crowdsourcing is suggested as a viable

alternative by Madnani et al. (2011). They focused on extraneous preposition detection,

and used a corpus of 1, 000 sentences with a 50% error rate which was first annotated by

native speakers, and then by untrained annotators – Turkers – using a crowdsourcing ser-

vice. Madnani et al. (2011) found that, on average, only 3 untrained raters were enough to

match the experts: when a majority vote was used for just 3 untrained annotators, their

agreement with any one of the 3 expert raters was, on average, 0.87 with a kappa (κ) of

0.76 which is on a par with the inter-expert agreement and κ. In addition, crowdsourced

annotation was both cheaper and faster.

Tetreault et al. (2013) explored how reliable crowdsourced annotations are, and concluded

that different tasks require different number of Turkers: 3 Turkers are needed to match

the judgements of 2 expert annotators on fill-in-the-blank task for prepositions, while 13

Turkers are needed to match 3 experts on the preposition ED task. For collocation ED, 4

Turkers are needed to match 4 experts; however, when Turkers are first tested using some

quality control annotation questions, the number of Turkers required drops to 3. Higher

levels of agreement were obtained on higher frequency n-grams than on lower frequency

n-grams, and on “cleaner” error-free sentences than on “noisy” sentences, though experts

proved to be more tolerant to noise than Turkers.

Madnani et al. (2011) also suggested evaluating ED in a graded manner and modifying

standard precision and recall measures to incorporate distribution of correctness, ob-

tained via crowdsourcing, in order to make them fairer and more stable indicators of

system performance. The main motivation is that the standard measures and binary er-

ror classification can only evaluate instances as either correct or incorrect, making the ED

too coarse-grained for what is a complex phenomenon. This way, all errors are treated as

equally “bad” and all correct uses are treated as equally “good”, so valuable information

about the acceptability of usage is discarded. Madnani et al. (2011) argue that it is fairer
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to represent correctness as a scale rather than a binary classification, and that cases that

are most controversial for human annotators should contribute to the evaluation measures

differently from those on which annotators agree. A system’s output cannot be consid-

ered entirely right or entirely wrong if humans cannot consistently decide whether a case

is an error. The standard precision and recall measures, as Madnani et al. (2011) note,

can over- or under-estimate the real system’s performance. They propose using weighted

measures instead, which are also more stable, as the majority vote used for the binary case

can very easily change the polarity of judgement from error to correct, or vice versa. The

proportion of disagreement between multiple annotators is a valuable piece of information

since it highlights the difficult cases on which the system cannot be expected to perform

as well as on the cases of clear errors.

Lee et al. (2009) also found that annotators often identify more than one possible cor-

rection in an experiment on the use of articles and noun number, and according to this

experiment, an EDC system’s performance may be underestimated by 18% or more if

multiple possible corrections are not taken into account. They also noted that the pro-

portion of agreement among the annotators should be used for measuring the system’s

performance: the system should be expected to perform well on the nouns with strong

agreement.

Reliability of human judgements has also been tested in an experiment on preposition error

annotation by Tetreault and Chodorow (2008a). They focused on preposition use as they

show that humans tend to find this task difficult, possibly, due to the variety of linguistic

functions prepositions serve. They concluded that rating preposition usage in either native

or non-native texts is a task that has surprisingly low inter-annotator reliability and thus

greatly impacts system evaluation. When the annotators were asked to fill in the blank in

a sentence with the best-fitting preposition, the inter-annotator agreement between the

two annotators was only about 76%, and from 74% to 78% when each rater’s selection was

compared to the original preposition removed from the text. When the rater’s suggestions

were examined, it was confirmed that their prepositions were also licensed by the context

and were acceptable alternatives to the original prepositions. Additionally, they also

trained a maximum entropy classifier that suggested prepositions for another 200 sentences

from Encarta, and presented these sentences to the human annotators with a choice of

two prepositions in random order: one was the original preposition, and another one was

the system’s suggestion. The results showed that both raters considered the preposition

suggested by the system equally good or better than the original one 28% of the time.

This means, that automatic evaluation based on comparison to a single preposition in the

gold standard in contexts licensing multiple prepositions can underestimate a system’s

performance by as much as 28%, and these cases are not system errors. Finally, they also

found that there is a 10% difference in precision and a 5% difference in recall between the

two system/rater comparisons. The authors conclude that there is a potential to over- or

under-estimate precision by as much as 10% using only one annotator.
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We maintain, however, that the need for multiple corrections does not necessarily show

the need for multiple annotators, as multiple corrections can be suggested by a single

annotator. For ED, the number of suggested corrections is also not directly relevant. In

spite of the benefits of using multiple annotations, it is still not clear how to use this

feedback and whether it is what learners expect from an EDC system. Learners are used

to binary evaluation – correct usage versus error – and expect to see errors flagged in

the text: being informed that something is an error, they know where they should make

changes to the text. It is not clear whether they would actually benefit from seeing that

something is partly acceptable (for instance, knowing that a particular adjective used

with a particular noun might or might not be an error depending on the annotator), or

whether they would rather prefer knowing that the word is inappropriately chosen and

should be corrected. Evaluation on graded rather than binary annotation has so far been

intrinsic (system-oriented), while to show the usefulness of such an approach one should

also conduct an extrinsic (user-oriented) evaluation.

2.2.1 Content Word Error Annotation

It is useful to have both a representative dataset and a comprehensive annotation scheme

for each specific task. To the best of our knowledge, there is only one error annotation

scheme previously devised for content word combinations and presented in the literature.

Ramos et al. (2010) devised an annotation scheme for content word combinations, or

collocations, which they defined following the common lexicographic tradition (Mel’čuk,

1998): they assumed that a collocation is a restricted binary co-occurrence of lexical units

between which a syntactic relation holds, and that one of the lexical units (the base) is

chosen according to its meaning as an isolated unit, while the other (the collocate) is

chosen depending on the base and the intended meaning of the co-occurrence as a whole,

rather than on its meaning as an isolated lexical unit. This definition is the closest to

the definition of the content word combinations addressed in this thesis. Ramos et al.

(2010) error-annotated collocations extracted from the CEDEL28 – a 400, 000-word corpus

of essays written in Spanish by native speakers of English. A detailed collocation error

typology and an error annotation scheme were devised to annotate the errors in this

data. The main motivation was the need for a detailed collocation error classification

for facilitating development of both EDC systems and targeted learning exercises. The

annotation scheme is very fine-grained and encodes the errors along three dimensions.

The first dimension encodes whether the error concerns the collocation as a whole, or only

one of the constituent words (the base or the collocate), and comprises three error tags.

The second dimension models the analytical (linguistic) error analysis and characterises

errors as errors in register, lexis or grammar. This level covers a wide variety of phe-

8http://www.uam.es/proyectosinv/woslac/cedel2.htm
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nomena, including incorrect lexical choice or errors in the chosen grammatical category

of number or gender on one of the words within a collocation. This level comprises 14

distinct error tags. The third dimension models the explanatory analysis, and seeks to

define possible error sources. The 11 error tags at this level are grouped into interlingual

(L1 transfer) and intralingual (L2) errors for register, lexis and grammar. The preliminary

results reported have shown that most errors are those of lexical choice, with the collocate

rather than base being chosen incorrectly.

This annotation scheme provides some valuable information about the subtypes of the

collocation errors and possible reasons for such errors. However, we note that, first of

all, it might be too fine-grained for practical use. The obvious danger in employing a

too fine-grained scheme is information overload for the annotators, when, as a result,

they achieve lower agreement and the annotation becomes less reliable. The annotation

scheme that we have devised is aimed at being comprehensive, while also being clear and

manageable. Secondly, we note that certain error types, such as word order violation

within the collocation, or agreement in gender and number between an adjective and

a noun, show themselves in Romance languages like Spanish but not in non-Romance

language like English. Therefore, this annotation scheme is not language-independent,

while we aim at a general scheme that can easily be extended and applied to other

languages as well as various types of content word combinations. Finally, the explanatory

level of annotation seems to be the most challenging for the annotators who are asked

to distinguish between inter- and intra-lingual errors – a task that becomes harder when

multiple L1s are involved. In Ramos et al. (2010), the data came from native speakers of

a single L1 which made it possible to detect L1 transfer, while our data comes from 86

L1s. Therefore, we make no effort at detecting L1 transfer in a systematic way.

2.2.2 Inter-annotator agreement

The purpose of measuring inter-annotator agreement on the learner datasets is two-fold.

First, it helps assess the quality of the annotation scheme and the guidelines: if the scheme

has sufficient descriptive power and is not ambiguous, and the guidelines are clear and not

contradictory, then the annotators might be expected to have high agreement when using

the annotation scheme with the provided guidelines. Second, inter-annotator agreement

is a measure of the difficulty of the task itself: it is usual to set inter-annotator agreement

as an upper bound for the algorithm, as the automated system might not perform well

on a task that is naturally hard for humans.

Inter-annotator agreement is usually measured using Cohen’s kappa (κ) coefficient (Cohen,

1960). The procedure of calculating inter-annotator agreement is aimed at determining

how reliable the judgements are, or determining “the degree, significance, and sampling

stability of their agreement” (Cohen, 1960). The procedure is based on three independence

assumptions: the units for annotation are independent, the categories to be assigned are
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independent, as well as mutually exclusive and exhaustive, and the annotators operate in-

dependently while being considered equally competent and unbiased in their judgements.

The coefficient proposed by Cohen takes into account not only the observed agreement

between the annotators po, but also the agreement that is expected by chance pc estimated

by finding the joint probabilities of the marginals. The coefficient κ is “the proportion of

chance-expected disagreements which do not occur, or alternatively, it is the proportion

of agreement after chance agreement is removed from consideration” (Cohen, 1960):

κ =
po − pc
1− pc

(2.1)

κ expresses the importance of the items agreed upon between annotators (po − pc), nor-

malised (and highlighted) by the disagreement between annotators that would be expected

by chance (1− pc): κ = (# items agreed upon above chance)/(expected disagreement).

If the two annotators’ judgments are distributed among two categories as shown in Table

2.1, then

po = (a+ d)/N (2.2)

and

pc = [((a+ c)/N) · ((a+ b)/N)] + [((b+ d)/N) · ((c+ d)/N)]. (2.3)

Annotators Annotator1

Categories Cat1 Cat2 Total

A2

Cat1 a b (a + b)

Cat2 c d (c + d)

Total (a + c) (b + d) N

Table 2.1: Judgements by two annotators.

The interpretation of κ values is given in Table 2.2 following Landis and Koch (1977).

Finally, to show that the obtained κ values are statistically significant, one can estimate

the standard error of κ and test the null hypothesis that κ arose in sampling from a

population of units for which κp = 0 (Cohen, 1960):

σκ0 =

√
pc

N(1− pc)
(2.4)

and

z =
κ

σκ0
(2.5)
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Kappa (κ) Agreement

< 0.00 Less than chance agreement

0.00 Chance agreement

0.01− 0.20 Slight agreement

0.21− 0.40 Fair agreement

0.41− 0.60 Moderate agreement

0.61− 0.80 Substantial agreement

0.81− 0.99 Almost perfect agreement

1.00 Perfect agreement

Table 2.2: Interpretation of κ values.

Cohen’s κ is only applicable to measuring agreement between two annotators. For multiple

raters, there are other measures, for example Fleiss’ κ (Fleiss, 1971). However, since this

measure has not been widely used in previous studies on learner data annotation and since

there is no widely accepted scheme for interpreting the values of Fleiss’ κ, it is harder to

make meaningful comparison. Instead, we report the Cohen’s κ values for each pair of

annotators, as well as the average κ value.

The reported inter-annotator agreement for EDC is usually not very high, which shows

the natural complexity of the task. For example, the NUCLE was annotated using a

taxonomy of 27 error tags in 13 categories, and the set of 96 double-annotated student

essays was used to estimate inter-annotator agreement (Dahlmeier et al., 2013). The

reported Cohen’s κ values are quite low: 0.3877 for ED, 0.5484 for error classification

given the annotators agreed on the error identified, and 0.4838 for exact agreement on

both error classification and correction given the annotators agreed on the error identified.

According to κ value interpretation, the κ score for ED can only be considered fair, while

that for classification and exact agreement are moderate. Dahlmeier et al. (2013) note

that the annotators found it harder to agree on whether a word is grammatically correct

or not, than to agree on the type of the error and the correction. They conclude that

grammatical ED is a difficult task even for trained annotators.

2.3 Error Detection and Correction

Leacock et al. (2014) and Tetreault et al. (2013) list the following approaches to EDC:

1. Rule-Based Approaches were popular in the early days of EDC systems development

due to the lack of large corpora for training the systems and the ease of using rules for

certain error types. Even today certain error types, such as subject-verb agreement,

are easier to handle with manually-crafted rules. However, due to the complex
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nature of usage errors, hand-crafted rules cannot be applied to errors in articles,

prepositions and content words.

2. ML Classifier Approaches have become popular due to the availability of large train-

ing resources and advances in ML of recent years. Earlier systems were trained on

native English corpora – on millions of examples of correct usage – with various fea-

tures explored, including syntactic, lexical, n-gram and even semantic features (Fe-

lice and Pulman, 2008; Gamon et al., 2008; Tetreault and Chodorow, 2008b). Later

approaches have both explored more sophisticated ML approaches (Dahlmeier and

Ng, 2011b), and used learner data as well as artificially generated errors (Rozovskaya

and Roth, 2010a,b; Yuan and Felice, 2013; Felice and Yuan, 2014; Felice et al., 2014).

These methods can handle certain types of errors – for example, those in closed class

words with finite confusion sets – but are less suitable for content word combinations.

3. Language Modelling (LM) Approaches are also based on large data sources used for

learning language models. Within this framework, the target word is substituted

with its alternatives and the LM scores are derived for the original text as well

as for the alternatives. The word yielding the highest probability is chosen as the

correct word in the given context. A number of systems used language models to

rank the suggestions of the ML classifiers (Gamon et al., 2008; Chodorow et al.,

2010; Felice et al., 2014), or in combination with an ML classifier (Gamon, 2010).

Many approaches in the recent shared tasks on grammatical EDC have been based

on or used LMs (Ng et al., 2013, 2014), but none of them addressed content words.

This is problematic because it is subject to selecting and comparing alternatives,

and very inefficient for content words for which the number of possible alternatives

can be high. In addition, the collection of large amounts of high quality data for

training LMs to address EDC in content words is an issue.

4. Web-based Approaches make use of large scale web data, and try to mimic the

approach often used by language learners who search for their original constructions

on the Web and compare Web counts with those for the alternatives using the

number of occurrence as a proxy of correctness. Some methods based on this idea

have addressed content word combinations (Hermet et al., 2008; Yi et al., 2008).

In Microsoft Research ESL Assistant, Web search was used to provide the learners

with examples for the original and the alternatives (Chodorow et al., 2010). This

approach suffers from the fact that web counts can be very unstable from one day to

another, and the counts around the target word can be sparse reducing the reliability

of the approach (Kilgarriff, 2007).

5. Statistical Machine Translation (SMT) Approaches cast the EDC task as that of

transforming a “noisy” English sentence into a fluent English sentence. Earlier

work used SMT for small sets representing some error types (for example, mass noun



CHAPTER 2. THEORETICAL BACKGROUND 41

errors (Brockett et al., 2006)), while later SMT has been used to address a wide

variety of errors. For example, a number of the teams participating in the recent

shared tasks on grammatical EDC used SMT-based systems (Ng et al., 2013, 2014),

but none of them reported good results on the content word errors in particular,

and a possible reason for that is that SMT approaches are good for local sequences

of errors, but use of local context is not effective for sparse content word error types.

2.3.1 Function Words

Most often, EDC for function words is concerned with articles and prepositions. These

words are, on the one hand, frequently used in English, and, on the other, are some of the

most difficult elements of English for language learners (Chodorow et al., 2010; Leacock

et al., 2010, 2014). The high number of errors in function words is related to both their

frequency in English itself and to the difficulty in mastering these elements of language.

The latter can be explained by the complexity and variability of article and preposition

usage in English: the correct choice of an article can depend on the discourse structure

(first or subsequent mention in text), countability/non-countability, as well as the noun

and the words modifying that noun. For example, *a damage is clearly unacceptable,

while a little damage is fine (Chodorow et al., 2010). The use of prepositions is determined

both by the governing and the dependent word (I will come by, I came from London).

It is the combination of various factors that governs the choice of a correct article and

preposition, and Tetreault and Chodorow (2008a) have shown that the judgements of two

trained native speakers can differ by as much as 10% when marking preposition usage in

non-native writing as correct or incorrect, and as much as 24% on the task of filling in

the best preposition. This shows that the function word system of English is complex and

even native speakers show substantial disagreement on that. For comparison, some other

grammatical categories like subject-verb agreement are less controversial.

Non-native speakers experience additional problems in learning English articles and prepo-

sitions caused by the mismatch of these systems in English and their L1s. Native speakers

of languages which do not have articles are even more confused about their use in English

since they lack a background understanding of the article system.

Since errors in function words are some of the most common error types in learner writ-

ing (Dalgish, 1985; Leacock et al., 2010), it is important for any EDC system to be able

to deal with them. Certain properties of these errors facilitate the use of ML approaches

for their detection and correction and help finding the relevant features.

As function words belong to closed classes, the set of possible corrections is limited by

the size of the function word set. Since errors in function words are systematic and

highly recurrent, in practice, each article or preposition has an even smaller number of
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appropriate alternatives. This can be illustrated with the following examples on (1) article

and (2) preposition errors:

(1) I am 0*/a student.

(2) Last October, I came in*/to Tokyo.

In (1) an EDC system would consider {a, an, the} as possible corrections for the missing

article. To correct the preposition in in (2), an EDC system would consider {on, from, for,

of, about, to, at, with, by}. According to Leacock et al. (2010), the usage of the 10 most

frequent prepositions accounts for 82% of all preposition errors in the CLC, and according

to Chodorow et al. (2010), the top 10 prepositions in English account for roughly 91%

of preposition usage, so the set of possible confusions for prepositions is often limited

to the 10 most frequent ones. Among these prepositions, at or to would have a higher

chance to be appropriate corrections than others as these are more frequently confused

with in. Confusion sets can be learnt from learner texts, and the probabilities can be set

up according to the distribution of the confusing words (Rozovskaya and Roth, 2011).

The usual approach to EDC in function words is to cast it as a multi-class classification

task, with the number of classes equal to the number of target corrections – for example,

4 for articles and 10 for prepositions. Detection and correction can occur simultaneously:

an error is detected when an EDC system suggests using a word different from the one

originally used by the learner, and the suggested word can be used as a correction. For

example, the context ‘We sat the sunshine’ might be assigned to the preposition class

‘in’ but not to the class ‘at’. If this context occurs with ‘at’ filling the blank, the classifier

marks it as an error (Chodorow et al., 2010).

Context is highly informative for EDC for function words: since these errors are recurrent

and the number of possible confusion patterns is finite, there is much to be learned from

the surrounding context. The general approach is to represent each occurrence as a feature

vector: for example, a context of I am and student or a similar noun requires the use of an

indefinite article, while the only correct preposition to relate a verb of movement like come

to a locative like Tokyo is to. Therefore, the preceding and following words within some

context window, their PoS tags, the words grammatically related to the function word

and other types of information extracted from the surrounding context can be used as

features. In general, the number of possible feature values can grow quickly: for example,

the feature following word for an article use can include all the words like student, teacher,

driver, banker and the like for the indefinite article. In practice, it is possible to group

those into one semantic class of nouns since it is not the particular noun that defines the

use of the indefinite article in this case, but rather the class of nouns denoting occupations.
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2.3.2 Content Words

Errors in content words, unlike those in function words, are less systematic, with more

diverse reasons for the confusion. The contexts are sparser, and as a result, less useful

for feature extraction. The number of classes or corrections cannot be reduced to a finite

set as in the case of the function words. As a result, it is much harder to cast EDC for

content words as a classification problem with a fixed number of classes and to apply ML

classifiers.

In spite of the fact that errors in the choice of content words have not received much at-

tention in previous years, their importance has been widely acknowledged. Content words

are responsible for content transfer, so violation of conventions leads to misunderstanding:

for example, if a learner uses *big conversation, do they mean an important conversation

or a long conversation? The original meaning in the incorrect combination is distorted.

We begin with an overview of the typical errors in content word combinations. The scheme

devised for content word annotation in this project is described in Chapter 3, but we note

that we based the scheme on our observations of learner data, as well as on the error

categories overviewed in this section. We then discuss the previous approaches to EDC

for the related error types.

Errors in Content Word Combinations

James (1998, p. 142) refers to content word choice errors as lexical errors, and notes that

learners believe that vocabulary is very important in language learning to the point that

language learning itself would sometimes be equated with knowing language vocabulary.

Following some previous work in this area, James (1998, p. 144) distinguishes between

formal and semantic lexical errors. The cases described under these categories are useful

for the error taxonomy that we build in this research.

Formal errors are cases of confusion where learners mix up words having similar stress

patterns, number of syllables, phonemes in common and so on. It is hard to distinguish

between the cases when learners are simply confused by superficial word similarity but are

aware of the difference between the confusables, and those which result from ignorance.

When choosing a content word, learners generally follow one of two strategies: either

they think that they know the word and they use it, or they are not sure they know the

word and they employ a lexical communication strategy – they avoid the concept or try

to paraphrase. Formal errors describe the cases when a word used is a real existent word

of language, and the substitute resembles the target word in form but not necessarily

in meaning (for example, classic and classical), though it might do so accidentally (for

example, economic and economical).

Formal errors can result from a resemblance between words in the L2 as well as in the
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L1. For example, a confusion in He wanted to *cancel|conceal his guilt results from resem-

blance of the two words in the L2, while Can I *become|get (from German ‘bekommen’) a

beefsteak? results from that in the L1. The German verb bekommen in that case is a false

friend of the English verb become. Other L1-effects include literal translation from the L1

to English and calque as in *sleep suit (‘pyjamas’ from German Schlafanzug), or America

has *made profit (‘benefited’ from German Profit machen). L1-related confusions are of

high relevance for our research, but in practice it is hard to detect all such cases given

the variety of L1s in our data.

Under semantic errors, James (1998, p. 151) lists confusion of sense relations and collo-

cational errors. Confusion of sense relations occurs because, as multiple neurolinguistic

studies demonstrate, humans store words in the mental lexicon in terms of sense relations

between them. The main types of confusion caused by such relations can be summarised

as:

• using a more general term where a more specific one is needed (hypernym for hy-

ponym). This case has been mentioned in §1.2. The result is underspecification of

meaning as in:

– The flowers had a special *smell|scent/perfume

– The village women *washed|scrubbed the steps

– Capitalism... made America *big|great/powerful

• using too specific a term (hyponym for hypernym):

– The *colonels|officers live in the castle.

• using the less apt of two co-hyponyms:

– ... a decision to *exterminate|eradicate dialects.

– She is my *nephew|niece.

• using the wrong one from a set of near-synonyms:

– ... a *regretful|penitent/contrite criminal or sinner...

Learners store these related words in their lexicon but fail to distinguish between them.

Collocational errors include a substitution of the word within a phrase that violates id-

iomaticity of that phrase. James (p. 152) distinguishes between three degrees of colloca-

tion:

• semantically determined word selection: one can say crooked stick but not *crooked

year because in the world as we know it years cannot literally ‘be crooked’;
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• combinations with statistically weighted preferences: one can say ‘an army has

suffered big losses’ but heavy losses is preferred;

• arbitrary combinations: we make an attempt and have a try but not *make a try

and *have an attempt, even though attempt and try are very close semantically.

In addition to the causes reviewed above, some errors in VO combinations can be related

to the use of de-lexicalised verbs such as take as in take your time, make, keep and other

light verbs. This gives rise to a significant number of errors (Chang et al., 2008).

Another potential source of confusion, which is often aggravated by L1-transfer, is the fact

that certain actions can be literally described with the words that are chosen incorrectly

in English. The confusion might originate in one’s L1, where the action is described using

different terms, but the fact that the words literally match the action could further mislead

the learner: for example, doing homework often implies writing, so the learner might not

suspect that using a verb write with the noun homework would produce a miscollocation.

An L1-transfer from Chinese results in a miscollocation eat a medicine/pill, yet the act

of taking a medicine could be said to resemble that of eating.

The learner’s L1 is, in general, a rich source of confusion for language learners. Errors can

be caused by overgeneralisation and assumption of one-to-one correspondence between

lexical items in two languages. For example, German is a language close to English and

German hoch corresponds to English high. Yet, while hoch collocates equally with the

nouns Risiko (‘risk’) and Alter (‘age’), only the combination high risk is idiomatic in

English while ?high age sounds strange.

Some errors may have multiple causes: for example, the error in My watch does not *walk

well can be attributed to the phonological confusion between work and walk. However,

knowing that the learner’s L1 is French and that in French the analogous phrase is Ma

montre ne marche (‘walk’) pas bien, one could assume that the confusion is lexical as

well. In such cases, an error annotation scheme can have several error tags assigned, or a

hierarchy among the error tags could be introduced to resolve ambiguous cases.

Adherence to the collocational conventions of the L2 contributes greatly to one’s id-

iomaticity and fluency, and some researchers claim that not doing so announces one’s

‘foreignness’: for example, Nation (2001, p. 321) notes that “language knowledge is

collocational knowledge”, and Kjellmer (1991) and Aston (1995) note that the use of

collocations or prefabricated lexical units facilitates communication and comprehension,

and makes speech more native-like. Some researchers also note the strong correlation of

collocation knowledge to proficiency level (Shei and Pain, 2000).

Yet, we contend that ED in content words should primarily be concerned with accuracy

rather than fluency: we assume that in cases when the original word combination chosen

by the learner is acceptable in English, an EDC algorithm should not correct it to an
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idiom or a more fluent collocation simply because this collocation is more frequently used

by native speakers. We believe in that case there is little to be learned about the language,

and the learner is encouraged to simply memorise idioms and collocations rather than try

to understand how words combine.

There is also no perfect consensus on the definition of a collocation: to name just a

few definitions, collocations are defined as a sequence of words or terms which co-occur

more often than would be expected by chance, as “words co-occurring within a short

space of each other” (Sinclair, 1991, p. 170), as “arbitrary and recurrent word combina-

tions” (Benson, 1990), and as strings “of specific lexical items that co-occur with mutual

expectancy” (Nattinger and DeCarrico, 2001, p. 36).

We define the task as ED in content word combinations rather than collocations, high-

lighting the fact that we do not restrict ourselves to proper collocations only. Most of the

previous work on EDC in content words has referred to the errors as ‘collocation errors’,

and primarily focused on such cases as the use of *powerful tea and *strong computer

instead of strong tea and powerful computer (Leacock et al., 2010, 2014). The algorithms

aiming to detect failed attempts at using collocations rely on the idea that powerful and

strong are semantically similar and might be confused by learners, and that *strong com-

puter has a much lower collocational strength than powerful computer. We note that

this approach could only address a subset of learner errors in the use of content words,

and that in real learner data neither original combinations nor their corrections might be

proper collocations.

Previous Approaches to EDC in Content Words

Errors in the choice of content words are the third most frequent error type (Leacock et al.,

2010), and are the most prevalent error type marked by teachers using the Intelligent Web-

based Interactive Language Learning (IWiLL) platform (Wible et al., 2003). According

to Leacock et al. (2010, p. 25), not all types of content word combinations are equally

challenging for language learners, and the most problematic are combinations with verbs.

Several studies confirm this observation: Nesselhauf (2003) for German students, Wible

et al. (2003) and Liu (2002) for Taiwanese/Chinese students, Yi et al. (2008) for Japanese,

Korean and Chinese students. Liu (2002) reports that 87% of lexical miscollocations in

the English Taiwan Learner Corpus (English TLC)9 are verb–noun combinations, with

96% of those being due to misuse of verbs. 56% of these miscollocations can be corrected

with a semantically related word – a synonym, hypernym or troponym – using WordNet.

Most approaches to collocation EDC have used the following three-step algorithm:

1. Step 1: Identify the candidate miscollocations in learner writing;

9http://lrn.ncu.edu.tw/Teacher\%20Web/David\%20Wible/The\%20English\%20TLC.htm
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2. Step 2: Find the appropriate alternatives (for example, synonyms) for the words

within the combination and generate alternative word combinations;

3. Step 3: Compare alternative word combinations to the original with respect to their

fluency.

Most previously used methods rely quite heavily on databases of collocations and miscol-

locations, as well as resources for finding alternatives. They are also dependent on the

measures detecting the fluency of combinations. We note that fluency does not necessar-

ily coincide with correctness, therefore, the systems are prone to overcorrection. Finally,

the two steps of detection and correction are merged, and detection is dependent on the

quality of the alternative suggestions: if a more fluent alternative is found it is suggested

by the system even if the original combination is correct but less fluent, while an originally

incorrect combination might not be detected if either it is not identified at Step 1, or there

is no better alternative found by the system in subsequent steps.

Shei and Pain (2000) addressed the miscollocations in VO combinations in Chinese writ-

ing. A set of correct examples was collected from the BNC using z-scores, and acceptable

English collocations were ordered by their collocational strength. Therefore, idioms and

collocations were ordered before free word combinations, as they have higher z-scores.

The goal was to suggest the most fluent combinations. A database of miscollocations was

collected from the learner corpus of English texts written by post-intermediate Chinese

learners of English. The collocations were detected by selecting the VO combinations

with the given verbs and checking them against the reference database of correct col-

locations. The alternatives for the candidate miscollocations were generated using the

synonyms extracted from WordNet. The most fluent combination was then suggested as

the correction to the learner. If the combination was not found in either the corpus of

correct collocations or the corpus of miscollocations, and the learner accepted one of the

suggested corrections consisting of the synonyms, the original combination was automat-

ically added to the corpus of miscollocations allowing the system to self-propagate. This

approach was used as part of a self-tutoring system, but the results were not reported.

In Wible et al. (2003), the miscollocations, including VO and AN combinations, were

annotated by teachers in the data collected through the IWiLL platform and from the

English Taiwan Learner Corpus (EnglishTLC), which at the time contained about 260, 000

words in the annotated part. The set of miscollocation–correction pairs identified and

provided by the human annotators was stored for further reference. Clearly, these pairs

can be used to correct errors with high precision but low recall. To improve the recall

of the system, a bootstrapping method was used. It was shown that the method can

automatically detect 66 candidate miscollocations in EnglishTLC, 63 of which were indeed

miscollocations, which resulted in precision of 95.5%, but recall was not reported.

Chang et al. (2008) addressed miscollocations in VO combinations produced by Taiwanese

learners of English and focused on those which can be traced back to L1 interference only.
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Strong L1 effects on the errors committed by Taiwanese learners were first noted by Liu

(2002) who reported that in the set of 233 VO miscollocations at least 84% can be ex-

plained by L1 interference. The method relied on three types of resources: the error

database consisted of 233 VO miscollocations collected by Liu (2002), the alternatives

were searched for through translational equivalents in a bilingual Chinese-English dictio-

nary, while the acceptable English collocations were collected from the BNC. The system

first focused on the VO miscollocations, and once they were found in text, a number of

alternatives was created using translational equivalents, and assessed with respect to their

frequency and collocational strength using the BNC. The alternatives were then presented

to the learners ordered by their frequency and collocational strength. If the learner ac-

cepted one of the corrections, the error–correction pair was added to the error database

for future use, allowing the system to self-propagate. Chang et al. (2008) reported that

when their system was applied to the set of miscollocations collected by Liu (2002) and 200

manually checked correct VO collocations from the Sinorma corpus, the system performed

ED with an accuracy of 93.9%. In the correction step, the top 10 corrections suggested by

the system were compared to corrections provided by teachers, and it was shown that the

system performed with 84.0% precision and the mean reciprocal rank (MRR)10 of 0.50.

Manual qualitative analysis of the system’s corrections showed that, in fact, 94.1% of the

system’s suggestions were acceptable, which increased the MRR to 0.66.

Futagi et al. (2008) focused on automatic EDC of collocations of different types including

AN and VO combinations, as well as longer collocations. The 1, 446 collocations were

detected in a set of 300 randomly selected essays written by non-native English exami-

nees for TOEFL using PoS information and a pattern-matching algorithm. The method

compared the original combinations with the alternatives, which were generated using

synonyms extracted from WordNet and Roget’s Thesaurus, as well as morphological vari-

ations of the words within the combinations. To suggest the most fluent alternative,

a reference database collected from the Lexile corpus11 and SourceFinder corpus12 was

used and the candidates were assessed using rank-ratio statistics. The performance of the

automatic tool was compared to the judgements of two human annotators, and it was

demonstrated that the tool showed higher performance on the correct collocations (F -

measure = 0.83-0.84) than on the incorrect ones (F -measure = 0.31-0.34). Futagi et al.

(2008) also concluded that the performance approaches the upper bound on this task,

as the F -measure estimated on the examples judged to be correct by both annotators

was 0.91, while on those judged to be incorrect it was only 0.34 illustrating the natural

difficulty of recognising incorrect content word combinations.

10The MRR is assessed as the arithmetic mean of the inverse ranks for the first answer returned by

the system that coincides with the correction provided by a human annotator.
11http://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Pages/

Lexile-Framework.aspx
12https://www.ets.org/Media/Research/pdf/RR-02-12-Passonneau.pdf
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Park et al. (2008) proposed an assistive tool AwkChecker for EDC in collocation errors in

non-native writing. AwkChecker was implemented within the context of a web-based text

editor that flagged collocation errors and suggested alternatives from which a user could

select the most appropriate one. The approach to EDC was based on language modelling.

AwkChecker included a training interface that analysed the underlying corpus, which can

be a general corpus of English or any domain-specific one, and built a set of n-grams

with the assigned probabilities. Next, AwkChecker analysed the input text and for every

phrase in question identified whether the phrase was a collocation error by comparing it

with the collected n-grams. Meanwhile, alternatives for the content word combinations

were created using synonyms from WordNet. If the phrase was flagged as an error, a

list of alternatives was generated by the tool and suggested to the learner. Park et al.

(2008) tested the tool in an interactive manner using five non-native speakers of English

and focusing on the users’ feedback about the tool rather than the system’s intrinsic

performance. The system was aimed at writing improvement rather than EDC, and

“correctness” was treated as a relative rather than absolute value.

Yi et al. (2008) noted that the Web is a rich resource of examples of both correct and

incorrect English writing. Their approach relied on the observation that learners often

use the Web as a corpus of good English, feeding their queries into the search engines.

If the phrase searched for has low or no counts on the Web, this is considered to be

reliable evidence that the phrase is ungrammatical. However, since the Web can contain

both grammatical and ungrammatical phrases, it is not the absolute count that matters

but rather the difference between the counts for the alternatives: for example, Yi et al.

(2008) report that *English as Second Language has 306, 000 hits using the Google search

engine, while English as a Second Language – 1, 490, 000 hits. It shows that even if the

count for the original phrase is high, the difference between the counts is more important.

However, search engines are not able to correct the learners’ original combinations if they

are incorrect due to the incorrect choice of content words, and this is where the error

correction algorithm might be helpful.

Web counts were used in other research as well (Hermet et al., 2008; Tetreault and

Chodorow, 2009). The approach is claimed to benefit from exposure to real language

and a high number of examples, an opportunity to take language changes into account

and to provide learners with snapshots of the original and corrected usage examples. How-

ever, there are a number drawbacks of using the Web for EDC, as the counts change from

day to day, may differ from one search engine to another, represent the number of pages

rather than the number of instances, and the number of queries per day is usually limited

by search engines (see Kilgarriff (2007)).

The approach of Yi et al. (2008) did not rely on the use of resources or databases of correct

and incorrect examples as other approaches did, and it also did not focus on any limited set

of content word combinations specifically. They collected 1, 012 non-native sentences from

ESL users’ blogs, written mostly by Japanese, Korean and Chinese learners. The sentences
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were then checked and rewritten by a native speaker of English to produce more English-

like alternatives. These rewrites were further used as a gold standard. Yi et al. (2008)

focused on determiner errors and errors in VO and AN combinations. Their approach

relied on query search of three types: S-Query for the whole sentence, C-Query for the

chunks of related words within the sentence, and W-Query for individual keywords. The

queries were searched for using the MSN search engine. First, the queries for the original

sentences and combinations were searched, and if they were higher than a certain pre-

defined threshold, the combination was considered to be correct. Otherwise, alternatives

were searched for, this time using queries with all the same words in the context and

the noun. The system tried to identify the most appropriate correction by comparing

frequency. The authors reported the following results for the VO combinations: recall at

30.7%, good precision, or the proportion of times the system correctly identified an error

and provided a correction that matched the native speaker’s rewrite exactly, at 37.3%,

plausibly useful precision, or the proportion of cases when the system correctly identified

an error but the system’s correction was different from the native speaker’s edit, at 50%,

and false alarm at 2.55%.

Östling and Knutsson (2009) focused on Swedish collocations including AN and VO com-

binations, but they did not use real learner data. Instead, they made a corpus of alter-

natives by artificially creating candidates with the original collocating words substituted

with the semantically related words. As a result, they created a set of artificial miscollo-

cations consisting of 60 examples. The algorithm was run on native Swedish text with a

low expected error rate as well as on the set of artificial miscollocations, and each identi-

fied candidate collocation was compared to the alternatives with synonyms or otherwise

related words substituted for the collocating word. The alternatives (synonyms) were

searched for automatically using one of two methods: either in the synonym dictionary

Folkets Synonymlexikon,13 or via Random Indexing which returned a list of semantically

related words including synonyms and antonyms. The collocational strength of the origi-

nal and alternative suggestions was estimated using a combination of Mutual Information

and Log Likelihood measures on the corpus consisting of Swedish Wikipedia, the Swedish

PAROLE corpus14 and Swedish newspaper articles. Östling and Knutsson (2009) reported

that 85%-90% of the correct collocations from the native texts were left intact by the sys-

tem, however, this result was partly due to the fact that for a high number of cases (25%)

the system was not able to find an alternative. For 57% of the artificial miscollocations

the tool found an acceptable alternative collocation, while in 5% of cases the acceptable

suggestion was among the top three suggestions. However, since the method was applied

to artificial examples created using a very similar technique to the one used for their

correction, and using only semantically related confusions in both cases, the results might

be overestimated.

13http://folkets-lexikon.csc.kth.se/synlex.html
14http://spraakbanken.gu.se/eng/resource/parole
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Liu et al. (2009) focused on error correction in the choice of verbs in VO collocations:

42 miscollocations from the list of 84 VO miscollocations listed in Liu (2002) were ran-

domly selected to train the model, while the other 42 were used for testing. The model

was trained using three types of features: the first type was based on word association

estimated using mutual information for the suggested verb and the focal noun; the sec-

ond feature type was based on semantic similarity between the correction candidate and

the misused verb and was calculated on the basis of graph-theoretic distance between the

WordNet synset containing the original verb and the synset containing the candidate; and

the third type was based on the notion of the collocation cluster first introduced by Cowie

and Howarth (1995): for example, fulfil and reach both collocate with goal which might

make learners combine them in one collocation cluster. Since fulfil collocates with ambi-

tion and purpose, learners might assume that reach collocates with the same nouns which

will result in such errors as *reach an ambition and *reach a purpose. Liu et al. (2009)

generated collocation clusters for verbs that collocate with the focal nouns and nouns that

the verbs collocate with. The possible verb substitutions were then chosen from among

those which share most common collocations with the original verb from the collocation

cluster. The three types of features were combined using a Bayesian probabilistic model,

and the k-best suggestions were returned for each miscollocation. The best results were

obtained for a combination of all three feature types, while semantic similarity was re-

ported to be the best-performing single feature. Precision was calculated for the list of the

top k=[1, 10] suggestions, where a system’s output was counted as correct if it matched

any of the corrections provided by two annotators. System precision reported for the

k=[1, 10] suggestions ranged from 53.57 to 94.05.

Wu et al. (2010) focused on VO miscollocations, and presented an online collocation

writing assistant aimed specifically at academic writing and implemented using an ML

classifier. Both training and test sets were collected from the CiteSeer database,15 with

the collocations extracted from the academic paper abstracts. In the experiment, the

verbs were blanked out within the test sentences, and the task of the classifier was to

predict the correct verb to be used, where the original verbs were assumed to represent

the only correct candidate. A Maximum Entropy classifier was trained on 46, 255 examples

representing the correct VO collocations with 790 verbs, using two types of features: a

head or the focal noun, and n-grams of length 1 and 2 extracted from the surrounding

contexts. The classifier learned the verb (class) to be predicted on the basis of the features,

and for the 600 randomly selected test instances outputs a list of verbs (classes) ordered

by probability. The best results were obtained using both types of features, with an MRR

of 0.518, which means that the correct suggestion was ranked, on average, within the first

two to three suggestions by the system. Since the approach originally used a single class

as the gold standard, the reported results might be an underestimation of actual system

performance. However, since the classifier was trained and tested on similar datasets this

15http://www.lib.utexas.edu/indexes/titles.php?id=84
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might have resulted in a limited set of possible collocations and verb classes, as well as

reduced the sparsity of the feature set.

Finally, Dahlmeier and Ng (2011a) focused on miscollocations in Chinese and applied their

approach to a test set of 856 sentences, extracted from the NUCLE, with one collocation

error per sentence. Their algorithm was aimed at correction and assumed that the errors

had already been detected by some ED algorithm. They assumed that a substantial

portion of miscollocations can be traced back to L1.16 But unlike Chang et al. (2008),

they did not rely on manually constructed resources, and used an approach based on SMT.

The use of SMT rather than reliance on resources helps overcome certain limitations of the

latter, such as lower coverage. An advantage of the L1-based approach is that corrections

found through spelling, homophones or synonyms help only with errors that stem from the

L2, while translational equivalents help with errors that result from language interference.

To support this idea, they compared performance of a baseline error correction system

that used spelling variations, homophones and synonyms with a system that additionally

used their SMT technique, and showed that the latter outperformed the former. They

reported that the baseline system had an MRR of 0.08, while a combined system had an

MRR of 0.17, with the SMT-based system alone performing with an MRR of 0.15.

Table 2.3 summarises the above-mentioned approaches, specifying the data used to extract

the errors (Data), the type of the content word combinations (Focus), the data used

to assess the correctness of the word combinations (Reference corpora), whether these

approaches undertook error detection, correction, or both (Detection/Correction), how the

possible corrections were found (Alternatives), and finally, the results that were reported

(Results). The table shows that the approaches used different datasets and evaluation

techniques which complicates direct comparison of the results.

2.4 Semantic Models

One important aspect that the models based on superficial collocational strength of the

content word combinations do not capture is the meaning of the individual words chosen

and the way the meaning of their composition is derived. Semantic mismatch between the

chosen words is a rich source of errors in learner writing. Learners lacking deeper under-

standing of how words in L2 should be combined often inadvertently produce semantically

deviant combinations. Obviously, producing nonsensical content word combinations is not

what the learners aim for, therefore, the semantic mismatch is a property of the resulting

combination rather than the original source of the error.

For instance, learners are often confused by words that sound or are spelled similarly. This

is often aggravated by the fact that certain morphologically related words are also similar

16They report that 1, 016 examples out of 2, 747 collocation errors extracted from the NUCLE data

can be traced back to L1-transfer, and 906 of those cannot be explained by any other source of confusion.
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Ö
st

li
n

g
a
n

d
S

w
ed

is
h

V
ar

io
u

s,
in

cl
.

C
or

re
ct

(S
w

ed
is

h
B

ot
h

S
y
n

on
y
m

s
(d

ic
ti

on
ar

y
)

P
co
r
r
ec
t

=
0.

8
5-

0
.9

0

K
n
u

ts
so

n
(2

00
9
)

co
ll

o
ca

ti
o
n

s
V

O
,

A
N

co
rp

or
a)

(c
om

p
ar

is
on

)
&

R
an

d
o
m

In
d
ex

in
g

P
m
is
u
se
d

=
0.

5
7

L
iu

et
a
l.

C
h

in
es

e
V

O
–

C
or

re
ct

io
n

S
im

il
a
r

(W
or

d
N

et
)

P
=

0.
54

-0
.9

4

(2
00

9
)

m
is

co
ll

o
ca

ti
on

s
(p

ro
b

.
m

o
d

el
)

&
co

ll
o
c.

cl
u

st
er

s

W
u
et

a
l.

C
it

eS
ee

r
V

O
–

B
ot

h
(m

ac
h

in
e

C
h

o
se

n
b
y

a
m

ac
h

in
e

M
R
R

=
0.

52

(2
01

0
)

ab
st

ra
ct

s
le

ar
n

in
g)

cl
as

si
fi

er

D
ah

lm
ei

er
N

U
C

L
E

V
ar

io
u

s
–

C
or

re
ct

io
n

S
p

el
li

n
g

(e
d

it
d

is
t.

),
M

R
R
m
a
ch
in
e

=
0.

1
7

an
d

N
g

(2
01

1
)

(S
M

T
)

h
o
m

op
h

o
n

es
(C

u
V

P
lu

s)
,

M
R
R
∩

(h
u
m
a
n

)
=

0.
33

sy
n

on
y
m

s
(W

o
rd

N
et

)
M

R
R
∪

(h
u
m
a
n

)
=

0.
57

&
S

M
T

a
T

h
e

se
co

n
d

va
lu

e
re

p
or

te
d

fo
r
P

an
d
M

R
R

af
te

r
th

e
se

m
ic

o
lo

n
is

th
e

im
p

ro
ve

d
re

su
lt

a
ft

er
m

a
n
u

a
l

q
u
a
li

ta
ti

v
e

ev
a
lu

a
ti

o
n

.



CHAPTER 2. THEORETICAL BACKGROUND 54

in meaning: frequent confusion pairs of this type include economic versus economical,

historic versus historical, old/older versus elder. Although the adjectives share certain

semantic components, they also differ with respect to certain semantic properties. If

a learner produces an AN *elder neighbour, a native speaker can still understand the

original meaning by backtracking the process of word selection, but can also see that,

from a semantic point of view, the combination is deviant. The adjective elder has a

semantic component of age comparison and, to a certain degree, can express the meaning

intended. However, it also has a very specific meaning of referring to one’s family, and in

combination with any term not denoting a family member represents a semantic mismatch.

The reasons for incorrect word choice might be diverse (see §2.3.2). We note that inde-

pendent of the reasons, the resulting combinations might display semantic mismatch of

various degrees. We believe that the approaches that can model the meaning of the words

and their combination are a powerful means of detecting incorrect word choice.

We use models of distributional and compositional semantics, with the former being used

to represent the meaning of the words, and the latter being used to model the meaning

of the content word combinations. We also note that the closest phenomenon to learner

errors in the choice of content words that can occur in native writing is semantic anomaly,

and our methods are inspired by the previous work on semantic anomaly detection using

compositional distributional semantic models by Vecchi et al. (2011).

2.4.1 Distributional Semantic Models

The underlying assumption of the distributional approach is expressed with the dis-

tributional hypothesis which states that a word is characterized by “the company it

keeps” (Firth, 1957, p. 11). Sahlgren (2008) quotes other relevant definitions, including

“words which are similar in meaning occur in similar contexts” (Rubenstein and Goode-

nough, 1965); “words with similar meanings will occur with similar neighbors if enough

text material is available” (Schütze and Pedersen, 1995); “a representation that captures

much of how words are used in natural context will capture much of what we mean by

meaning” (Landauer and Dumais, 1997); and “words that occur in the same contexts

tend to have similar meanings” (Pantel, 2005). In essence, the distributional hypothesis

claims that the words that co-occur with the target word and the contexts in which the

target word occurs implicitly describe the meaning of the word. Therefore, the meaning

of the word can be “accessed” through the observed examples of the word’s use in context

and represented with its co-occurrence counts with the other words in its context.

It is believed that the meaning of a word can be sufficiently described via the word’s

distributional pattern. One of the most widely accepted notions of distribution is derived

from Harris (1954) and refers to a methodology by which it is supposed to be possible to

identify linguistic units of all sizes by observing the contexts in which such units occur,
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by a process of formal comparison and contrast (Pulman, 2013, p. 336). Distributional

methodology, based on such formal comparison and contrast, makes it possible to identify

word’s meaning not via its reference to the extra-linguistic information, but rather via

the differences in the distribution of words. As Harris (1954, p. 43) notes, “if we consider

words or morphemes A and B to be more different in meaning than A and C, then we will

often find that the distributions of A and B are more different than the distributions of A

and C. In other words, difference of meaning correlates with difference of distribution”.

From that, it follows that the words with similar distributions have similar linguistic

meaning: “it is possible to measure how similar are the selection approximations of any

two words” (Harris, 1954) and “if A and B have almost identical environments except

chiefly for sentences which contain both, we say they are synonyms” (Harris, 1954).

Sahlgren (2008) points out that “we should be able to populate a distributional model

with syntagmatic relations if we collect information about which words tend to co-occur,

and with paradigmatic relations if we collect information about which words tend to

share neighbours”. Syntagmatic relations are covered by distributional patterns for the

target words, while paradigmatic relations between target words are accessible through

comparison and identification of similar distributional patterns. Sahlgren (2008) gives a

definition for the refined distributional hypothesis: “A distributional model accumulated

from co-occurrence information contains syntagmatic relations between words, while a

distributional model accumulated from information about shared neighbours contains

paradigmatic relations between words”.

The most obvious case of word co-occurrence (syntagmatic relation) is a collocation,

though words co-occurring within one clause, sentence, paragraph or even document stand

in syntagmatic relations. The size of the context window to consider, as well as the type

of the context, is one of the parameters of the distributional models to be set: one could

consider n-word context windows, sentence-internal co-occurrence (Baroni and Zampar-

elli, 2010), dependency-based contexts (Padó and Lapata, 2007). The particular choice

depends on the type and amount of information required for the task. Smaller context

windows are able to provide more relevant semantic information, but will inevitably lead

to very sparse and less statistically reliable representations. Some relevant words can

also be found outside of the n-word context window or words grammatically related to

the target one, but will also contain irrelevant information since, as Ruge (1992) notes,

“in large contexts nearly every term can co-occur with every other; thus this must not

mean anything for their semantic properties”. Sahlgren (2008) notes that a clause or

a sentence, being linguistic universals existing in every language, are most suitable for

collecting context information.

The most straightforward mathematical model for representing word meaning through its

distribution is a vector. Distributional semantic models (DSM) use n-dimensional vectors,

where the number of dimensions is defined by the number of content words with which the

target word co-occurs within the chosen context window. Semantic space is the collection
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of the target words represented with the n-dimensional vectors. It is usually represented

with a co-occurrence matrix where rows are the distributional vectors for the target words

and columns represent the contextual words.

Let us consider a sample semantic space containing vectors for the target words elder,

neighbour, brother and sister from the example cited above. Let us assume that the set of

context words contains, among others, nouns mother and street, adjectives older and noisy,

and verbs lose and move. The vectors will contain the sentence-internal co-occurrence

counts for the target words and the context words. Table 2.4 gives an example of the

semantic space with the co-occurrence counts for the selected context words estimated

using the BNC. For the sake of this example, we will only focus on these 6 dimensions of

the target word vectors, using ‘...’ to represent the other dimensions of the vector.

Words mother n street n ... older a noisy a ... lose v move v ...

elder a 45 10 ... 13 0 ... 7 7 ...

neighbour n 68 91 ... 12 21 ... 36 61 ...

brother n 424 113 ... 233 3 ... 112 93 ...

sister n 567 52 ... 168 3 ... 82 75 ...

Table 2.4: An example of the semantic space for the chosen target words.

From the distributional patterns represented by these 6 selected dimensions, we can deduce

that it is more typical to associate brothers and sisters with a mother than with a street,

while one speaks about neighbours in the context of a street more often than in the context

of a mother. It is also more relevant to talk about older brothers and sisters, while the

concept of noisiness is more relevant for neighbours. One can also lose a brother or a

sister but less often a neighbour, while with respect to neighbours it is more typical to

talk about moving.17

We can note that in our example the distributional patterns for brother and sister are

quite similar, while being different from that for neighbour. The distributional pattern of

elder is also more similar to those of brother and sister than to that of neighbour. This

illustrates an important property of distributional semantic models: due to the fact that

semantically similar words occur in similar contexts, they are situated in the semantic

space closer to each other than to the words which are less similar. In practice, this

can be estimated using the cosine measure which is a function of the width of the angle

formed by two vectors:

Similarity = cos(θ) =
A ·B
||A|| ||B||

=

∑n
i=1Ai ×Bi√∑n

i=1(Ai)2 ×
√∑n

i=1(Bi)2
(2.6)

17We should admit that this is a very simplistic example, since we are only considering a specifically

selected set of vector dimensions. Our goal here is to illustrate, in a simple form, how semantic similarity

can be estimated on the basis of the distributional patterns.
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The cosine measure is one of the most widely used measures for estimating vector similar-

ity, providing a clear interpretation for similarity in the semantic space. For a discussion

of other measures of semantic similarity, see Kiela and Clark (2014).

Table 2.5 presents the similarity values for the set of target words in our example which

are estimated using the subset of the co-occurrence counts with the chosen context words.

Even though in a real situation we will be dealing with a higher number of dimensions

and use a bigger number of co-occurrence counts to estimate similarity than just the

6 as for this example, the obtained results give a rough idea of how we can measure

semantic similarity between words using DSMs. We see that the distance values support

our linguistic intuition that brother, sister and elder are all similar to each other, while

neighbour is more distant.

Words elder a neighbour n brother n sister n

elder a 1.0000 0.7222 0.9745 0.9925

neighbour n 1.0000 0.7338 0.6438

brother n 1.0000 0.9645

sister n 1.0000

Table 2.5: Similarity between the chosen target words.

There is a direct geometric interpretation for the DSMs: since we are representing the

words as vectors in the semantic space, we can also visualise them as geometric objects

in the n-dimensional space. For example, if we focus on the first two dimensions in our

space, we can represent the target word vectors as in Figure 2.1.

street n

mother n

elder a

neighbour n
brother n

sister n

Figure 2.1: Semantic space example.

We see that the vectors for elder, brother and sister are situated closer together and also

closer to mother, while the vector for neighbour is situated further apart from other vectors

and closer to street.
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The vectors that are placed close together in the semantic space are called neighbours.

They exemplify what Sahlgren (2008) refers to as paradigmatic relations – relations that

hold between words or linguistic entities that occur in the same context but not at the

same time. The syntagmatic and paradigmatic relations are not mutually exclusive: in

our example, brother and sister would stand in both relations since they can occur in the

same context as well as in similar contexts. Paradigmatic relations between elder and

older would be more pronounced than syntagmatic, since the two words would typically

occur in a similar rather than the same context. The strength of DSMs is that they can

account for word meaning and give access to the related words.

There are a number of other implementation issues related to DSMs. Sahlgren (2008)

mentions that some linguistic information can be added to the models by lemmatising

words and disambiguating them with PoS tags. Certain modifications of the semantic

space can lead to collecting more relevant information at the cost of data-sparseness or

to more general information at the cost of losing some fine-grained distinctions.

The frequency of individual words plays a role in the magnitude of the absolute counts:

for example, it makes sense to compare the patterns for elder and brother but not the

absolute counts as the noun brother is more frequent (occurs 11, 281 times in the BNC)

than the adjective elder (occurs 1, 058 times). The co-occurrence counts are influenced

by both the frequency of the target word and the frequency of the context words. There-

fore, in practice, the counts are weighted by the frequency of both words, for example,

using TF -IDF or mutual information. Another effect of applying a weighting scheme to

the raw co-occurrence counts is that it shows the association of the target and context

words discounting the weights of components associated to contexts with high probability

of chance occurrence (Evert, 2005). In spite of the previous work that discusses param-

eter setting for DSMs (Kiela and Clark, 2014; Lapesa and Evert, 2013; Bullinaria and

Levy, 2007, 2012), there is no single best setting for a semantic space and the particular

implementation details depend on the task.

The appropriateness of using DSMs to represent word meaning has been tested in a num-

ber of areas from linguistics to cognitive science to neuroscience. It has been shown that

these models are successful in simulating many aspects of human semantic performance,

mimic the process of language acquisition, and are good predictors of the patterns of brain

activation recorded in subjects thinking of a concept (Baroni et al., 2014a; Murphy et al.,

2012; Lenci, 2008; Mitchell and Lapata, 2008; McDonald and Ramscar, 2001). Baroni

et al. (2014a, p. 21) conclude that “a core aspect of the meaning of a word is given by (a

function of) its distribution over the linguistic contexts [...] in which it occurs, encoded

in a vector of real values that constitutes a feature-based semantic representation of the

word”.

The question then is whether these models can be applied to a linguistic entity of ar-

bitrary length. From the cognitive point of view, we are exposed to a huge number of
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words throughout our lives and acquire their meaning partly through their distribution.

Experiments by McDonald and Ramscar (2001) confirm that human subjects change their

idea of a rare or nonce word meaning depending on the distributional properties of the

contexts in which these words are presented. Data sparsity is a natural property of human

language, and we can encounter some words very often so that we form a reliable meaning

representation for these linguistic entities, but we might never encounter all the possible

combinations with all the words we know. Yet, we are still able to derive the meaning

of longer linguistic expressions if we know the meaning of the constituent parts. This

suggests that DSMs are less appropriate for meaning representation of linguistic units

beyond words. From the computational point of view, this suggests that they cannot be

used to derive statistically reliable representations for longer phrases. For example, let us

consider the distributional vectors using the same contextual elements for the ANs elder

neighbour, elder brother and elder sister. The vectors are presented in Table 2.6.

Words mother n street n ... older a noisy a ... lose v move v ...

elder neighbour 0 0 ... 0 0 ... 0 0 ...

elder brother 11 3 ... 5 0 ... 2 3 ...

elder sister 7 0 ... 0 0 ... 0 0 ...

Table 2.6: Semantic space for AN combinations.

Since elder neighbour is not attested in the BNC, all of its co-occurrence counts are 0.

However, we see that the counts for the other two ANs are very low, too: they are much

lower than the counts for the individual words within these combinations, and of the 6

dimensions only one is filled for elder sister. This shows that the distributional models

for the longer combinations are usually very sparse and less statistically representative

even for relatively frequent word combinations.

Absence of a word combination in a corpus of English can signal that the combination is

non-sensical, semantically deviant, or plainly incorrect. In fact, elder neighbour is anno-

tated as an error in our learner error dataset. At the same time, language is productive

and the number of acceptable content word combinations is bigger than what any corpus

can cover reliably. A bigger corpus can provide us with a more reliable distributional pat-

tern for the words and their combinations, but the problem of data sparsity will inevitably

occur, especially when the length of the combination considered increases.

Compositional distributional semantic models provide a better means of modelling content

word combinations than using the corpus occurrence of the combinations.

2.4.2 Models of Semantic Composition

While we rely on distributional models to represent the meaning of words, the meaning

of longer linguistic entities is handled by formal semantics, which in the Fregean tradi-

tion (Frege, 1892; Montague, 1970, 1973) relies on the principle of compositionality which
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states that the meaning of a complex expression is determined by its structure and by

the meanings of its constituents, or that the meaning of a complex expression is some

function of the meanings of its components (Baroni et al., 2014a; Pulman, 2013, p. 334).

For example, the meaning of elder sister is a function of the meaning of the noun sister

and its modifier elder.

From the computational point of view, this amounts to applying a certain function to

the distributional vectors representing the constituent words of a phrase. Baroni et al.

(2014a) review a number of models of semantic composition and functions applied to

the distributional vectors within these models. We focus on three of them – the simple

additive (add) and multiplicative (mult) models by Mitchell and Lapata (2008, 2010), and

the adjective-specific linear maps (alm) by Baroni and Zamparelli (2010).

Composition by Component-wise Operations

These models are also referred to as component mixture models (Baroni et al., 2014a). In

the general form, components of the composite vector c are derived by application of a

certain mathematical operation � to the components of the input vectors a and b:

ci = ai � bi (2.7)

The most widely used models of this type are the add and mult models of Mitchell and

Lapata (2008, 2010) which use component-wise addition + and multiplication � to derive

the composite vectors. Baroni et al. (2014a, p. 27) also note that the additive approach was

the most common one in composition in distributional semantics from early on (Kintsch,

2001; Foltz et al., 1998; Landauer and Dumais, 1997).

Table 2.7 shows how the composite AN vectors are derived from the distributional vec-

tors presented in Table 2.4. The modelled vectors are much less sparse than the AN

distributional vectors extracted from the same corpus (see Table 2.6). At the same time,

the distributional pattern is preserved, and we can see that the mother, older and lose

dimensions are more pronounced for elder brother and elder sister with both models.

ANs mother n street n ... older a noisy a ... lose v move v ...

elder + neighbour 113 101 ... 25 21 ... 43 68 ...

elder � neighbour 3060 910 ... 156 0 ... 252 427 ...

elder + brother 469 123 ... 246 3 ... 119 100 ...

elder � brother 19080 1130 ... 3029 0 ... 784 651 ...

elder + sister 612 62 ... 181 3 ... 89 82 ...

elder � sister 25515 520 ... 2184 0 ... 574 525 ...

Table 2.7: Derivation of the AN vectors with the add + and mult � models.

Mitchell and Lapata (2008, 2010) characterise the interaction of distributional properties

of the mult model as a quantitative form of “feature intersection”. By analogy, the add
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model can be said to represent feature union, as the modelled vectors inherit cumulative

score mass from the corresponding input components and can inherit a high value in a

particular component from one of the input vectors. For example, high cumulative counts

are inherited by elder + brother and elder + sister in the mother-dimension from the

input noun vectors rather than the adjective vector. The effect of the high input vector

counts is even more pronounced within the mult model. However, since the mult model

captures feature interaction, zero counts in the input vectors result in zero counts in the

composite vector showing that, for example, noisy is not relevant for elder brother and

elder sister since it is not relevant for elder.

These models, in their simplest form, are also easy to implement in practice since they

require no additional training or parameter tuning. They have been, so far, most widely

used in compositional distributional semantics and successfully applied to a number of

tasks (Foltz et al., 1998; Erk and Padó, 2008; Mitchell and Lapata, 2009; Grefenstette

and Sadrzadeh, 2011; Vecchi et al., 2011; Blacoe and Lapata, 2012; Boleda et al., 2012).

However, these models have a serious deficiency which might make them inappropriate

for some linguistic tasks: both models derive the composite vectors in a symmetric way

with both input vectors contributing equally to the combination. They are referred to as

mixture models because they essentially “mix” distributional counts from the input vec-

tors. From the linguistic point of view, adjectival modification is an asymmetric operation

with the input noun (head of the combination) contributing to the resulting composition

more than the adjective. For example, elder brother inherits some properties from elder

which distinguish it from simply a brother, but our linguistic intuition would suggest that

it still inherits much more from brother, and an elder brother, while being both an el-

der family member and a brother, is still to a greater extent a brother. The simple add

and mult models have no way to take the grammatical relations between the words into

account. One practical solution for avoiding this is to introduce weights and weigh the

head of the combination heavier than the modifier: Mitchell and Lapata (2010) discuss a

weighted additive model within which the modifier vector can, for example, be multiplied

by 0.2 and the head vector by 0.8. In this case, however, the model might require some

parameter tuning.

The simple add and mult models might not be suitable for the linguistic tasks where

the grammatical structure of the word combination is important, as they would fail to

distinguish between dog trainer and trainer dog, or dog chase cat and cat chase dog (Ba-

roni et al., 2014a, p. 28). However, they can still be used in a number of tasks where

other aspects of meaning composition are considered, for example, in detecting semantic

anomaly.

Distributional Functions and Linear Transformations

Baroni and Zamparelli (2010) and Baroni et al. (2014a) propose a different type of model
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of compositional distributional semantics. They note that a mixture of the vector com-

ponents will not always provide a satisfactory representation: if one can say that old cat

is a mixture of the features of old things and cats, a similar interpretation for some cats

– as a mixture of some things and cats – is much less appealing. While certain words are

defined more directly by their distribution (for example, a noun cat), some other words

might “adjust” their meaning depending on the words they modify. Consider an example

of the adjective brown: “In order for a cow to be brown most of its body’s surface should

be brown, though not its udders, eyes, or internal organs. A brown crystal, on the other

hand, needs to be brown both inside and outside. A book is brown if its cover, but not

necessarily its inner pages, are mostly brown, while a newspaper is brown only if all its

pages are brown. For a potato to be brown it needs to be brown only outside...” (Lahav,

1993, p. 76). Interpretation of many verbs also depends on their arguments: for example,

the sense of take in take a note, take a class and take a shower is not the same.

Baroni and Zamparelli (2010) and Baroni et al. (2014a) propose a type of model capable

of capturing these phenomena: they suggest representing certain linguistic categories, for

example nouns, with distributional vectors, while modelling other categories, for example,

adjectives, verbs, determiners, prepositions and so forth, by distributional functions. This

approach allows us to speak of different compositional structures derived through function

application: OLD(cat), SOME(cat) and T AKE(note). Baroni et al. (2014a, p. 33) note

that this approach is closer to the classic, formal semantics treatment of compositionality.

The algebraic equivalent to the compositional functions in the vector-based distributional

framework are linear transformations or linear maps. A linear transformation takes a

vector of size J and returns a vector of size I (J might equal I), where each output

component is a linear combination of all input components, or a weighted sum of the

input components (Baroni et al., 2014a, p. 33). The linear transformation can be encoded

with a matrix: given the J- and I-dimensional vector spaces, any linear transformation

from the first onto the second is entirely characterised by a matrix of shape I × J , and

the application of the linear transformation to the input vector is given by the product

of the matrix by the vector from the J-dimensional space.

For example, if we have a matrix M of dimensionality I × J , which encodes the linear

transformation, and an input vector v of size J , the matrix-by-vector multiplication will

result in the I-sized vector w = M× v, with each component of this vector defined by:

wi =

j=J∑
j=1

Mij × vj (2.8)

The component wi of the resulting vector is, thus, a weighted sum of all J components of

the input vector, each multiplied by the value in the ij-th cell of the matrix.

Baroni et al. suggest treating distributional functions as linear transformations on se-

mantic space, where first-order one-argument distributional functions such as adjectives
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or intransitive verbs can be encoded with matrices. Higher-order functions such as transi-

tive verbs can be encoded with tensors of the appropriate dimensionality – more complex

algebraic structures which extend matrix representations to higher number of dimen-

sions (Grefenstette, 2013).

The matrix-by-vector multiplication for the first-order functions can be represented as:

f(a) =def F× a = b (2.9)

where F is the matrix encoding the function f as a linear transformation, a is the vector

for the argument a and b is the vector output to the composition (Baroni et al., 2014a).

For example, let us assume that the linear transformation representing an adjective elder

is encoded with a matrix M which, for the sake of example, is reduced to only two

dimensions for lose v and move v:

M =

( lose v move v

lose v 10 3

move v 0 7

)

and the noun brother is represented with a corresponding 2-dimensional vector v:

v =

(
lose v 112

move v 93

)

Then the matrix-by-vector multiplication will result in the vector w for ELDER(brother):

w = M× v =

(
10 3

0 7

)
×

(
112

93

)
=

(
10× 112 + 3× 93

0× 112 + 7× 93

)
=

(
1399

651

)

The matrix illustrates the contribution of the different input components to the output

vector: the ij-th cell contains the quantity determining how much the component cor-

responding to the j-th input context element contributes to the value assigned to the

i-th context element in the output vector. For example, matrix M, encoding the adjec-

tive elder, contains 0 in the cell corresponding to the input context label lose v and the

output context label move v. This means that the lose-labelled component of the input

noun vector will contribute 0 value to the move-labelled component of the elder N output

vector.

The linear transformation-based approach has a number of properties that simpler models

lack: they do not simply mix the distributional counts of the input vectors, clearly taking

into account the interaction between different dimensions of the input structures; they
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are not symmetric and take the difference in the function of the words into account; they

can be applied recursively in a syntax-aware manner and combining different types of

semantic representations for longer linguistic entities.

From the practical point of view, the question is how to induce these higher-order objects

from the data in a similar way as we derive vectors from the word’s distribution, and how

to determine the values to fill the cells of the tensors. In accordance with the distributional

semantics tradition, we can again look at how the words and word combinations are used

in the data and induce the weights determining the contribution of the components of

the input vectors to the output vectors. The idea is that, to learn the distributional

function for the adjective elder, we can collect some training example pairs <brother,

elder brother>, <child, elder child>, <daughter, elder daughter> and so forth from the

corpus. Then, using these input–output pairs and applying regression, we can find the

weights that, on average, provide the best approximation to each output component as

a weighted sum of the corresponding input components across the training set. The

learning algorithm guarantees that the set of weights in the derived matrix produces

the best approximations to the corpus-extracted output vectors when multiplied by the

corresponding corpus-extracted input vectors (Baroni et al., 2014a, p. 46).

Baroni and Zamparelli (2010) have presented qualitative evidence that AN vectors ex-

tracted from the corpus make in general intuitive sense by showing that they are sur-

rounded by semantically similar words and phrases. Additional evidence for the fact

that corpus-harvested distributional vectors for phrases are high-quality examples for the

composite meaning that they represent is provided by Boleda et al. (2012) and Turney

(2012). Therefore, the corpus-observed phrase vectors (for example, AN vectors) can be

used as targets for learning the distributional functions (for example, adjectives) from

the mappings of the observed words (nouns) and the correspondent word combinations

(ANs). Baroni et al. (2014a) also note that since the distributional adjective function

is trained on numerous examples, its application to input vectors produces a better ap-

proximation to the meaning of the phrase than many corpus-derived distributional phrase

vectors, especially for rare word combinations. Application of the distributional function

for elder to the noun vector of sister in our case might produce a better approximation of

the meaning of elder sister than the distributional vector (see Table 2.6).

Baroni and Zamparelli (2010) presented the alm model in which adjectives are represented

by matrices and nouns are represented by distributional vectors. A matrix for each ad-

jective adji is learned from the corpus-attested pairs of <noun, adji–noun combination>

vectors using partial least squares regression. We follow this experimental setting.
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2.4.3 Semantic Anomaly Detection

Detection of semantic anomaly in AN combinations is one of the tasks on which compo-

sitional distributional models have been tested (Vecchi et al., 2011). We review this work

here because, first of all, semantic anomaly in native English is the closest phenomenon

to that of content word errors in learner English: since native speakers are assumed to

be experts in their own language (see §1.1), it can be expected that they only produce

semantically anomalous combinations on purpose. In contrast, non-native speakers may

lack the ability to choose content words appropriately and incorrect word choice can result

in semantically anomalous combinations. If compositional distributional models can be

applied to detect semantic anomaly, they can also be applied to detect errors in content

words. Secondly, we believe that this task tests the crucial ability of the semantic mod-

els to account for compositionality in language. Whereas approaches based on corpus

evidence can only deal with the linguistic phenomena that have been seen before, com-

positional distributional semantic models can help us derive the meaning of the longer

linguistic units from the meaning of their parts.

Vecchi et al. (2011) have studied a set of corpus-unattested AN combinations. Absence of

a combination in a corpus of English, however big this corpus might be, can suggest that

the combination is semantically anomalous, but it can also be due to a variety of different

reasons including pure chance, the fact that the expression, though understandable, is

ungrammatical, that it uses a rare or very complex structure, describes false facts or

nonexistent entities (Vecchi, 2013). Quite often, it simply shows that a corpus of any

size cannot cover all possible semantically acceptable word combinations because natural

language is productive (Chomsky, 1957). Vecchi et al. (2011) have shown that it is

possible to use compositional distributional methods to distinguish unattestedness due to

nonsensicality from unattestedness due to other reasons.

We believe that experiments on datasets of corpus-unattested examples test the ability

of compositional distributional semantic models under the extreme circumstances when

modelling the meaning of the combination is the only way to derive it. Since the meaning

of the complex expression is modelled from the meaning of its parts, the size of corpus

against which the attestedness of the AN combinations is checked is of less importance.

Experimental Setting

The coverage of any corpus as well as distributional models which rely on corpus evidence

are limited. However, even if we have never seen a blue rose, the concept itself is not

inconceivable, while that of a residential steak is much less easy to interpret (Vecchi et al.,

2011). Both might be unattested in a corpus of English, but the reason for the absence of

the former is data sparsity, while the latter is absent due to its semantic anomaly. Vecchi



CHAPTER 2. THEORETICAL BACKGROUND 66

et al. (2011) collected and presented a set of corpus-unattested AN combinations that we

described in §2.1.4.

The semantic space for the experiments was constructed using the 8K most frequent

nouns and 4K most frequent adjectives from the concatenated corpus as the target word

vocabulary. For both nouns and adjectives, the top 50 most frequent elements were

excluded as they might have too broad a meaning and the ability to combine with almost

any noun or adjective, which will make the test examples less challenging. The semantic

space was also populated with the vectors for 33K ANs which resulted in a total of 45K

target elements in the semantic space.

The ANs were generated by first crossing a selected set of 200 very frequent adjectives

attested in the corpus at least 47K times, and at most 740K times, and the set of the

8K nouns from the semantic space vocabulary. Among these generated ANs, a set of

30K ANs attested in the corpus at least 200 times was randomly sampled, and to add

further variety to the semantic space, augmented by a less controlled second set of 3K ANs

randomly picked among those that were attested and were formed by the combination

of any of the 4K adjectives and 8K nouns in the target word vocabulary. The set of

generated but corpus-unattested AN combinations was used to generate the AN dataset.

The semantic space was constructed using 10K-dimensional vectors for the vocabulary of

45K target elements. The vectors encoded sentence-internal co-occurrence of the target

elements with the top 10K most frequent content words in the concatenated corpus. The

raw co-occurrence counts were then transformed into Local Mutual Information (LMI)

scores (Baroni and Lenci, 2010; Evert, 2005). This weighting scheme was chosen as it

closely approximates the commonly used Log-Likelihood Ratio while being simpler to

compute. The full co-occurrence matrix was then reduced using Singular Value Decompo-

sition (SVD) (Landauer and Dumais, 1997; Rapp, 2003; Schütze, 1997) to yield a smaller

and denser space which is easier to use with computationally intensive models like linear

transformations. The original 45K-by-10K-dimensional matrix was reduced to a 45K-

by-300 matrix, where vocabulary items were represented by their coordinates in the space

spanned by the first 300 right singular vectors of the SVD solution.

Four compositional methods including the simple add and mult models of Mitchell and

Lapata (2008, 2010) and the alm model of Baroni and Zamparelli (2010) were used.

The fourth model, the linear map (lm) approach proposed by Guevara (2010), derives

the composite AN vector by multiplying a weight matrix by the concatenation of the

adjective and noun vectors, so that each dimension of the AN vector is a linear combination

of dimensions of the input adjective and noun vectors, which distinguishes it from the

alm approach of Baroni and Zamparelli (2010). The matrix coefficients for the alm and

lm models were estimated using multivariate partial least squares regression (PLSR) as

implemented in the R pls package (Mevik and Wehrens, 2007), with the latent dimension

parameter set to 50. The number of training examples per adjective for the alm model
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ranged from 100 to more than 500 items depending on the available training data.

Measures of Semantic Anomaly

Vecchi et al. (2011) proposed looking at three properties of the model-generated vectors

that could distinguish between the representations of the semantically acceptable and

semantically deviant AN combinations:

1. Vector length: they hypothesised that, since the values in the dimensions of a

semantic space are a distributional proxy to the meaning of an expression and since

a semantically deviant word combination is formed by combination of semantically

incompatible words, the distributional counts in the input vectors will be distributed

along different dimensions and the resulting vector will in general have low values

across the dimensions. For example, a parliamentary potato is no longer a vegetable

but it is also unlikely that it denotes a parliamentary event. Therefore, it might

have low values in both dimensions characterising vegetables and dimensions char-

acterising events. The first measure proposed is the length of the model-generated

AN vector, and the hypothesis is that vectors for semantically anomalous ANs are

shorter than those for semantically acceptable ANs.

In our set of examples:

len(elder + neighbour) = 174.67 while

len(elder + brother) = 565.49, and

len(elder � neighbour) = 3234.48 while

len(elder � brother) = 19378.7718

2. Similarity/Distance to the input noun: the second hypothesis is based on the

observation that anomalous composition destroys or randomises the meaning of the

input noun, and as a side effect one might expect the resulting AN to be more

distant, in the semantic space, from the component noun. For example, although a

marble iPad might have lost some essential properties of iPads, it must still retain

at least some characteristics of iPads, for example, being shaped like one (Vecchi

et al., 2011). Still, we cannot imagine what a parliamentary potato should be and

cannot attribute even a subset of regular potato properties to it. We can measure

the similarity between the model-generated AN vector and the input noun vector

with the cosine of the angle between two vectors, and it is expected to be lower for

the semantically anomalous combinations.

In our set of examples:

cos(neighbour,(elder + neighbour)) = 0.9811 while

cos(brother,(elder + brother)) = 0.9998, and

18We should note that since in these examples we use raw rather than normalised counts the difference

in the length might be a consequence of the difference in the length of the input vectors.
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cos(neighbour,(elder � neighbour)) = 0.7452 while

cos(brother,(elder � brother)) = 0.9042.

The difference for the add model representation might not be significant, but that

for the mult model is more evident.

3. Density of the neighbourhood: the third hypothesis is based on the assumption

that if an AN makes no sense, its model-generated vector should not have many

neighbours, since the semantic space is populated by nouns, adjectives and ANs

that are commonly encountered in the corpus and should all be meaningful. It is

expected that semantically anomalous ANs will be “semantically isolated”. This is

measured by calculating the average cosine with the top 10 nearest neighbours, and

the model-generated vectors of semantically anomalous ANs are expected to have

lower density than model-generated acceptable ANs.

In our set of examples:

dens(elder + neighbour) = 0.9518 while

dens(elder + brother) = 0.9947, and

dens(elder � neighbour) = 0.9496 while

dens(elder � brother) = 0.9886.

Evaluation and Results

Vecchi et al. (2011) applied the measures of semantic deviance to the two groups of model-

generated vectors – vectors representing the acceptable and the anomalous combinations.

The two sets of vectors were compared, for each composition method and deviance cue, by

means of two-tailed Welch’s t tests. The estimated t score, which shows the standardised

difference between the mean acceptable and anomalous AN values, was reported.

Their results show that the add and mult models, in spite of the simple idea they are based

upon, provide significant results for 2 out of 3 cues – for vector length and density, only

failing the cosine test. The model of Guevara (2010) does not distinguish between the

two groups of vectors reliably with any of the measures, while the alm model captures the

distinction in terms of density. Overall, the density measure performed most reliably of

all proposed measures, showing statistically significant differences between the two groups

of vectors with 3 out of 4 applied models of compositional distributional semantics.

These results suggest that the models of compositional distributional semantics in com-

bination with the measures for detecting semantic anomaly in AN combinations can be

applied to the task we address in this work, therefore, we re-implement and extend the

ideas presented in Vecchi et al. (2011). In particular, we use the 3 models of compositional

distributional semantics – the add, mult and alm models. We do not use the lm model

since it is based on an idea similar to the alm model, but performs worse on the anomaly

detection task. We also follow the semantic space experimental setting and the evaluation
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procedure of Vecchi et al. (2011), but extend the set of measures of semantic anomaly.

We discuss the application of these models to learner data in Chapter 5.

2.5 EDC Systems Evaluation

EDC systems are evaluated with the set of measures widely used in other NLP tasks –

accuracy, precision, recall and F-measure. The key concepts for evaluating performance

are the number of hits, misses and false flags that the system makes.

For ED, hits or true positives (TP) on the class of errors are the correctly identified

errors, misses or false negatives (FN) are the errors not identified by the system, and false

flags or false positives (FP) are the correct instances incorrectly flagged as errors by the

system. True negatives (TN) – the correct instances classified as correct by the system

– are relevant for estimating accuracy but not other measures. The number of true/false

positives/negatives is estimated by comparing the difference between the original and

the gold standard annotation with the difference between the original and the system’s

suggestion: if the gold standard is different from the original text, then there is an error in

the original which is expected to be identified by the ED system. Table 2.8 illustrates this

with an example. For detection, the exact match between the gold standard correction

and the system’s suggestion is not required (see the TP cell in Table 2.8): as soon as both

differ from the original word, an error is flagged in the right place and is counted as a hit.

Category Positive (P) Negative (N)

True (T) Original: I have tried a classic dance already. Original: They performed a classic Ceilidh dance.

GS: I have tried a classical dance already. GS: They performed a classic Ceilidh dance.

System: I have tried a typical dance already. System: They performed a classic Ceilidh dance.

=> a hit

False (F) Original: They performed a classic Ceilidh dance. Original: I have tried a classic dance already.

GS: They performed a classic Ceilidh dance. GS: I have tried a classical dance already.

System: They performed a classical Ceilidh dance. System: I have tried a classic dance already.

=> a false flag => a miss

Table 2.8: True/false positives/negatives for error detection.

For correction, it is important that not only the error is identified, but also that the

correction coincides with the one suggested in the gold standard. Therefore, if an error is

identified on the word classic and the correction suggested by the system is typical rather

than classical as in the gold standard, this is counted as a miss – see Table 2.9.

In this work, we focus on ED specifically. System performance evaluation is more difficult

when it is subject to matching the correction in the gold standard, and it has been

shown (Tetreault and Chodorow, 2008a) that some contexts license for multiple possible

corrections, therefore, system performance is underestimated if exact match to only one

correction is required. We believe that performance should be estimated on detection and

correction separately. In addition, it has been shown (Leacock et al., 2009) that learners
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Category Positive (P) Negative (N)

True (T) Original: I have tried a classic dance already. Original: They performed a classic Ceilidh dance.

GS: I have tried a classical dance already. GS: They performed a classic Ceilidh dance.

System: I have tried a classical dance already. System: They performed a classic Ceilidh dance.

=> a hit

False (F) Original: They performed a classic Ceilidh dance. Original: I have tried a classic dance already.

GS: They performed a classic Ceilidh dance. GS: I have tried a classical dance already.

System: They performed a classical Ceilidh dance. System: I have tried a typical dance already.

=> a false flag => a miss

Table 2.9: True/false positives/negatives for error correction.

can benefit from ED even if the corrections provided by the system are not good. We

discuss the error correction step in Chapter 7.

Learner data is typically highly skewed, with the number of errors even for the most

frequent error types being relatively low: the error rate is usually about 5% only. This

makes ED quite a challenging task, since the baseline – detecting no errors – is high from

the start. For some error types, it is also hard to clearly define TNs which are important

for the estimation of accuracy of an ED algorithm: for example, for determiners the TNs

are the determiners correctly used by the learners and not detected by the system as errors.

However, estimation of the number of correctly used determiners proves problematic as it

is hard to determine the number of correctly used ∅ (null) articles: it is not clear whether

each whitespace between the words, or every position before a noun or a noun phrase

should be counted, and there is not much consensus on this issue (see Leacock et al.

(2014, p. 34) for discussion). With respect to content word errors, this problem does not

arise, since the number of TNs is simply the number of correctly used combinations of a

certain type not tagged as errors by the ED system.

Using the number of the hits, misses and false flags returned by the system, the accuracy

(Acc), precision (P) and recall (R) are estimated as:

Acc =
TP + TN

TP + FP + TN + FN
(2.10)

P =
TP

TP + FP
=

#hits

#hits+ #falseflags
(2.11)

R =
TP

TP + FN
=

#hits

#hits+ #misses
(2.12)

Accuracy shows the proportion of items for which their status has been identified by the

system correctly: it is the proportion of errors tagged as errors and correct uses tagged as

correct. Precision shows how reliable the system is at detecting errors: how often what

is identified by the system as an error is an actual error versus a false flag, while recall

shows how many errors the system identifies among those present in the text. Precision

determines reliability of the system, and there is clear evidence that precision is more
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important for learners and their progress than recall, so that most EDC systems aim for

high precision (Chodorow et al., 2010; Nagata and Nakatani, 2010; Ng et al., 2014).

The F1-measure is the harmonic mean of precision and recall, and both contribute equally

to the equation. However, since more emphasis has been put on precision of EDC systems

lately, F0.5 has been used in the recent shared task (Ng et al., 2014) which puts twice the

weight on precision than on recall:

F1 = 2 · P ·R
P +R

(2.13)

F0.5 = (1 + 0.52) · P ·R
0.52 · P +R

(2.14)

Some issues related to evaluation of EDC systems have been raised before. Chodorow

et al. (2012) point out that EDC is more complicated than many NLP tasks: instead of

a two-way correspondence between a system’s output and a gold standard we are dealing

with a three-way correspondence between an original writer’s sentence, the annotator’s

correction which is taken to represent the gold standard and the system’s output. It

is not clear whether the gold standard based on annotator’s correction is exhaustive, or

whether some of the system’s output not coinciding with the gold standard can be used to

extend and amend it. We believe, that with respect to ED alone, the mismatch between

the system’s and the annotator’s correction is not directly relevant as both would be

considered as a hit as soon as they differ from the original (see §2.2).

Another issue that makes EDC a particularly challenging task is the high skew in the

actual learner data: the goal of the EDC systems is to detect and correct errors, while

errors as compared to non-errors have much lower frequency. The lower bound, or the

majority baseline, is very high and unless an EDC system can reliably identify errors, it

is practically useless, as any system that makes no corrections at all would outperform an

EDC system that makes some wrong predictions. In particular, it is important that an

EDC system has high precision on the class of errors, as it can be argued that FPs on the

error class are more “costly” than FPs on the correct class (Nagata and Nakatani, 2010).

FPs on the correct class (non-errors) represent errors missed by the system and tagged as

correct, while FPs on the incorrect class (class of errors) represent some originally correct

uses that are tagged by the system as errors. It can be argued that errors have higher

informativeness: language learning quite often is based on errors and their correction, and

it is important not to mislead the learners by drawing their attention to originally correct

expressions as they might memorise them as being incorrect. In addition, if an originally

correct expression is tagged by the system as an error, the learner is forced to look for a

correction for an originally correct expression.

Helfrich and Music (2000) conducted a customer study to determine which error types

grammar checkers should primarily focus on. Their study confirms that even native
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speakers, who presumably can distinguish between TPs and FPs returned by an EDC

system, are less concerned about recall than they are about precision and the number of

false flags. Users will often turn a grammar checker off due to a “spectacular false flag

and/or annoyance”, and errors on common words can give users a very low opinion of

the system quality. Helfrich and Music (2000) concluded that a good balance should be

found between reduction of the number of false flags and spotting and correcting the errors

people make, however, increasing precision and decreasing the false flag rate should have

higher priority than recall. In addition to annoyance by false flags, non-native speakers

are also not always able to distinguish between correctly identified errors and false flags.

Nagata and Nakatani (2010) studied how EDC systems should be evaluated so that they

maximise learning rate. As they noted, perfect EDC might not be attainable, but it

could be assumed that learners still benefit from imperfect EDC. As a matter of fact,

since imperfect EDC can promote learners’ thinking more than perfect EDC when all

errors are detected and corrected, so that a learner has nothing more to do but just

accept all the suggestions from the system, it can maximise learning rate. They explored

whether a system that is recall-oriented and identifies more errors with some of them

being originally correct instances, or a precision-oriented system which identifies fewer

errors but those identified are true errors, maximises learning rate. They also questioned

whether the F1-measure is indeed the best evaluation measure for EDC systems.

The motivation for focusing on higher precision is that when only a limited number of

errors is detected with high precision, learners can detect the other incorrect instances

by examining the system’s feedback and generalising it to more instances in their text,

using their knowledge of English and consulting grammar books. These activities, it can

be argued, lead to improvement in one’s knowledge of English. In contrast, if a system

detects many errors but with limited precision, learners focus on judging whether the

given results are trustworthy or not, and would not learn much from such feedback.

Nagata and Nakatani (2010) focused on errors in articles and noun number. Learning

activities consisted of essay writing, error detection and rewriting, and the learning effect

was measured by the decrease in error rate. Four feedback conditions were compared:

no-feedback, recall-oriented, precision-oriented, and human feedback taken to represent

perfect ED. Recall- vs precision-oriented conditions correspond to the number of errors

detected by the system. It was shown that the best condition was human-generated

feedback, but the decrease in the error rate for the precision-oriented system was close

to that for human feedback. The group with recall-oriented feedback showed even worse

results than the group without feedback. This proves that imprecise feedback misleads

learners more than no feedback. In the experiments of Nagata and Nakatani (2010), the

precision-oriented condition corresponded to 0.72 system precision and 0.25 recall.

Several conclusions can be drawn from this study. First of all, precision-oriented feedback

has a similar learning effect as ‘perfect’ ED provided by a human annotator. In the
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situation where full and accurate ED by a human annotator is not available, an imperfect

ED generated by a computer can be used as a substitute if it has high precision. ED with

high recall at the cost of lower precision, on the other hand, is potentially harmful. As a

consequence of this, systems should be both designed to favour precision, at the cost of

recall, and evaluated primarily with respect to their precision. For example, the recent

shared task on EDC used F0.5 favouring precision over recall (Ng et al., 2014).

At the same time, the results of this study should be accepted with caution, given that

only a limited number of error types over a limited time period were investigated. We

support the idea that an ED system should be oriented to high precision, but we recognise

that more studies might be needed to investigate the learning effect on content word errors.



Chapter 3

Data Collection and Annotation

In this chapter we describe the datasets of correct and incorrect AN and VO combinations

used in our experiments. In the CLC-FCE, errors involving incorrect choice of verbs, nouns

and adjectives account for 11.75% of all errors. Among the different types of content word

combinations with words of these parts of speech, ANs and VOs are some of the most

frequent ones.

We have adopted two different approaches to extracting the data, and as a result, we run

our experiments on two different datasets. We use the CLC to extract all the examples

of the AN and VO combinations. We have discussed the CLC in §2.1.1 and noted, that

word combinations of a particular type can be extracted from the CLC using the error

annotation scheme. The relevant errors for our task are coded with R*, where R denotes

the error type replace word, while the second letter stands for the part of speech – J for an

incorrect adjective, N for a noun and V for a verb. Examples of the incorrect combinations

extracted from the data are given in Table 3.1.

The error-annotated part of the CLC can be used to directly extract erroneous examples

with their corrections. The first dataset is extracted from the publicly-available CLC-FCE

dataset (Yannakoudakis et al., 2011) (see §2.1.2). As we rely on the original error annota-

tion for data extraction, we refer to this dataset as uncontrolled in contrast to our second

dataset, where the examples have been selected in a more controlled way: for instance,

the examples from the uncontrolled dataset contain some combinations previously seen

in native English corpora such as the BNC (Burnard, 2007). The AN subset contains

4, 681 correct and 530 incorrect combinations, with 3, 294 of the correct ones and 286

of the incorrect ones attested in the BNC.1 The VO subset contains 4, 911 correct and

789 incorrect combinations, with 3, 997 of the correct ones and 560 of the incorrect ones

attested in the BNC. We discuss this dataset in more detail in §3.1.

1This dataset is available at http://ilexir.co.uk/applications/adjectivenoun-dataset/.
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Error code Explanation Example (error | correction)

RJ incorrect adjective *big variety | great variety

RN incorrect noun big *roll | big role

RJ+RN incorrect adjective and noun *big *edge | broad brim

RV incorrect verb *make photo | take photo

RN incorrect noun make *search | make research

RV+RN incorrect verb and noun *make *store | develop story

Table 3.1: Examples of the extracted incorrect word combinations.

We refer to the second dataset of AN and VO combinations as controlled: we extracted

the word combinations from the full unannotated CLC, selecting only the combinations

unseen in the BNC. Since we use unannotated learner data for this dataset, we cannot rely

on error annotation but absence of a word combination in the corpus of native English is

a cue that the combination may contain an error. On the one hand, checking the word

combinations against the BNC is used as a heuristic approach to collect learner errors

from unannotated data. On the other hand, this dataset reflects an important property

of human language: since language is productive, no corpus can effectively sample all

possible content word combinations (Chomsky, 1957, p. 15). This problem arises in ED

in learner data, since learners are creative and use a high number of word combinations

that have never been seen before. From the educational point of view, it is desirable

that an ED system does not “punish” language learners for their creativity: it should

recognise incorrect word combinations but not flag acceptable ones as incorrect simply

because those are unseen in native English data. This makes this dataset particularly

challenging for ED algorithms, since algorithms that rely on purely statistical measures

based on selecting more fluent combinations using their corpus occurrence counts would

not be applicable, and a more effective approach to ED in this data requires a semantic

component to distinguish between correct and incorrect content word combinations.

We describe the controlled dataset in §3.2. §3.2.1 presents the general motivation for

data collection. We have devised an annotation scheme for this dataset to distinguish

between correct and incorrect combinations, where we also distinguish between their use

in isolation and in their original contexts in the CLC. The annotation scheme is presented

in §3.2.3. We have used a number of error codes to describe the type and probable reason

for the error committed as well as the locus of the error. We have also provided the most

probable corrections for the incorrect word combinations. The data has been primarily

annotated by a professional linguist, but to ensure that the devised annotation scheme

is comprehensive and clear, a small subset of the controlled dataset (about 100 examples

for both AN and VO combinations) has been first annotated by three annotators. §3.2.4

discusses the results of this annotation step, specifying inter-annotator agreement and

statistics with respect to different error types. The controlled dataset contains 798 AN

and 800 VO combinations, with error annotation and corrections provided.
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3.1 CLC-FCE Dataset

We have used the error annotation provided with the CLC-FCE (Yannakoudakis et al.,

2011) to divide the extracted word combinations into the subsets of correctly used ANs

and VOs and those that contain errors in the choice of component words.

For certain word combinations, all occurrences are annotated as errors. Example (3)

illustrates a frequent error committed by language learners using an AN *big variety

where big is used instead of more appropriate adjectives like wide or great, while example

(4) illustrates another frequent error in a VO *answer information where answer is too

specific and literal for the action described.2

(3) The group asked me to make sure that in the fridge they always could find a <NS

type=“RJ”><i>big</i><c>wide</c></NS> variety of drinks including honey

and lemon for the throat.

(4) I am writing to you because I would like to <NS type=“RV”><i>answer</i>

<c>provide</c></NS> the information that you ask for.

Such combinations in our dataset are unambiguously annotated as errors. However, cer-

tain word combinations are used correctly in some contexts and incorrectly in others, and

their annotation is more debatable. For example, best date is appropriate in contexts

where it is used to point to a particular date. Example (5) provides a context in which

the use of the best date is acceptable:

(5) Firstly, the best date for me to travel will be in the second week of July because I will

be very busy at any other <NS type=“RN”><i>date</i><c>time</c></NS>

for work reasons.

The second use of the noun date in the same sentence suggests that learners may also

overuse date to denote time in general. Learners quite often misuse time-related nouns:

for example, moment, period, term and similar nouns are frequently used incorrectly in

cases where the general word time is more appropriate. Example (6) illustrates another

case of an incorrect use of date instead of time within best date:

(6) Because of this I believe this is the best<NS type=“RN”><i>date</i><c>time</c>

</NS> for me to travel.

2These examples have been extracted from the CLC-FCE. Other errors except for the ones discussed

are corrected using the provided error correction.
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Similarly, a VO combination buy suit can be used correctly in certain contexts to describe

a specific situation of purchasing a suit, as illustrated by example (7):

(7) On the other hand it is a great achievement for you when you buy the suit that is

perfect for everyone.

However, suit might be too specific a term to be used to denote buying clothes in general,

and in such contexts it should be annotated as an error. Example (8) illustrates an

incorrect use of suit when outfit is more appropriate:

(8) For example, imagine that you are a bride and you have to buy an appropriate <NS

type=“RN”><i>suit</i><c>outfit</c></NS>.

The question then arises how such combinations should be represented in the gold stan-

dard. One can adopt a token- or a type-based approach to annotation. Within a token-

based approach, each occurrence of a word combination in each particular context of use

can be treated independently of the others so that some of the instances would be an-

notated as correct and others as incorrect; in contrast, within a type-based approach a

combination should be assigned to just one class.3 The token-based approach would allow

us to keep the in-context annotation: for example, we would distinguish the occurrences

of buy suit in contexts (7) and (8) as a correct and an incorrect instance respectively.

Such annotation is particularly useful for context-specific approaches to ED.

However, we experiment with more general approaches to ED that do not make use of

context, and for such approaches it is more useful to assign each combination to only one

class as per the type-based approach. One option is to place all combinations that are

correct in at least some contexts in the ‘correct’ category to avoid possible overcorrection

that might mislead the learner: thus, both best date and buy suit exemplified in (5) to

(8) would be annotated as correct. Another option is to make use of the available learner

data and make the gold standard represent the most frequent annotation: in this case,

since both best date and buy suit are more frequently used incorrectly than correctly, both

combinations would be included in the gold standard as errors.

The error annotation we rely on for this dataset is rather generic: it distinguishes between

correct and incorrect word combinations and provides information on the locus of an error.

In contrast, the annotation scheme that we apply to the controlled dataset (see §3.2.3) is

also aimed at describing the most probable reason for an error.

Another important feature of this dataset is that it contains a wide range of word com-

binations, both attested and unattested or rare in the BNC. The question of why certain

3We treat error detection as a binary task as is a usual practice in the field in general. In spite of

the fact that some work in the field advocate the use of a scale for error annotation and detection, the

usefulness of such approach for language learning has not been proven (also see the discussion in §2.2).
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word combinations annotated as errors in the CLC are attested in the BNC deserves more

detailed explanation. One group of such examples contains word combinations like best

date or buy suit which can in appropriate contexts be correct and used by native English

speakers, but are frequently misused by language learners as in examples 6 and 8 above.

Then, some word combinations are generally less frequently used even by native speakers,

and less expected to be used by language learners as well, than their corrections. A

typical example of this phenomenon in our data is a frequent confusion between classic

and classical: while both adjectives within these confusion pairs can combine with certain

nouns to produce phrases with a different meaning, for some of these pairs one combination

might be clearly more widely used while another might have a very specific meaning. For

example, both classic music and classical music are attested in the BNC. It is possible to

find contexts in which the former is used appropriately, but such contexts all refer to a very

specific use of the combination classic music – for example, classic music for an event. In

contrast, classical music is a much stronger collocation and is more frequently used both

in native and learner corpora: for comparison, classic music is seen 1 time in the BNC

alone and 150 times in the BNC and ukWaC together, while classical music – 121 times

in the BNC alone and 4, 006 times in the combined corpus. Even though classic music

is corpus-attested in native language, it is much less frequently used by native speakers,

and most often it is used incorrectly by learners instead of classical music.

Finally, we also note that some of the occurrences of the AN and VO combinations

attested in the BNC can themselves be quite rare word combinations which could cover

figurative senses, uses as part of proper names,4 or similar. We might then expect to see

many infrequent combinations among those that are both corpus-attested and annotated

as errors in the CLC. Indeed, such combinations from our dataset are, on average, less

frequent in the BNC than those which are both correct and corpus-attested.

As one of our approaches to ED is based on compositional distributional semantics, it

is important to outline certain differences between the datasets used in this research on

ED and the research on semantic anomaly detection by Vecchi et al. (2011): Vecchi et al.

have used a limited set of constituent adjectives and nouns and an approximately equal

number of semantically acceptable and deviant combinations, whereas our dataset is more

skewed towards correct combinations and consists of a wider range of constituent words.

In addition, some of the correct and incorrect combinations from our dataset are attested

in the native English corpora. We take these factors into account, but we believe that

our dataset reflects practical applications of semantic anomaly detection more closely. We

describe our experiments using the semantically-based approach in Chapter 5.

We refer to this dataset as uncontrolled and use this term to denote that we do not control

whether the combinations occur in the native English corpora.

4For example, a company name is not necessarily a proper English phrase. We have encountered an

AN Funny Pub in the learner data used as a name of a pub rather than in its literal meaning.
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3.1.1 CLC-FCE AN Subset

The extracted AN subset contains 4, 681 correct and 530 incorrect combinations, where

we take the type-based majority-based annotation for the gold standard: for example, the

AN best date is annotated as an error because it is more frequently used incorrectly than

correctly (see §3.1). 3, 294 of the correct and 286 of the incorrect ANs occur in the BNC.

The ANs in this subset are formed with 1, 061 distinct constituent adjectives and 1, 335

nouns. 6 adjectives are used in 100 to 200 ANs, with good (good day versus *good nature |
good environment), new (new phone versus *new manners | new ways) and big (big problem

versus *big variety | wide/great variety) being the most frequent and having the highest

number of examples. All other adjectives are used in 1 to 100 ANs, with 958 adjectives

being used in 10 or less ANs, and 553 adjectives being exemplified by one AN each.

The 530 incorrect ANs contain combinations with 259 adjectives and 324 nouns. Adjec-

tives big and good have the highest number of incorrect examples.

3.1.2 CLC-FCE VO Subset

The VO subset contains 4, 911 correct and 789 incorrect combinations, with 3, 997 of the

correct ones and 560 of the incorrect ones attested in the BNC. We have adopted the

same type-based majority-based approach to derive the gold standard annotation.

The VO subset contains a comparable number of combinations to the number of AN

combinations, but is less diverse in terms of constituent verbs: it contains combinations

with only 603 distinct verbs and 1, 586 nouns. The verb have (have break versus *have

conclusion | come (to) conclusion) is used in the highest number of VOs (521) in this

subset. The other 7 verbs with the highest number of examples – in the range of 100 to

200 instances – include make (make claim versus *make competition | enter competition),

see (see bird versus *see pleasure | take pleasure), and take (take advice versus *take

breakfast | have breakfast). For 490 verbs the number of examples ranges from 1 to 10,

while for 235 verbs there is only one example.

The 789 incorrect VOs contain combinations with 241 verbs and 492 nouns. The verbs

have and make have the highest number of incorrect examples.

3.2 Annotated Dataset

We collected our second dataset in a more controlled way, and in this section we review

the underlying principles of our approach to data collection. We have also devised an

annotation scheme aimed at not only identifying each word combination as either correct

or incorrect, but also suggesting the most probable reason for the error committed. In this
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dataset release, we include error-coded examples of word combinations in their original

contexts of use in the CLC, supplemented by corrections and metadata information.5

3.2.1 Overview of the Dataset

As opposed to the uncontrolled dataset presented in §3.1, we use a different approach to

extracting the examples for this dataset. We have extracted the ANs and VOs from the

full unannotated CLC and focused on the combinations that do not occur in a corpus of

native English (in this research, we use the BNC). We refer to this dataset as controlled

and the factor that we control for is the non-occurrence of the content word combinations

in the native English corpus. The underlying principles behind this data collection are:

1. The nature of learner errors: Most of the state-of-the-art approaches (see §2.3.2)

to EDC in content word combinations rely on comparison of occurrence frequency of

the original (and, possibly, incorrect) combination and its alternatives. For example,

adjectives strong and powerful are close in meaning and might be confused with

each other by language learners. As such, they belong to a confusion set [strong,

powerful]. We might see an AN *powerful tea in the learner data, and using such

frequency-based approaches run on the set of alternatives [strong tea, powerful tea]

detect and correct the error. In that case, “correctness” of the word combination

is equated with the fluency based on the frequency of occurrence in native data.

Although this heuristic may be effective in detecting less fluent word combinations,

a question arises whether an error in the use of content words should be defined

using fluency. Not every combination that is less fluent than some of its alternatives

is incorrect itself. For example, the adjectives appropriate and proper are similar

in meaning and can often be used interchangeably. Appropriate concern is correct

but has lower collocational strength than its alternative proper concern,6 which

means that in native English the latter is more fluent than the former. If we were

to follow the fluency-based approach to ED, we would have to tag an originally

correct appropriate concern as an “error”. Similarly, we would have to tag proper

discount as an “error” since its alternative appropriate discount is more fluent. At the

same time, Chomsky’s famous colourless green ideas example will be corpus-attested

despite being semantically deviant. We maintain that, from the educational point

of view, flagging an originally correct combination as an error is more harmful and

misleading for language learners than missing a possibly incorrect one (see §2.5).

We are primarily interested in approaches that are not based on pure corpus-based

comparison. The dataset consisting of examples from learner data that are not

attested in a native corpus of English presents a good test set, since correctness of

such word combinations cannot be assessed using corpus statistics only.

5Currently, the dataset is available at http://www.cl.cam.ac.uk/~ek358/data/
6Collocational strength has been estimated using Normalised Pointwise Mutual Information.
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2. Creativity in learner language versus data sparsity: Another property of

natural language that is illustrated by this dataset is that the number of possible

content word combinations is too big for any corpus to cover all of them (Chomsky,

1957, p. 15). However large the corpus of native language is, some correct and

semantically acceptable content word combinations will not occur or will have low

counts. The reliability of corpus statistics for a word combination drops as the

length of the combination grows. This shows that algorithms that rely less on

(co)occurrence statistics and more on deeper language processing are needed. This

issue is relevant to learner data and EDC, as learners are creative in their use

of language and they may use word combinations that have never been seen in

native English. Some of those combinations would be incorrect due to learners’

lack of understanding how to choose words correctly, as for example *big knowledge

| extensive knowledge, *deep regards | kind regards, or *catch job | get job, *join

seminar | attend seminar. Others would be acceptable but not covered by the corpus.

Many of the word combinations used by native speakers are also not contained in

the corpora of native English, but it is more usual to attribute those to creative use

of language rather than ignorance (see §1.1). Our goal in this research is an ED

system that does not “punish” language learners for their creativity, and is able to

make semantically-motivated decisions.

3. The challenge for ED and EDC algorithms: The dataset consisting of only

previously unseen word combinations is more challenging for ED and EDC systems,

as such systems should involve a semantic component and deeper language analysis.

4. A new test bed for compositional distributional semantic models: While

ED in content word combinations in learner language is the focus of our research,

we think that this dataset can also be used as a new test bed for compositional

distributional semantic models, since it consists of examples extracted from actual

learner data as they are used in a natural environment, as opposed to artificial

examples that are often used to test these models (Vecchi et al., 2011; Mitchell and

Lapata, 2010).

We have designed this dataset to illustrate the most typical confusions that occur in

learner language and have focused on the most frequently misused adjectives and verbs

(see §3.2.2). The examples are extracted from the CLC, with the information about

the examinations and the learners, including their L1s and level of language proficiency,

retained.

3.2.2 Data Extraction and Preprocessing

In collecting this dataset we had two major goals:
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(i) to collect a set of previously unseen AN and VO combinations;

(ii) to include the combinations that illustrate typical learner errors.

To ensure that the collected data complies with goal (i), we have used the BNC. To ensure

that it complies with goal (ii), we first analysed the errors committed by language learners

in the publicly available CLC-FCE dataset. We have focused on the most frequently

misused adjectives and verbs.

For the ANs, we have focused on the combinations where adjectives are used inappro-

priately and extracted examples tagged with the RJ error code. Then, we filtered out

the adjectives with low error rates: if some combination more or equally often appears

in contexts where it is considered to be correct, it was excluded from our set. Next, rare

adjectives which appeared in less than 4 examples in total were filtered out. As a result,

we obtained a set of 61 adjectives including big and good that are frequently misused by

language learners (see §3.1.1), adjectives semantically close to them like large, great and

high, as well as some other adjectives frequently confused with each other like classic and

classical, to name just a few. Morphological forms like good and best are treated as two

distinct adjectives rather than the forms of the same adjective, as they have different

confusion patterns: while good might be overused by language learners instead of more

specific adjectives, best is most frequently confused with favourite as in my *best hobby.

We have used the set of 61 adjectives to extract the AN examples from the unannotated

part of the CLC, checking that they do not occur in the BNC and filtering out com-

binations where the noun is not attested in the corpus. We have also checked for the

alternative spelling of the nouns, e.g. American versus British English spelling. The final

set contains 798 corpus-unattested ANs.

We have applied the same approach to extracting VO combinations. For that, we have

first identified a set of 77 verbs that are most frequently misused in the CLC-FCE dataset,

including have, make, do, say, tell, see, look, to name just a few. We have extracted 800

corpus-unattested VOs from the unannotated part of the CLC.

3.2.3 Annotation Scheme

We have devised an annotation scheme aimed at:

(i) classifying word combinations as correct or incorrect out of any particular context

of use as well as in their original context of use extracted from the CLC;

(ii) describing, in case of an error, the most probable reason for the error: e.g., whether

we could identify an alternative word close in meaning or in form to the originally

used incorrect one that would be a suitable correction;
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(iii) suggesting, in case of an error, the most probable correction.

Our observations of the most typical learner errors combined with our analysis of the

uncontrolled dataset (see §3.1), which was extracted from the error-annotated CLC-FCE,

helped us devise an annotation scheme that we consider appropriate and comprehensive

for annotating errors in content word combinations. The annotation scheme is designed

to be general enough so that it can be applied to any type of content word combinations

with only minor changes. For example, we first completed the annotation of AN examples

using this scheme, and then applied it to annotating VO examples.

The dataset was primarily annotated by a professional linguist, Diane Nicholls. To ensure

that the annotation scheme is clear and efficient, the dataset was split into 100 and 698

combinations for the ANs and 100 and 700 combinations for the VOs, and in each case

the 100 combinations were first annotated by four annotators including Diane Nicholls.

Two of the four annotators (referred to as annotators 1 and 3 in the discussion below)

are native speakers of English, while the other two speak English at the proficient level.

We measured inter-annotator agreement (see §3.2.4), and discussed all controversial cases

before the main annotator proceeded to annotating the full set. Annotation was performed

using a tool developed for these purposes by Øistein Andersen.

Out-of-context versus in-context annotation

We distinguish between out-of-context (OOC) and in-context (IC) annotation. Previ-

ously, Lee et al. (2009) have used a similar approach presenting items without context

and in context to study how annotators’ decisions about article use and noun number

change depending on the availability of surrounding context. We have briefly mentioned

in §3.1 that certain word combinations might be correct in some contexts and incorrect

in others, and that some combinations, even though being generally correct, might be

overwhelmingly used incorrectly by language learners. We supported our claim with two

examples – the AN best date and the VO buy suit.

Combinations which may appear to be correct when considered out of their original con-

text of use, because there might be other contexts where the same combination would be

appropriate, are quite frequent in our data. For example, classic dance is correct out of

context because one could imagine using it in a context like:

(9) They performed a classic Ceilidh dance.

However, in practice, the AN classical dance is used much more frequently both in learner

and in native English data, and when classic dance is used by learners what is really

meant is classical dance as in, for example:
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(10) I have tried a rock’n’roll dance and a *classic|classical dance already.

We designed the annotation scheme to allow for both OOC and IC annotation. Thus,

we created a two-level annotation scheme, and the annotators are first presented with a

word combination and asked to tag it as correct or incorrect depending on whether they

can think of some appropriate contexts of use for it. Figure 3.1 shows the annotation tool

screen presented to the annotators at this stage.

Figure 3.1: The out-of-context annotation box.

At this step, a word combination is presented to the annotator in isolation and the anno-

tator is prompted to assess whether it can be considered correct or incorrect in general.

The relevant tags in the annotation scheme for this are C for correct and I for incorrect.

The annotator is asked to press either C or I on the keyboard. Once the OOC annotation

has been entered, the annotator is presented with the next screen – shown in Figure 3.2

– where the same combination is presented in its context of use from the CLC and the

annotator is asked to annotate it with respect to this context.

Figure 3.2: The in-context annotation box.

Tags C and I are meant to characterise the word combination in general, and at the

second step when the annotator is presented with the original context of use for the

combination they might realise that (a) they have not thought of this particular use

and would like to change the tag I (generally incorrect) to C (generally correct); (b)

the combination is inappropriate for this dataset, for example, due to misparsing; (c)
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the context is too ungrammatical or nonsensical making it impossible to understand the

learner’s communicative intent. In case (a), the annotator can return to the previous

screen and change the annotation. Similarly, in cases (b) and (c) they can go back and

add tag O for the combinations that should be excluded from the dataset, or U for the

combinations in ungrammatical non-sensical contexts.

If the combination is assigned tag C when considered out-of-context, it might be correct

both out of and in context. In that case, the annotator simply saves the annotation and

proceeds to the next combination. However, if the combination is used inappropriately

in context, and also if it has been assigned I out-of-context, the annotator is asked to

assign it one of the error tags aimed at defining the most probable reason for the error

committed and the most probable correction. Such annotation relies on the annotators’

ability to understand the learner’s communicative intent, and to ensure consistency and

help the annotators come up with the most probable corrections we have provided them

with annotation guidelines on how to treat some debatable cases.

In-context error tags

We note that learners rarely commit inexplicable errors. For example, if the AN combi-

nation that complies with the learner’s communicative intent is A1N1 and the one that

is actually used is A2N1, A1N2 or A2N2 (either adjective or noun or both are used incor-

rectly), there is a high chance that the adjective A2 and/or noun N2 are related to the

adjective A1 and/or noun N1 that express the learner’s communicative intent either in

form or in meaning. Even if the direct link is not easy to establish, we hypothesise that

such a link is present in the learners’ mental lexicon, for example, through L1-transfer, via

some non-classical semantic relations, and so on. We included in our annotation scheme

a specific tag to denote that no obvious relation between the used word and the proposed

correction can be detected by the annotator, but the annotators were also asked to pro-

vide their comments in case they can identify language transfer or non-classical semantic

relation. For example, *good humor has been annotated as an error with the correction

good mood. The two nouns are not semantically related in English, but knowing that

the learner’s native language is Portuguese, one could reliably identify language trans-

fer. Since we cannot expect our annotators to be able to identify L1-transfer in all the

cases where it occurs, this is included in the annotation scheme in the form of optional

comments.

Our annotation scheme for the word level IC annotation is based on the relations that

can be established between the used words and the suggested corrections. We hypothesise

that in most cases the learner’s communicative intent can be reliably detected and the

link between what is used and what is meant can be established. The annotators were

asked to provide error codes in the yellow field after PoS tag V, J and/or N (see Figure

3.2). The corrections and comments should have been provided in the green field.
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Our annotation scheme contains the following IC error tags:

• tag F is used when the confusion results from a similarity in the form of two words

bearing a morphological or derivational relation to each other, or just being close

in pronunciation or spelling.7 For example, *classic and classical, *adapt and adopt

are annotated with F.

• tag S is used when the confusion results from similarity in meaning. We limit the set

of possible relations to synonyms and hypo-/hypernyms, as other relations appear

to be much rarer and much harder to reliably detect.8 This tag is used for such

cases as *big/large quantity or *big/great importance where learners are not able to

distinguish between synonyms and near-synonyms and choose an appropriate one

from the set, or *big/long history and *large/broad knowledge related to the fact that

certain high-frequency adjectives like big and large encompass a variety of meanings

also covered by more specific adjectives like high, wide or broad. Learners’ lack of

intuition about which of these more specific adjectives should be chosen results in

them using the ones with more general meaning. For VOs, tag S is used for confusion

pairs acquire and get, achieve and reach, tell and say, to name just a few.

• tag N is reserved for the cases where no obvious link can be established between the

used word and the suggested correction. Annotators are encouraged to comment

on such cases if they can identify a possible reason for the error. For example, good

*humor/mood and *want/have wish are annotated with N.

• tag Y is used on nouns and noun phrases which are related via uncolloquial metonymy:

this is quite a wide-spread phenomenon, when due to the selectional preferences or

subcategorisation frame of the verb, the noun used in the original needs to be ex-

panded to a noun phrase. This might also be related to L1-transfer or false friends.

Examples of such errors include great *income/source of income, typical *inter-

est/places of interest or solve *traffic/traffic problems.

• tag M is added to the verb annotation if the subcategorisation frame for the verb

should be changed, for example, when a direct object phrase should be changed to

indirect object. This type of error results from learners’ lack of knowledge about

the correct subcategorisation frames of English verbs, and possibly also from inter-

lingual differences. For example, tag M is used for *ask/ask for consideration.

• tag D is added to the general (phrase) annotation in cases when the whole AN or VO

should be substituted with a single noun or verb, respectively. These cases exemplify

7Dahlmeier and Ng (2011a) in their experiments distinguish between spelling and homophones whereas

we combine the two cases. Our study showed that they are too similar to be reliably distinguished.
8In the survey by Mohammad and Hirst (2007) these relations are also the ones considered most

prominent, however, other non-classical relations which might connect two words are also mentioned.
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errors caused by verbosity in an attempt to describe something for which a learner

has no suitable word in their mental lexicon (see §1.2), for example, *economical

boost – economy, *get achievement – achieve and *make caution – warn.

We tried to standardise the annotation procedure in order to reduce the possible disagree-

ment between different annotators. We introduced a number of annotation rules which

impose order on how the tags should be applied. Tags F, S and N may be used for both

phrases tagged as correct or incorrect OOC, and on any or on both words in a word

combination. When several corrections are possible and they involve different words, the

annotators were instructed to choose a correction and error annotation for the adjective

in ANs and verb in VOs, since we have selected the phrases with the most frequently

misused adjectives and verbs in the first place.

When a combination can be corrected in several ways, we impose the following order on

the tags: F > M > Y/D > S > N. Following our intuition that the used words and the

ones that comply with the learner’s communicative intent are most often related to each

other, we suggest that the annotator should only use tag N and an unrelated correction

when they cannot find any related ones. We prioritise structurally minimal corrections,

therefore in the tag hierarchy F, M, Y and D precede S.

Form-related corrections are preferred over semantically related ones, as we assume that in

the learner’s lexicon the form-related words are chosen more eagerly than the semantically

related ones. This assumption is based on the observation that in order to confuse two

semantically related words, a learner should know both words and their meanings, whereas

in the case of form-related confusions a learner might know of the existence of two words

but not necessarily know the meaning of both. We assume that the latter occurs more

frequently than the former. This is also in accordance with the annotation guidelines

adopted for other learner corpora, including the CLC and NUCLE. In the example given

in §2.1.1 the preferred correction He said to me that for *He said me that ... will be

annotated with M, while the less preferred one (He told me that) with S.

3.2.4 Analysis

Next we discuss inter-annotator agreement on these tasks, along with relevant statistics

such as the distribution of the correct and incorrect examples and the use of different

error tags.

Inter-annotator agreement

We measure inter-annotator agreement using Cohen’s κ (see §2.2), and report the observed

agreement and κ values for each pair of annotators, as well as the average agreement and
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κ. These values calculated on the subset of 100 ANs and 100 VOs annotated by four

annotators show how applicable the annotation scheme is. They also show the natural

difficulty of the task, so we use the average observed agreement as the upper bound for

the ED algorithm.

A final annotation for our 100 examples was arrived at by choosing the majority vote.

Any ties were further discussed by the annotators until agreement was reached. We

also measure and report the agreement between the final annotation on the 100 examples

arrived at by majority vote and discussion, and the professional annotator, Diane Nicholls,

who has further annotated the full set of AN and VO examples. High agreement and κ

values would clearly show that the annotator finds the scheme clear and easy to apply.

Since we are using binary classification for ED and contrast correct versus errorful cases,

we convert all the specific error-type annotations to the binary case, and measure inter-

annotator agreement for the OOC and IC cases on the binary scale. For the OOC case it

amounts to comparing the C (correct) to I (error) annotations, while for the IC annotation

only the cases annotated with C-J-N or C-V-N are counted as ‘correct’ and all the others

represent the ‘error’ class. Tables 3.2 and 3.3 present the observed agreement/κ values

for the OOC and IC annotation for the ANs, while Tables 3.4 and 3.5 present the results

for the OOC and IC annotation for the VOs. The bottom part of the Tables reports the

average values used as upper bounds in further experiments, and summarises the level of

agreement achieved. We report the mean values ± standard deviation.

Annotators An2 An3 An4

An1 0.86/0.6392 0.85/0.5960 0.86/0.6171

An2 – 0.89/0.7304 0.92/0.8020

An3 – 0.81/0.5123

Avg agreement = 0.8650± 0.0340

Avg κ = 0.6500± 0.0930

=> Substantial agreement

Table 3.2: Observed agreement/κ values for AN combinations, OOC annotation.

Annotators An2 An3 An4

An1 0.76/0.5200 0.74/0.4800 0.72/0.4400

An2 – 0.76/0.5185 0.78/0.5565

An3 – 0.72/0.4309

Avg agreement = 0.7467± 0.0221

Avg κ = 0.4917± 0.0463

=> Moderate agreement

Table 3.3: Observed agreement/κ values for AN combinations, IC annotation.

The observed agreement between annotators on the ANs is quite high, setting the upper
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bound for the OOC annotation at 0.8650 and for the IC annotation at 0.7467. At the same

time, the κ values can be interpreted as showing substantial and moderate agreement on

the two types of annotation, with all the κ values being statistically significant at P <

0.001 (z ranging from higher than 4 to higher than 6 on both OOC and IC annotation).

The fact that the agreement is not perfect can be explained by the natural difficulty

of the task. Most of the disagreement between annotators comes from making different

judgements about the ANs rather than from misinterpreting the annotation scheme or

misunderstanding the guidelines (also see the discussion on the results reported in Table

3.8). Therefore, we consider the scheme itself be reliable and comprehensive.

Annotators An2 An3 An4

An1 0.83/0.6605 0.78/0.5586 0.82/0.6051

An2 – 0.87/0.7402 0.83/0.6611

An3 – 0.80/0.5974

Avg agreement = 0.8217± 0.0279

Avg κ = 0.6372± 0.0585

=> Substantial agreement

Table 3.4: Observed agreement/κ values for VO combinations, OOC annotation.

Annotators An2 An3 An4

An1 0.81/0.6045 0.82/0.6264 0.80/0.5920

An2 – 0.89/0.7627 0.89/0.7710

An3 – 0.87/00.7294

Avg agreement = 0.8467± 0.0377

Avg κ = 0.6810± 0.0751

=> Substantial agreement

Table 3.5: Observed agreement/κ values for VO combinations, IC annotation.

Setting OOC IC

AN 0.93/0.7993 0.91/0.8200

(z = 5.8499) (z = 8.2000)

=> Substantial agreement => Almost perfect agreement

VO 0.85/0.6966 0.84/0.6679

(z = 6.8884) (z = 6.4403)

=> Substantial agreement => Substantial agreement

Table 3.6: Observed agreement/κ values for the professional annotator vs. final annota-

tion.

The observed agreement between annotators on the VO combinations is also high, but

additionally we note that it is significantly higher on IC annotation for VOs than on OOC
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VO and IC AN annotation. The upper bound for OOC annotation is set at 0.8217 and

for IC annotation it is 0.8467. The κ values show substantial agreement on both types of

annotation, with all the κ values being statistically significant at P < 0.001 (z ranging

from higher than 5 to higher than 7 on both OOC and IC annotation).

We report the observed agreement and κ values for the agreement between the final

annotation and Diane Nicholls in Table 3.6. The values show that she was in substantial

to almost complete agreement with the final annotation for the 100 examples of both

AN and VO combinations. This shows that she found the annotation scheme clear and

comprehensive.

The agreement values obtained are on a par or higher than the agreement values reported

for annotating other error types and learner corpora (for example, Dahlmeier et al. (2013)).

Statistics on the AN and VO combinations

Table 3.7 presents the distribution of the combinations that are tagged as correct or

incorrect in the data by the annotators, both OOC and IC. We report the figures on the

smaller set of 100 examples annotated by 4 annotators for comparison.

Type Subset OOC IC

ANs

100 67.44% correct 39.53% correct

32.56% incorrect 60.47% incorrect

All 78.89% correct 50.84% correct

21.11% incorrect 49.16% incorrect

VOs

100 55.93% correct 36.44% correct

44.07% incorrect 63.56% incorrect

All 55.57% correct 39.14% correct

44.43% incorrect 60.86% incorrect

Table 3.7: Distribution of correct versus incorrect instances in the data.

The first observation that can be made is that the statistics on the smaller set of 100 AN

examples is noticeably different from that on the whole AN dataset. The smaller subset

contains a higher proportion of incorrect examples, both OOC and IC: the proportion of

correct AN combinations in the whole dataset is at least 10% higher than that for the 100

examples. The statistics for the VO combinations is more consistent, with the proportion

of correct and incorrect examples being very similar in both the smaller subset and the

full VO dataset. As we applied the same approach to extracting the 100 examples for

the smaller AN and VO subsets, we believe that these subsets give a fair representation

of the examples in the full datasets. The annotation for the smaller subsets and the full

datasets was arrived at using the same approach for ANs and for VOs. Therefore, we can

assume that the difference in proportion is due to the difference in the nature of errors in
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the two types of combinations, with the errors in VOs being more systematic than those

in ANs. We can also assume that, even though we used the same sampling procedure to

extract the 100 examples for ANs and VOs, it might still be the case that the AN subset

contains different proportion of incorrect combinations than the full AN dataset.

We have noted before that the difference in annotation might also be caused by different

beliefs of the annotators about what is acceptable in English. In Table 3.8 below we report

the percentage of the AN and VO combinations in the subsets containing 100 examples

annotated as incorrect by each annotator originally (i.e., before any further discussion).

We see that, on the average, native speakers (annotators 1 and 3) were more permissive

than non-native speakers (annotators 2 and 4), as they annotated less combinations as

incorrect. We note that since the full datasets were annotated by a single annotator

(annotator 1), the difference between the annotation on the subset of 100 AN examples

and the full AN dataset discussed above might also be caused by a particular approach

adopted by this annotator towards annotating learner errors. Comparison of Table 3.7 and

Table 3.8 shows that the proportion of the ANs annotated as incorrect in the full dataset

(21.11% OOC and 49.16% IC) and the proportion of the ANs annotated as incorrect by

annotator 1 (22% OOC and 50% IC) are very close. At the same time, the proportion

according to the final annotation of the 100 ANs (32.56% OOC and 60.47% IC) is closer

to the average number of ANs annotated as incorrect by the other 3 annotators (27.67%

OOC and 55.33% IC). This can explain the difference observed in the annotation of the

subset of 100 ANs and the full AN dataset. However, we also note that the annotation of

VO examples performed under similar conditions does not follow this pattern.

Annotators
ANs VOs

OOC IC OOC IC

An1 22% 50% 46% 57%

An2 30% 52% 51% 64%

An3 27% 54% 42% 57%

An4 26% 60% 48% 63%

Avg (1-4) 26.25± 2.85% 54.00± 3.74% 46.75± 3.27% 60.25± 3.27%

Avg (2-4) 27.67± 1.70% 55.33± 3.40% 47.00± 3.74% 61.33± 3.09%

Table 3.8: Proportion of combinations judged to be incorrect by the annotators.

The differences observed on the AN datasets as opposed to the relative stability of the

annotation for the VO combinations suggest that acceptability of AN combinations is

more controversial than acceptability of VO combinations. Given the difference in the

distribution of the AN combinations annotated as incorrect in the smaller subset and in

the full dataset, the question that needs to be answered is whether this is problematic for

the experiments we perform on this data. The observed differences seem to suggest that

the main annotator might have been more permissive towards potential learner errors than
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other annotators, and if we used more annotators on the full dataset, more ANs might

have been annotated as incorrect. However, we do not consider the lower number of ANs

annotated as incorrect problematic for our experiments, since as we discuss in §1.2.2, our

goal is to avoid overcorrection and to develop a system aimed at high precision. Given that

the professional annotator considers a higher number of ANs in learner writing acceptable,

we believe that those ANs should not be classified as errors.

In general, a higher number of VO combinations, both OOC and IC, are incorrect com-

pared to AN combinations. The majority baselines for further experiments are set as

the distribution of the most frequent class in the full dataset: for the AN combinations

it is set at 78.89% (correct ANs) OOC, and 50.84% (correct ANs) IC, while for the VO

combinations it is set at 55.57% (correct VOs) OOC, and 60.86% (incorrect VOs) IC.

These are marked in bold in Table 3.7.

It is also interesting to note that quite a high number of ANs are judged to be correct

OOC both on the 100 examples by 4 annotators (67.44%) and on the rest of the dataset

by the single annotator (78.89%). When the same combinations are presented in their

context of use, about 40% of those judged to be correct OOC are annotated as incorrect

in context: a drop from 67.44% correct OOC to 39.53% correct in context shows that

41.38% of the generally correct ANs are incorrectly used in context, and the drop from

78.89% correct OOC to 50.84% correct IC on the full dataset corresponds to 35.56%.

The VO dataset is different in that respect: the proportion of VO combinations judged

to be incorrect even out of their context of use is high – 44.07% and 44.43%. When the

combinations that are judged to be correct OOC are presented to the annotators in their

context of use, the drop in the number of correct combinations in the 100 examples subset

and the full dataset corresponds to 34.85% and 29.57% respectively.

Tables 3.9 and 3.10 show the distribution of error tags with respect to the words used

incorrectly (an adjective/verb, or noun, or both), and the reason for the confusion. We

again note that the statistics are more consistent on the VOs than on the ANs. Most

errors in the AN and VO combinations result from the incorrect choice of the adjective or

the verb, and semantically motivated confusions are responsible for the majority of errors

in ANs. This corresponds to the results reported in Ramos et al. (2010) and Liu (2002).

For the VO dataset, however, the number of errors resulting from selecting a (seemingly)

unrelated word is higher than that for the errors resulting from choosing an incorrect but

semantically related word: 37.64% as opposed to 25.87% of cases.

Metadata statistics

We also collected statistics on the distribution of L1s in the data, as well as the exami-

nation types and examination years for the essays used to extract the ANs and VOs for

the datasets (see Tables A.1, A.2 and A.3 in Appendix A).
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Type Component 100 All

ANs

adjective 76.92% 66.50%

noun 18.46% 27.66%

both 4.62% 5.84%

VOs

verb 79.37% 76.28%

noun 19.05% 19.37%

both 1.58% 4.35%

Table 3.9: Distribution of errors on the components within combinations.

Type Error 100 All

ANs

S 51.52% 56.20%

F 43.94% 27.85%

N 4.54% 15.95%

VOs

S 31.25% 25.87%

F 20.31% 22.59%

M 20.31% 13.90%

N 28.13% 37.64%

Table 3.10: Distribution of error types in the data.

We show that our examples represent a wide range of L1s. Since we have not controlled for

the L1s, some L1s are more widely represented in our dataset reflecting the natural distri-

bution in the unseen combinations. This information can be used in further experiments

on L1-related errors.

We also show that the essays used to extract the examples cover a wide range of exam-

inations at different CEFR (Common European Framework of Reference for Languages)

levels – from basic to proficient users.9 We note that many AN and VO combinations

unattested in the native corpora come from essays written by learners assumed to be at

higher levels of language proficiency (see the high percentage of essays at the C1 and C2

levels in Table A.2). This can be explained by the fact that advanced learners are more

creative in their use of language and construct more content word combinations than

learners at lower levels. Learners at higher levels still produce a substantial number of

errors: for example, Leacock et al. (2010) note that collocations are difficult for language

learners at all proficiency levels including even advanced learners.

Table A.3 shows that the essays used for compiling the dataset cover examination years

from 1993 to 2009.

9See http://www.cambridgeenglishteacher.org/what_is_this for more information on the CEFR

levels, and https://www.teachers.cambridgeesol.org/ts/exams for the information on Cambridge

English examinations and their correspondence to the levels.



Chapter 4

Baseline System

In §4.1, we discuss the theoretical background and motivation for using a system that

is based on previous research in ED for content word combinations as a baseline (see

§2.3.2). The practical implementation issues are presented in §4.2. We apply this system

to both CLC-FCE and the annotated datasets, and the results are presented in §4.3. We

show that the system fails to distinguish between correct and incorrect combinations in

the controlled annotated dataset which contains previously unseen examples only. We

analyse the results and draw conclusions about this system’s performance in §4.4.

4.1 Theoretical Background

In §2.3.2, we reviewed the previous approaches to EDC in content word combinations,

and mentioned that most of them follow a three-step algorithm. We implement a simple

system that is based on a similar approach, and use the results as a baseline in this project.

The system has clear motivation and can be used as a reasonable baseline for any further

ED approaches based on more sophisticated methods. However, it is important to show

when this simple approach works well and when it cannot properly address the problem.

We maintain that a system based on this approach will have the following limitations:

• It is common practice to use a reference database of known or previously seen

miscollocations (Shei and Pain, 2000; Chang et al., 2008), but an EDC system

relying on database lookup can only deal with a finite set of errors.

• Most approaches reduce the set of possible alternatives to semantically related words

or to synonyms only, while other possible reasons for confusion are not considered.

Most often, the synonyms are extracted from manually-created resources such as

WordNet or thesauri (Shei and Pain, 2000; Futagi et al., 2008; Park et al., 2008),

hence the performance of the algorithm depends on the coverage of such resources.

94
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• L1-specific approaches are shown to be effective (Chang et al., 2008; Dahlmeier and

Ng, 2011a), but usually focus on one L1 only. If the learner data is produced by

learners with various L1s as in the data in the CLC, this approach is less effective.

• Most previous approaches have either focused on error correction assuming that

errors are already detected (Dahlmeier and Ng, 2011a), or performed writing im-

provement rather than error detection and correction proper (Shei and Pain, 2000;

Chang et al., 2008; Futagi et al., 2008). Most of these approaches merge error detec-

tion and correction: a content word combination is considered to be an error if there

is a more fluent alternative. From the theoretical point of view, this means that

“correctness” is viewed as a relative rather than an absolute value. The concept of

an “error” is not clearly defined and ED is not performed as an independent step,

being mainly integrated into error correction or writing improvement.

• From the practical point of view, since error detection and correction are combined

in a single process and since EDC systems rely on manually-created resources for

finding alternatives, the system’s performance depends on the quality of the correc-

tions found. An originally acceptable combination can be flagged as an error if there

is a more fluent alternative, and as a result, the system is prone to false positives.

At the same time, a combination that is originally unacceptable can be missed by

the EDC system if the system is unable to find an appropriate alternative or score

it higher than the original combination. As a result, the EDC system is also prone

to false negatives.

• It has been shown that learners often benefit from simply knowing that some combi-

nations need rewriting even if they are not provided with a specific correction (Lea-

cock et al., 2009; Andersen et al., 2013). Since ED is not performed as a separate

step, a system based on this approach cannot provide a learner with useful infor-

mation about the potential error if it has not found some putative correction.

• Such ED systems cannot be effectively applied to previously unseen combinations:

the measures used for assessing fluency of the original content word combinations

and comparing them to the alternatives are based on frequency of occurrence. There-

fore, any alternative for the originally unseen content word combination will be sug-

gested by the system as a correction if it is attested in the corpus of English. If such

a “correction” is found, the original combination will be flagged as an error, even if

the original one is correct (in the AN dataset described in Chapter 3, 78.89% of the

previously unseen combinations are correct OOC, and 50.84% are correct IC). At

the same time, if no appropriate alternative is found for the original combination,

the system cannot make an informed decision about whether the combination is an

error or not.
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4.2 Experimental Setting

For the baseline system, we replicate the three-step algorithm (see §2.3.2).

Detection of miscollocations

We do not use reference databases for collocations and miscollocations as in some previous

approaches, and do not rely on frequency of occurrence as evidence for correctness or

incorrectness. We assume that a certain number of content word combinations would

not be seen even in a relatively big corpus, but would still be correct and semantically

acceptable. We apply the ED algorithm to all AN and VO combinations in our datasets.

Search for alternatives

A set of alternatives is created for each component word within the combinations. As with

most previous approaches, we primarily consider semantically related words as possible

alternatives. The alternatives are extracted from WordNet 3.0, and the following WordNet

relations are explored:

• nouns: synonyms, hyper-/hyponyms;

• adjectives: synonyms, similar terms;

• verbs: synonyms, hyper-/hyponyms.

The set of similar terms returns adjectives related semantically to the given one beyond its

synonymy set. For example, for usual, in addition to the synonym common, this relation

returns familiar, habitual and regular, among others, while for big, in addition to the

synonyms large and great, it returns other adjectives including important, huge, wide and

broad. Such related adjectives may cover many of the terms that learners find confusing.

The alternative combinations are created by crossing the related words from the sets

of alternatives for the component words. Some previous approaches have distinguished

between focal words (nouns in both ANs and VOs) and collocates (adjectives in ANs

and verbs in VOs), and only consider alternatives for the collocates as those are more

frequently chosen incorrectly. Our analysis shows that collocate words are, indeed, more

frequently misused than focal words (see Table 3.9), yet the number of cases when the

focal words are incorrectly used is also high. We run two sets of experiments, considering

alternatives for both words as well as for collocate words only, and compare the results.
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Selection of the correction

We compare the original word combination to the alternatives using the normalised point-

wise mutual information (NPMI) score:

npmi(ab) =
pmi(ab)

−log(p(ab))
(4.1)

where

pmi(ab) = log
p(ab)

p(a)p(b)
(4.2)

and p(ab) is a joint probability of the words a and b occurring in a combination. The

probabilities are estimated using maximum likelihood estimation on the basis of word oc-

currences in a native corpus of English. We have tested the approach with three reference

corpora: the BNC, the ukWaC, and a combination of the two, to check how the results

are affected by the choice of reference corpus. Normalisation of the PMI score puts the

value in the range of [−1,+1], where −1 is used for words never co-occurring within a

combination, 0 is for independent words, and +1 denotes complete co-occurrence.

If some alternative has a higher NPMI score than the original combination, the original

word combination is considered to be an error, and the alternative is suggested as its

correction.

4.3 Results

4.3.1 AN combinations

We create the alternatives for AN combinations using four settings:

• 1: adjectives={original, synonyms} × nouns={original, synonyms};

• 2: adjectives={original, synonyms, similar} × nouns={original, synonyms};

• 3: adjectives={original, synonyms} × nouns={original, synonyms, hyper-/hyponyms};

• 4: adjectives={original, synonyms, similar} × nouns={original, synonyms, hyper-

/hyponyms}.

The settings are ordered by the power of the sets of alternatives used: under setting 4 we

consider a much wider set of alternatives than under setting 1. Another aspect that is

captured by these settings is semantic similarity of the alternatives considered: the wider
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Setting BNC ukWac BNC+ukWaC

both:1 0.5020 0.4504 0.4496

both:2 0.3615 0.3260 0.3280

both:3 0.2998 0.2875 0.2781

both:4 0.2355 0.2218 0.2199

adj:1 0.6728 0.6327 0.6339

adj:2 0.4809 0.4348 0.4364

Table 4.1: Detection accuracy, ANs, CLC-FCE dataset.

sets of alternatives contain both semantically close and more semantically distant words,

while the smaller sets contain only the closely related words. The four settings allow us

to compare how this affects the performance of the system.

We use three reference corpora to estimate the NPMI values (see §4.1).

We also check if the assumption that the collocate word is more often incorrectly chosen

than the focal word has an effect on the results: we run the first set of experiments

considering the alternatives for both words, and the second set of experiments assuming

that the noun is chosen correctly and considering the alternatives for the adjectives only.

CLC-FCE Dataset

The CLC-FCE dataset is highly skewed: out of the total of 5, 211 ANs, 4, 681 are correct

and only 530 are incorrect. This results in a high majority baseline of 0.8983, with the

correct instances being the majority class.

Tables 4.1 to 4.4 report our results. Each table reports the results with both words being

considered as possibly incorrect (both: in the first column of the table), or only adjectives

(adj:). The sets of alternatives are also specified: for example, both:1 denotes setting 1

when the sets of alternatives for both adjectives and nouns are augmented with synonyms,

while adj:1 denotes setting 1 when the set of alternatives is augmented with synonyms

for the adjectives only. The best results are marked in bold across the different settings

under the condition both as well as under the condition adj.

Table 4.1 reports the general detection accuracy. It shows how often the algorithm cor-

rectly identifies a correct combination as correct, and an incorrect combination as in-

correct. The exact correction (the combination that is chosen by the algorithm as the

most fluent one) at this point is not taken into account: if the original combination X is

incorrect and the gold standard correction is Y, while the algorithm suggests Z, this is

still counted as a hit since an error is detected.

Table 4.1 shows that the highest accuracy for both conditions is achieved when both the

smaller corpus (BNC) and the smaller set of alternatives (synonyms only) are considered.
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Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.9278 0.4832 0.7055 0.9324 0.4185 0.6755 0.9344 0.4166 0.6755

both:2 0.9390 0.3093 0.6242 0.9527 0.2628 0.6078 0.9531 0.2649 0.6090

both:3 0.9403 0.2354 0.5878 0.9507 0.2181 0.5844 0.9518 0.2068 0.5793

both:4 0.9474 0.1577 0.5525 0.9630 0.1391 0.5510 0.9597 0.1374 0.5485

adj:1 0.9122 0.7035 0.8078 0.9212 0.6464 0.7838 0.9210 0.6479 0.7845

adj:2 0.9255 0.4591 0.6923 0.9411 0.3956 0.6683 0.9400 0.3980 0.6690

Table 4.2: System performance on correct AN combinations, CLC-FCE dataset.

Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.1277 0.6679 0.3978 0.1248 0.7321 0.4284 0.1258 0.7415 0.4337

both:2 0.1188 0.8226 0.4707 0.1196 0.8849 0.5023 0.1199 0.8849 0.5024

both:3 0.1139 0.8679 0.4909 0.1153 0.9000 0.5077 0.1147 0.9075 0.5111

both:4 0.1103 0.9226 0.5165 0.1114 0.9528 0.5321 0.1108 0.9491 0.5299

adj:1 0.1330 0.4019 0.2675 0.1407 0.5113 0.3260 0.1408 0.5094 0.3251

adj:2 0.1236 0.6736 0.3986 0.1277 0.7811 0.4544 0.1273 0.7755 0.4514

Table 4.3: System performance on incorrect AN combinations, CLC-FCE dataset.

Setting BNC ukWac BNC+ukWaC

both:1 0.4377 0.3798 0.3780

both:2 0.2815 0.2393 0.2412

both:3 0.2138 0.1992 0.1886

both:4 0.1434 0.1274 0.1257

adj:1 0.6358 0.5855 0.5868

adj:2 0.4168 0.3608 0.3627

Table 4.4: Correction accuracy, ANs, CLC-FCE dataset.

Since the number of originally correct combinations is high, the system is prone to over-

correction. When it is presented with a wider set of alternatives (settings 2 to 4) or bigger

reference corpora (ukWaC or the combined corpus) it has a wider choice and “corrects”

more. The results with the BNC only are also better than those with the other corpora.

Accuracy is higher when the algorithm considers only collocate words (cf. 0.5020 and

0.6728): this can be explained by the assumption that adjectives are more frequently

incorrectly used, but also by the fact that under the adj condition the algorithm considers

a smaller set of alternatives than for both. We note that the best result of 0.6728 obtained

with the adj condition and the BNC as reference corpus is significantly lower than the

baseline of 0.8983.



CHAPTER 4. BASELINE SYSTEM 100

Tables 4.2 and 4.3 report the precision, recall and F1-measure values on the subsets

of correct and incorrect ANs. The results on these subsets are complementary: higher

precision in detecting incorrect instances, as well as higher recall and F1-measure on the

correct instances, are obtained with a smaller set of alternatives (setting 1 for both and

adj), while higher precision on the correct instances and higher recall and F1-measure on

the incorrect instances are obtained with a wider set of alternatives (setting 4 for both and

adj). This shows that when the algorithm is presented with a wider set of alternatives it

“finds” more errors and overcorrects, which results in higher recall but lower precision on

the incorrect instances. In contrast, when it is presented with a smaller set of alternatives,

it corrects less and shows lower recall but higher precision on the incorrect instances.

We also estimate accuracy with respect to the correction suggested by the algorithm. The

results are presented in Table 4.4. Correction accuracy is lower than detection accuracy,

but we note the same pattern: the best results are obtained with the smallest set of

alternatives consisting of synonyms for adjectives and using the BNC. Correction accuracy

is about 3%-4% lower than detection accuracy, but this is due to the fact that the incorrect

ANs for which corrections are considered constitute only about 10% of the dataset.

Annotated AN Dataset

We first report the results for the OOC annotation, where the baseline is 0.7889, with the

correct combinations being the majority class (see Table 3.7). Tables 4.5 to 4.7 report

the results for OOC annotation. Tables 4.8 to 4.10 report the results for IC annotation,

where the majority baseline is 0.5084, with the correct combinations being the majority

class.

Tables 4.5 and 4.8 report the accuracy of the ED algorithm. The results show that the

accuracy is substantially lower than the majority baseline for OOC annotation (0.3897

if both words are allowed to be changed, and 0.5284 if only adjectives are considered

versus the baseline of 0.7889). As the original combinations are not attested in the BNC

and have zero or very low counts in the ukWaC, any alternative that is attested in the

corpus is chosen as a correction, resulting in overcorrection. Since the baseline for IC

annotation is lower, the difference between the algorithm’s accuracy and the baseline is

smaller (0.5378 versus the baseline of 0.5084). In all experiments, the best-performing

system uses only synonyms for alternatives, while performance drops steadily as more

alternatives are included in the sets. For most experiments, the results are higher when

the BNC is used for assessing the “correctness” of the combinations. This is in accord

with the observations and results obtained on the CLC-FCE dataset.



CHAPTER 4. BASELINE SYSTEM 101

Setting BNC ukWac BNC+ukWaC

both:1 0.3810 0.3383 0.3271

both:2 0.2757 0.2481 0.2431

both:3 0.2619 0.2531 0.2506

both:4 0.2368 0.2281 0.2268

adj:1 0.5313 0.4574 0.4474

adj:2 0.3358 0.3008 0.2895

Table 4.5: Detection accuracy, ANs, OOC annotation.

Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.7860 0.3017 0.5439 0.7901 0.2259 0.5080 0.7857 0.2085 0.4971

both:2 0.7236 0.1406 0.4321 0.7200 0.0853 0.4027 0.7042 0.0790 0.3916

both:3 0.7683 0.0995 0.4339 0.7534 0.0869 0.4202 0.7536 0.0822 0.4179

both:4 0.7069 0.0648 0.3858 0.6809 0.0506 0.3657 0.6818 0.0474 0.3646

adj:1 0.8076 0.5371 0.6724 0.8145 0.4092 0.6118 0.8137 0.3934 0.6035

adj:2 0.7588 0.2385 0.4987 0.8000 0.1580 0.4790 0.7797 0.1453 0.4625

Table 4.6: System performance on correct AN combinations, OOC annotation.

Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.2036 0.6848 0.4442 0.2058 0.7697 0.4878 0.2048 0.7818 0.4933

both:2 0.1941 0.7939 0.4940 0.1992 0.8727 0.5359 0.1981 0.8727 0.5354

both:3 0.2039 0.8848 0.5444 0.2028 0.8909 0.5468 0.2030 0.8970 0.5500

both:4 0.2000 0.8970 0.5485 0.1997 0.9091 0.5544 0.2003 0.9152 0.5577

adj:1 0.2228 0.5091 0.3660 0.2208 0.6424 0.4316 0.2195 0.6545 0.4370

adj:2 0.1953 0.7091 0.4522 0.2080 0.8485 0.5283 0.2044 0.8424 0.5234

Table 4.7: System performance on incorrect AN combinations, OOC annotation.

Setting BNC ukWac BNC+ukWaC

both:1 0.4449 0.4624 0.4536

both:2 0.4236 0.4386 0.4361

both:3 0.4398 0.4474 0.4449

both:4 0.4323 0.4273 0.4286

adj:1 0.4937 0.4724 0.4699

adj:2 0.4549 0.4486 0.4424

Table 4.8: Detection accuracy, ANs, IC annotation.
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Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.4979 0.3048 0.4014 0.5635 0.2569 0.4102 0.5476 0.2317 0.3897

both:2 0.4634 0.1436 0.3035 0.5733 0.1083 0.3408 0.5634 0.1008 0.3321

both:3 0.5732 0.1184 0.3458 0.6438 0.1184 0.3811 0.6377 0.1108 0.3743

both:4 0.5690 0.0831 0.3260 0.5532 0.0655 0.3093 0.5682 0.0630 0.3156

adj:1 0.5249 0.5567 0.5408 0.5283 0.4232 0.4757 0.5261 0.4055 0.4658

adj:2 0.5176 0.2594 0.3885 0.5440 0.1713 0.3576 0.5254 0.1562 0.3408

Table 4.9: System performance on correct AN combinations, IC annotation.

Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.5027 0.6958 0.5992 0.5219 0.8030 0.6624 0.5159 0.8105 0.6632

both:2 0.4963 0.8354 0.6659 0.5104 0.9202 0.7153 0.5089 0.9227 0.7158

both:3 0.5112 0.9127 0.7119 0.5172 0.9352 0.7262 0.5158 0.9377 0.7267

both:4 0.5081 0.9377 0.7229 0.5060 0.9476 0.7268 0.5066 0.9526 0.7296

adj:1 0.5332 0.5012 0.5172 0.5229 0.6259 0.5744 0.5203 0.6384 0.5794

adj:2 0.5092 0.7606 0.6349 0.5111 0.8579 0.6845 0.5074 0.8603 0.6839

Table 4.10: System performance on incorrect AN combinations, IC annotation.

Setting BNC ukWac BNC+ukWaC

both:1 0.1842 0.1591 0.1491

both:2 0.1103 0.0940 0.0915

both:3 0.0664 0.0689 0.0639

both:4 0.0476 0.0414 0.0401

adj:1 0.3158 0.2481 0.2393

adj:2 0.1855 0.1466 0.1391

Table 4.11: Correction accuracy, ANs.

Next, we analyse the system’s performance on the subsets of correct and incorrect com-

binations. Precision, recall and F1-measure on the correct combinations are reported in

Tables 4.6 and 4.9, and those for the incorrect combinations in Tables 4.7 and 4.10. The

highest precision, recall and F1-measure on the subset of correct OOC combinations are

achieved with the smaller set of alternatives, which corresponds to the results obtained

for accuracy, and can be explained by the fact that the system tends to overcorrect when

wider sets of alternatives are considered. For correct IC combinations the highest recall

and F1-measure are achieved with the smaller set of alternatives, while the best precision

values are achieved with wider sets of alternatives. This pattern is similar to the results

obtained for correct combinations in the CLC-FCE dataset (see Table 4.2): since error
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annotation in the CLC-FCE dataset is provided for use in context as well, we would

expect to see some correspondence between the results.

Tables 4.7 and 4.10 report the results on the incorrect instances and show that the highest

precision is also achieved using the smaller set of alternatives. Highest recall and F1-

measure are achieved using the widest set of alternatives and also using either ukWaC or

a combination of the two corpora. This shows that the system has higher coverage when

it considers more alternatives. Since it is prone to overcorrection, precision values on the

incorrect instances are quite low: precision of 0.2406 on the OOC annotation means that

only about every fourth “error” identified by this system is an actual error, while precision

of 0.5293 on the IC means that only about half of the identified “errors” are actual errors.

Comparison of the results obtained when the error location is fixed to be on the adjective

with those obtained when both words are considered shows that the system is substantially

more accurate in ED on OOC annotation (cf. 0.3897 and 0.5284 in Table 4.5), though

the results are not significantly different for IC annotation (Table 4.8). The system gains

2%-3% precision on OOC annotation (Tables 4.6 and 4.7), but performs about the same

or worse in terms of precision on IC annotation (Tables 4.9 and 4.10).

We also check how often the system correction coincides with the one suggested by the

annotators. Table 4.11 shows that the best result of 0.3319 is obtained when only ad-

jectives and their synonyms are considered. There is a substantial drop of about 20% as

compared to detection accuracy of the algorithm (cf. results in Tables 4.5 and 4.8).

4.3.2 VO combinations

We create the alternatives for VO combinations using two settings:

• 1: verbs={original, synonyms} × nouns={original, synonyms};

• 2: verbs={original, synonyms, hyper-/hyponyms} × nouns={original, synonyms,

hyper-/hyponyms};

We follow the procedure applied to the ANs, testing the effect of the set of alternatives

as well as the effect of the reference corpus on the results. The set of alternatives under

setting 1 contains more closely related words than under setting 2. We run two sets of

experiments: considering the alternatives for both words within a combination (both), and

considering only verbs as possibly incorrectly chosen (verbs).

CLC-FCE Dataset

The VO subset is also highly skewed towards correct combinations: out of the total of

5, 700 VOs, 4, 911 are correct and only 789 are incorrect. This results in a high majority

baseline of 0.8616.
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Setting BNC ukWac BNC+ukWaC

both:1 0.3618 0.3402 0.3395

both:2 0.1911 0.1882 0.1882

verb:1 0.4863 0.4558 0.4568

verb:2 0.3009 0.3039 0.3037

Table 4.12: Detection accuracy, VOs, CLC-FCE dataset.

The results are reported in Tables 4.12 to 4.15, using the same procedure as with the

ANs.

Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.9046 0.2898 0.5972 0.9272 0.2541 0.5907 0.9276 0.2531 0.5904

both:2 0.9076 0.0680 0.4878 0.9356 0.0621 0.4988 0.9329 0.0623 0.4976

verb:1 0.8984 0.4553 0.6768 0.9140 0.4066 0.6603 0.9165 0.4066 0.6616

verb:2 0.9012 0.2118 0.5565 0.9338 0.2067 0.5702 0.9345 0.2063 0.5704

Table 4.13: System performance on correct VO combinations, CLC-FCE dataset.

Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.1548 0.8099 0.4824 0.1587 0.8758 0.5172 0.1587 0.8771 0.5179

both:2 0.1416 0.9569 0.5493 0.1429 0.9734 0.5581 0.1428 0.9721 0.5574

verb:1 0.1669 0.6793 0.4231 0.1710 0.7617 0.4664 0.1724 0.7693 0.4709

verb:2 0.1485 0.8555 0.5020 0.1554 0.9087 0.5321 0.1555 0.9100 0.5328

Table 4.14: System performance on incorrect VO combinations, CLC-FCE dataset.

Setting BNC ukWac BNC+ukWaC

both:1 0.2546 0.2263 0.2251

both:2 0.0609 0.0563 0.0563

verb:1 0.3991 0.3593 0.3591

verb:2 0.1893 0.1867 0.1863

Table 4.15: Correction accuracy, VOs, CLC-FCE dataset.

We obtain higher detection accuracy (Table 4.12) with the smaller set of alternatives

(setting 1), smaller reference corpus (BNC only), and when the error location is fixed to

be on the verb. Again, we assume that since verbs are more frequently incorrectly chosen

than nouns, a system that considers alternatives for verbs only might be expected to

perform better. Fixing the error location on one component within the combination also
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reduces the set of alternatives and the system becomes less prone to overcorrection. The

best detection accuracy of 0.4863 is still substantially lower than the baseline of 0.8616.

We analyse the performance of the system on the correct and incorrect instances, and

report the results in Tables 4.13 and 4.14. As before, we observe that the results for the

correct and incorrect instances are complementary: the system identifies more “errors”

when it is presented with a wider set of alternatives and uses a bigger corpus for estimating

fluency. Since under such conditions it identifies many “errors”, this results in the highest

recall and F1-measure for the incorrect combinations and also in high precision on the

correct combinations – see both:2 rows in the Tables 4.13 and 4.14. But since this results

in overcorrection, precision on the incorrect instances is higher when a smaller set of

alternatives is considered. However, even under this setting precision on the incorrect

instances is quite low: precision of 0.1724 means that only about every fifth “error”

identified by this algorithm is an actual error.

Correction accuracy reported in Table 4.15 is about 9% to 11% lower than detection

accuracy. The drop in accuracy is bigger than what we observe for ANs (see Table 4.4)

showing that the corrections selected by the system from the set of synonyms coincide

with the gold standard correction less often than for the AN combinations.

Annotated VO Dataset

We report the results for OOC annotation (Tables 4.16 to 4.18) and for IC annotation

(Tables 4.19 to 4.21). The baseline for OOC annotation is 0.5557 with the correct instances

being the majority class, and 0.6086 for IC annotation with the incorrect instances being

the majority class.

Detection accuracy is reported in Tables 4.16 and 4.19. It shows a slightly different

pattern than before, for the AN combinations and the CLC-FCE VO subset. The best

results, as before, are obtained with the smaller set of alternatives, and accuracy for OOC

annotation is higher when only verbs are considered. However, the absolute difference

in accuracy is only about 3%, and the system performs better on IC annotation when

alternatives for both words are considered. The results are also higher with the ukWaC

used as a reference corpus. None of the results, however, beats the majority baseline.

The system’s performance on correct instances is presented in Tables 4.17 and 4.20, while

that on incorrect instances is in Tables 4.18 and 4.21. The results follow the same pat-

tern as before: the smaller set of alternatives results in higher precision on the incorrect

instances and higher recall and F1-measure on the correct VOs, while a wider set of alter-

natives results in higher precision on the correct VOs and higher recall and F1-measure

on the incorrect ones. Precision on the incorrect VOs with the OOC annotation is under

50% (P=0.4698, Table 4.18) which means that the system is more often wrong about

errors detected than it is right. However, precision rises to 0.6628 (Table 4.21) for the
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IC annotation: since 60.86% of the VOs are incorrect in context, a system that identifies

many “errors” can be expected to perform better under such conditions.

Correction accuracy shows a significant drop from detection accuracy, which shows that

most of the time the corrections returned by the system are different from the gold stan-

dard ones. This is possibly due to the fact that the proportion of the semantically related

confusions in this dataset is generally only about one-fourth (see Table 3.10). This sets

the upper bound on correction accuracy for the system that only considers semantically

related confusions at 0.2587.

Setting BNC ukWac BNC+ukWaC

both:1 0.4918 0.4969 0.4881

both:2 0.4580 0.4592 0.4580

verb:1 0.5220 0.5169 0.5056

verb:2 0.4768 0.4617 0.4617

Table 4.16: Detection accuracy, VOs, OOC annotation.

Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.6175 0.2522 0.4349 0.6975 0.1853 0.4414 0.6786 0.1696 0.4241

both:2 0.6905 0.0647 0.3776 0.7576 0.0558 0.4067 0.7500 0.0536 0.4018

verb:1 0.6184 0.3906 0.5045 0.6567 0.2946 0.4757 0.6378 0.2790 0.4584

verb:2 0.6598 0.1429 0.4013 0.6508 0.0915 0.3712 0.6610 0.0871 0.3740

Table 4.17: System performance on correct VO combinations, OOC annotation.

Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.4544 0.7994 0.6269 0.4617 0.8968 0.6793 0.4569 0.8968 0.6769

both:2 0.4450 0.9628 0.7039 0.4463 0.9771 0.7117 0.4458 0.9771 0.7114

verb:1 0.4689 0.6905 0.5797 0.4698 0.8023 0.6360 0.4626 0.7966 0.6296

verb:2 0.4514 0.9054 0.6784 0.4455 0.9370 0.6912 0.4458 0.9427 0.6942

Table 4.18: System performance on incorrect VO combinations, OOC annotation.

Setting BNC ukWac BNC+ukWaC

both:1 0.5784 0.6048 0.5960

both:2 0.5797 0.5847 0.5834

verb:1 0.5646 0.5997 0.5885

verb:2 0.5797 0.5809 0.5834

Table 4.19: Detection accuracy, VOs, IC annotation.
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Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.4973 0.2926 0.3949 0.6134 0.2347 0.4241 0.5893 0.2122 0.4008

both:2 0.6190 0.0836 0.3513 0.7273 0.0772 0.4022 0.7188 0.0740 0.3964

verb:1 0.4700 0.4277 0.4488 0.5473 0.3537 0.4505 0.5255 0.3312 0.4283

verb:2 0.5155 0.1608 0.3381 0.5873 0.1190 0.3531 0.6102 0.1158 0.3630

Table 4.20: System performance on correct VO combinations, IC annotation.

Setting
BNC ukWac BNC+ukWaC

P R F1 P R F1 P R F1

both:1 0.6417 0.8107 0.7262 0.6490 0.9053 0.7772 0.6423 0.9053 0.7738

both:2 0.6225 0.9671 0.7948 0.6243 0.9815 0.8029 0.6235 0.9815 0.8025

verb:1 0.6537 0.6914 0.6725 0.6628 0.8128 0.7378 0.6539 0.8086 0.7313

verb:2 0.6271 0.9033 0.7652 0.6267 0.9465 0.7866 0.6274 0.9527 0.7900

Table 4.21: System performance on incorrect VO combinations, IC annotation.

Setting BNC ukWac BNC+ukWaC

both:1 0.1330 0.1142 0.1029

both:2 0.0414 0.0376 0.0389

verb:1 0.1932 0.1681 0.1581

verb:2 0.0903 0.0728 0.0715

Table 4.22: Correction accuracy, VOs.

4.4 Analysis and discussion

We analyse the results obtained in our experiments with the baseline system and compare

them to the observations outlined in §4.1:

• The system is primarily concerned with finding an alternative with the highest col-

locational strength rather than with correcting combinations. As a result, it is prone

to overcorrection and returns a high number of false positives, which makes the sys-

tem unreliable in practice. For example, it suggests correcting funny actor to comic

actor, short speech to short address, and see parent to visit parent: the original com-

binations are correct but have lower collocational strength than their alternatives.

This results in lower precision on the incorrect combinations (0.1277-0.1408 for the

ANs, and 0.2058-0.2228 for the VOs), as well as in low accuracy. The problem of

the high number of false positives can be partly solved by fixing the error location

on the collocating word: in our experiments, this results in an improvement in per-

formance, but accuracy is still lower than the majority class baseline.

The results might be expected to change if one uses another metric for measuring
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collocational strength. However, the metrics that are based on frequency of occur-

rence will fail to detect errors in the controlled annotated dataset. The results of

the baseline system on this dataset are very low and unlikely to be improved with

any modifications on the component parts of the system. The accuracy of ED in

previously unseen combinations is only 0.3810 for the OOC and 0.4624 for the IC

annotation on ANs, and 0.4969 for the OOC and 0.6048 for the IC annotation on

VOs, if both words within combinations are considered. Since the original combi-

nations are not seen in the corpus, any corpus-attested alternative is selected as a

correction for the original combination: for example, the system corrects important

conversation to serious conversation, big examination to big test, attend speech to

attend lecture and obtain tuition to receive tuition.

• The system combines error detection and correction and makes the detection step

dependent on the correction and on the set of alternatives found by the system.

In this implementation, we only considered semantically related words as possible

alternatives. Expanding the set of alternatives can improve the quality of the sys-

tem’s suggestions, but our experiments also show that when the system is presented

with a wider set of alternatives it tends to overcorrect more, so the best accuracy is

achieved when the smallest set is considered.

One of the weaknesses of this system is that it does not take the original meaning

into account: so, for example, a comic actor is more fluent than a funny actor but

does not mean the same thing.

• It is important to make sure that the system finds a representative set of alternatives

which, at the same time, are sufficiently similar to the original words. WordNet

provides the latter but does not cover all possible corrections. As a result, in addition

to the false positives, the system also returns a substantial number of false negatives:

some errors are not detected either because the system has not found appropriate

alternatives, as, for example, for *high shyness and *effect area, or has failed to

score them higher than the original combination.

It also means that some originally correct combinations are not incorrectly identified

by this system as errors not because the system is good at ED, but simply because

no possible alternatives are found. In order to give a more realistic estimation of

the system’s performance, we exclude the examples for which the system makes no

comparison to the alternatives, reducing the set of previously unseen ANs from 798

to 401, and re-evaluate the system: for the ANs annotated OOC, the best accuracy

drops from 0.4863 to 0.4185, and recall on the correct instances drops from 0.5371

to 0.3318. For IC annotation, the best accuracy drops from 0.4937 to 0.4712, and

recall on the correct combinations drops from 0.5567 to 0.3501. Similarly, if we

exclude the VOs for which the system makes no comparison to the alternatives, we

will reduce the set of test VOs from 800 to 518. The best accuracy for the VO OOC
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annotation will drop from 0.5220 to 0.4981, and the recall on the correct instances

from 0.3906 to 0.2277. For the IC annotation, the best accuracy will drop from

0.6048 to 0.5922, and the recall on the correct combinations from 0.4277 to 0.2797.

• The system is implemented so that it chooses one correction only. This might result

in alternative acceptable corrections that are not included in the gold standard: for

example, the system corrects *make damage to cause damage while the gold standard

suggests do damage as the correction. Both corrections are acceptable, but if the

system is evaluated using only a limited set of corrections, its performance will

inevitably be underestimated (see the discussion in §2.2). We report both detection

and correction accuracy, where the former shows how accurate the system is if the

specific correction by the system is not taken into account. In a number of cases

where the system detects an error it does not suggest an appropriate correction:

for example, it suggests correcting *open TV to afford TV while the gold standard

correction is turn on TV.

We note that the system still helps in identifying a certain number of errors: for example,

it detects big knowledge and suggests great knowledge as a correction. It also identifies

errors in more trivial cases: for example, it suggests correcting economical position to

economic situation and elder people to older people. Nevertheless, due to the limitations

outlined above, the baseline system is mostly inappropriate for handling learner errors.



Chapter 5

Semantic Models for Error Detection

In Chapter 2, we motivated for the application of models of compositional distributional

semantics to ED in content words, since many errors are caused by a semantic mismatch

between the words chosen (for example, deep majesty, economic child or electric society).

In this chapter, we discuss our experiments with these semantic models.

We follow the implementation procedure described in Vecchi et al. (2011). The semantic

space construction is discussed in §5.1, and the experimental setting in §5.2. In addition

to the measures of semantic anomaly detection originally proposed by Vecchi et al. (2011),

we introduce other ones that we assume can reliably detect the difference between the

vectors for the correct and incorrect combinations. These measures are discussed in §5.3.

The results of the experiments on the AN combinations are presented in §5.4, and the

application of the models of compositional distributional semantics to VO combinations is

discussed in §5.5 to §5.8. We conclude with §5.9, where we also outline which of the models

and semantic measures perform best and can be used as features by an ED algorithm.

5.1 Semantic space construction

5.1.1 Original semantic space

The semantic space for the ANs is populated with a large number of distributional vectors

representing the meaning of the target elements – constituent nouns and adjectives from

the test ANs and the most frequent nouns and adjectives from a corpus of English, as well

as combinations of these nouns and adjectives. The distributional vectors for the input

words are used to generate compositional vectors for the test ANs. In addition to the

adjectives and nouns that are contained in the test ANs, we also need the distributional

vectors for the frequent nouns and adjectives which are not necessarily part of the test

ANs, and for the combinations containing these frequent nouns and adjectives, since a

110
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V = v V 6= v

U = u O11 O12 = R1

U 6= u O21 O22 = R2

= C1 = C2 = N

Table 5.1: Observed frequencies.

V = v V 6= v

U = u E11 = R1C1

N
E12 = R1C2

N

U 6= u E21 = R2C1

N
E22 = R2C2

N

Table 5.2: Expected frequencies.

number of measures that we apply to distinguish between acceptable and deviant AN

vectors are based on exploration of the semantic space and neighbourhood of the model-

generated vectors (see §5.3). To estimate the frequency rankings and collect the vocabulary

of the most frequent adjectives and nouns, we use a concatenation of two well-formed

English corpora – the 100M -word BNC and the Web-derived 2B-word ukWaC corpus.1

The semantic space is represented by a matrix encoding word co-occurrences, with the

rows representing the target elements and the columns representing a set of 10K context

words consisting of the most frequent 6, 590 nouns, 1, 550 adjectives and 1, 860 verbs in

the combined corpus. The ij-th cell of the original matrix contains a sentence-internal

co-occurrence count of the i-th target element with the j-th context word. The raw

sentence-internal co-occurrence counts from the original matrix are transformed into LMI

scores as used in Baroni and Zamparelli (2010) and Vecchi et al. (2011), and originally

proposed by Evert (2005). LMI is a variation of the mutual information measure which

takes into account the observed co-occurrence counts of the two words which are not

necessarily dependent on each other. It is estimated as a product of the observed co-

occurrence count and mutual information score, where the MI score indicates how much

information the components of the word pair provide about each other in general, i.e.

averaged over all pair types in the population (Evert, 2005, p. 89). LMI scores are

estimated as:

LMI = O11 · log
O11

E11

(5.1)

O11 and E11 correspond to the observed and expected counts for the word pair, respec-

tively, which can be estimated from the contingency table. Tables 5.1 and 5.2 illustrate

how O11 and E11 can be estimated for a pair of words U and V . Simply put, O11 denotes

the co-occurrence count for the pair of words count(uv), while E11 denotes count(u∗)·count(∗v)
N

where count(u∗) is the number of bigrams starting with u and count(∗v) is the number

of bigrams ending with v.

LMI is a direct extension of the commonly used mutual information (MI) measure and

the two measures can be linked as:

1http://wacky.sslmit.unibo.it/
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LMI = O11 · logO11

E11
= count(uv) · log(count(uv)/ count(u∗)·count(∗v)

N
)

= count(uv) · log( count(uv)
N

/ count(u∗)·count(∗v)
N ·N )

= count(uv) · log( count(uv)
N

/( count(u∗)
N

· count(∗v)
N

))

= count(uv) · log P (uv)
P (u∗)·P (∗v)

= count(uv) ·MI

(5.2)

Baroni and Zamparelli (2010) and Vecchi et al. (2011) report that LMI is an association

measure that closely approximates the commonly used Log-Likelihood Ratio, but is simpler

to compute.

We have set the semantic space using frequency rankings from the concatenated corpus

consisting of the BNC and the ukWaC. This allows us to explore the effect of the input

corpus in estimating co-occurrence counts. In this project, we have selected the sets of

ANs and VOs unattested in the BNC only (see §3.2). We estimate word co-occurrence

statistics using the BNC only as well, and leave it for future research to explore the

impact of estimating the co-occurrence counts from a larger corpus. We lemmatise, tag

and parse the data with the RASP system (Briscoe et al., 2006; Andersen et al., 2008),

and extract all statistics at the lemma level. We use the parsed data to make sure that

the adjectives and nouns, as well as the verbs and nouns, in the extracted ANs and VOs

are grammatically related, and also to be able to extract the word combinations where

the two constituent words are not adjacent.

For the target elements, we first select the 4K adjectives and 8K nouns which are most

frequent in the concatenated corpus. In each case, we exclude the top 50 most frequent

words since those may have too general a meaning. Next, we extract the constituent

adjectives and nouns from our test data and populate the semantic space with the words

not yet contained in it. As a result, our semantic space contains 8, 364 nouns.

Then, we add more AN combinations to the semantic space. We select 218 frequent

adjectives (occurring more than 100K but less than 740K times), merge them with the

adjectives from the test ANs, and generate all possible AN combinations by crossing this

combined set of adjectives and the set of 8, 364 nouns. This results in a set of ANs of

which 1, 6M combinations are corpus-attested. From these we randomly choose 62, 205

ANs that occur more than 100 times in the corpus. As a result, we populate our semantic

space with ANs with the number of unique corpus-attested combinations per adjective

ranging from 1 to 1, 226 and being 84.52 on average. Since we apply our approach to

real data, we cannot avoid having a different number of training examples for different

adjectives. In future it may be worth exploring how many training examples are needed

for a single adjective, since some highly frequent adjectives have more training examples.

Finally, we check our test set against the combined corpus and add 1, 131 test ANs which

are corpus-attested but not yet contained in the semantic space. Our final semantic
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space consists of 8, 364 nouns, 4, 353 adjectives and 63, 336 corpus-attested ANs, and is

represented by a 76, 053× 10K matrix.

5.1.2 Dimensionality reduction

We apply three models of semantic composition which use distributional vectors from

the constructed semantic space. The add and mult models do not require any additional

training, but for the alm model we need to estimate a regression model for each dimension

and for each test set adjective. Using the original 10K-dimension distributional vectors

has proven to be time-consuming and costly computationally.2 We applied dimensionality

reduction to the original matrix to obtain a more compact space.

We followed the dimensionality reduction procedure outlined in Baroni and Zamparelli

(2010), and applied SVD which helps to represent the target words and phrases with their

coordinates in the space spanned by the first n right singular vectors. This technique has

been chosen because it not only helps mitigate the dimensionality problem, but it has

also been reported to improve the quality of the semantic space (Landauer and Dumais,

1997; Rapp, 2003; Schütze, 1997). SVD is applied to the part of the matrix representing

adjectives and nouns, while the AN vectors are projected onto the reduced space by

multiplying the original vectors by a matrix containing the first n right singular vectors

as columns. Baroni and Zamparelli (2010) have motivated this step by the fact that it

helps avoid bias in favour of dimensions that capture variance in the test set ANs. The

quality of the reduced matrix has been validated by Baroni and Zamparelli (2010) in an

independent set of experiments.

The chosen number of n singular vectors in these experiments is 300, and as a result we

get a more compact and dense semantic space represented by a 76, 053× 300 matrix.

5.2 Experimental Setting

5.2.1 Semantic models

We apply the simple add and mult models of semantic composition, which derive the AN

(an) vectors by component-wise addition and multiplication applied to the adjective (a)

and noun (n) vectors:

For the alm model, the weight coefficients are estimated with multivariate partial least

squares regression using the pls package (Mevik and Wehrens, 2007) for R (R Core Team,

2014), and applying the leave-one-out training regime. This model is computationally

2Vecchi (2013) reports that for certain models, for example the mult model, using original non-reduced

vectors might improve results.
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ani = ai + ni (5.3) ani = ai · ni (5.4)

more expensive than the add and mult models since a separate weight matrix must be

learned for each adjective. The number of latent variables used by the training algorithm

depends on the number of available noun–AN training pairs. We gradually changed this

number from 3 to 40 depending on the adjective and the number of available training

pairs, with the aim of keeping the independent-variable-to-training-item ratio stable.

5.2.2 Evaluation procedure

Vecchi et al. (2011) have proposed three measures for detecting semantic anomaly in

AN combinations. We introduce 11 additional measures that we hypothesise can help

distinguish between correct and incorrect word combinations (see §5.3). The set of model-

generated AN vectors is divided into two major groups – the vectors for correct and for

incorrect combinations. The measures are applied to the vectors, and the mean values for

the correct and incorrect model-generated AN vectors are compared. We use the one-shot

unpaired t-tests assuming a two-tailed distribution, and report the results in terms of p

values. If models show a difference for the measures applied to the two groups of vectors

at the p < 0.05 level, we mark such results in bold when we report them.

The tests show whether the measures can reliably distinguish between the vectors for the

correct and incorrect word combinations in general. We also assume that the values for

the measures can further be used to derive discriminative features for an ML classifier.

5.3 Measures of Semantic Anomaly

We discuss the measures that are applied to distinguish between the groups of vectors

for the correct and incorrect ANs. The measures that have been proposed by Vecchi

et al. (2011) are marked with an asterisk (∗). We group the 14 measures used in our

experiments by their type based on the underlying hypotheses:

1. Measures based on the properties of the model-generated vector: one

of the measures applied to the vectors relies on the hypothesis that the vectors

representing correct combinations and those representing incorrect combinations

should differ with respect to their length.

2. Measures based on the relations between the input and the output vec-

tors: several measures rely on the assumption that vectors representing correct
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ANs are more closely related to the input vectors than vectors representing incor-

rect ANs. For example, it is assumed that model-generated vectors for the correct

ANs are situated closer in the semantic space to the input noun vectors.

3. Measures based on the neighbourhood of the model-generated vectors: a

number of measures rely on the hypotheses about how the neighbourhoods for the

model-generated vectors in the semantic space look like. We assess the neighbour-

hoods quantitatively by the density of the neighbourhood, as well as qualitatively

by semantic similarity of the neighbours to the model-generated AN vector.

5.3.1 Measures based on the properties of the model-generated

vector

• ∗Vector length (VLen) – see §2.4 for a description.

5.3.2 Measures based on the relations between the input and

the output vectors

These measures rely on comparison of the model-generated (output) vector to the distri-

butional (input) vectors.

• ∗Cosine to the input noun (cosN) – see §2.4 for a description.

• Cosine to the input adjective (cosA) is a measure originally presented in

Kochmar and Briscoe (2013). It is analogous to cosN measure, but it considers

semantic similarity between the model-generated AN vector and the input distribu-

tional adjective vector. We assume that not only the noun meaning is ‘distorted’ in

the incorrect ANs, but the meaning of the input adjective is not preserved either.

For example, *parliamentary potato is not semantically related to any parliamentary

phenomena, and we hypothesise it should be situated further away in the semantic

space from the vector for parliamentary than, for example, parliamentary elections.

Within formal semantics, adjectives are treated as functions mapping from nomi-

nal meaning of the input nouns that the adjectives combine with to the nominal

meaning of the output ANs. Hence, the nominal meaning plays a more central role

than adjectival meaning and the nouns and adjectives do not contribute to the AN

meaning in a symmetric manner. However, two of the applied models – the add and

mult – are based on the use of symmetric functions, and it seems justified to apply

symmetric measures for semantic anomaly detection to the output of these models.
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• Cosine to the distributional vector for the corpus-attested ANs (cosAN).

Some of the incorrect ANs can be corpus-attested (see §3.1). For the corpus-attested

ANs, distance from the model-generated vector to the distributional vector can be

calculated, and semantically acceptable ANs can be expected to be located closer to

their distributional vectors than semantically deviant and non-compositional ones.

For example, parliamentary elections combines properties of both parliamentary

events and elections. Therefore, the distributional vector and the model-generated

vector can be assumed to be close to each other in the semantic space. At the

same time, attested but non-compositional phrases will have their model-generated

and distributional vectors located further away from each other. For example, the

vector derived through composition of the adjective red and the noun herring will

be placed close to red objects and fish objects, while the distributional vector for

red herring will be placed in a different part of the semantic space.

5.3.3 Measures based on the neighbourhood of the model-

generated vectors

This group of measures is based on quantitative and qualitative analysis of the semantic

neighbourhood of the model-generated vectors.

• ∗Density of the neighbourhood populated by 10 nearest neighbours (dens)

– see §2.4 for a description. This measure allows us to quantitatively assess the

semantic neighbourhood of the model-generated vectors.

• ∗Density among the 10 nearest neighbours (densAll) is a modification of the

dens measure introduced in Vecchi (2013). She hypothesises that model-generated

vectors for deviant ANs will share a neighbourhood with elements that are not even

similar amongst themselves as they will not inhabit an area of space inhabited by

coherent discourse topics. She predicted that ANs with a higher average similarity

between all neighbours would correspond to more acceptable ANs. This is estimated

as an average of the 11 density values calculated for each member of the set {AN

vector, its 10 nearest neighbours}, where each density value is estimated as an av-

erage distance from the member of the set to all other members of the set.

This measure also allows us to assess the semantic neighbourhood of the model-

generated vectors quantitatively, but produces more directly interpretable results.

Vecchi (2013) obtained the results that contradicted the original hypothesis about

these measures: a number of models have placed the AN vectors for anomalous com-

binations in denser neighbourhoods than vectors for acceptable ANs. Qualitative

analysis of these neighbourhoods has shown that the vectors for the anomalous ANs

have often been “pulled” to the artificially densely populated neighbourhoods over-

ruled by the meaning of the adjective rather than noun. This supports the original
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hypothesis that it is the meaning of the input noun that should be preserved in the

semantically acceptable AN, and the anomalous ANs lose their input noun meaning

being surrounded by neighbours similar to the input adjective but not to the noun.

• Ranked density in close proximity (Rdens) is a measure proposed in Kochmar

and Briscoe (2013). It relies on the notion of close proximity which is defined as a

neighbourhood populated by some very close neighbours. The threshold for close

neighbours is set empirically to 0.8 and only neighbours with the cosine equal to or

higher than this threshold are considered for estimation of this measure. RDens is

calculated as RDens =
∑N

i=1 ranki · distancei, with N being the total number of

close neighbours, each with its rank and distance.

This measure returns the weighted sum of the distances of the close neighbours,

where each distance value is weighted with its rank. The rank is defined so that

the closer neighbours’ contribution to the sum is weighted more heavily than the

more distant neighbours’ contribution. Therefore, the AN vectors that have higher

number of close neighbours as well as some very close ones with high cosine values

get higher RDens values. It is assumed that semantically acceptable and correct

ANs have more close neighbours and, as a result, score higher.

• Number of neighbours within close proximity (num), or N used for the

estimation of RDens, is used as a separate measure, and we assume that it is lower

for incorrect combinations which are expected to be more isolated in semantic space.

This measure also assesses the semantic neighbourhood in a quantitative way.

• Lexical overlap between the 10 nearest neighbours and constituent noun

and adjective (OverAN), introduced in Kochmar and Briscoe (2013), is used to

assess semantic neighbourhood qualitatively. We assume that semantically correct

ANs should be surrounded by words and combinations similar to the input noun and

adjective. This measure is estimated as the proportion of the 10 nearest neighbours

containing the same constituent words as in the tested ANs.

For example, we might expect to see election and parliamentary among the 10

nearest neighbours for the model-generated vector of parliamentary elections, as

well as other ANs containing the these words. As we assume that *parliamentary

potato is not related to parliamentary events or potato, we expect to see lower

number of words and ANs coinciding or containing parliamentary or potato.

• Lexical overlap between the 10 nearest neighbours and input noun (OverN)

is a variant of OverAN in which we consider the lexical overlap with the input noun.

• Lexical overlap between the 10 nearest neighbours and input adjective

(OverA) is a variant of OverAN in which we consider the overlap with the input

adjective.
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• Overlap between the 20 nearest neighbours for the AN and the nearest

neighbours for the constituent noun and adjective (NOverAN), introduced

in Kochmar and Briscoe (2014), is another measure that assesses semantic neigh-

bourhood qualitatively. It extends the set of considered neighbours to the nearest

neighbours for the input adjective and noun. We have restricted this set by 10

nearest one-word (adjective or noun) neighbours plus 10 nearest two-word (AN)

neighbours. We assume that inclusion of both word and phrase neighbours allows

us to find a better match between the neighbours of the model-generated vectors

and the input distributional vectors. We also believe that this measure is able to go

beyond simple lexical overlap and assess the semantic similarity of the neighbours

for the input words and their combinations.

NOverAN is estimated as the proportion of the common neighbours among the 20

nearest neighbours for the AN vector and the 20 nearest neighbours for the distri-

butional vectors of the input words. Since we assume that correct ANs and the

constituent words should be placed in similar neighbourhoods, we expect to get a

higher value for parliamentary elections with a higher overlap between its neigh-

bours and the neighbours for parliamentary and elections, than for *parliamentary

potato.

• Overlap between the 20 nearest neighbours for the AN and the nearest

neighbours for the constituent noun (NOverN) is a variant of NOverAN with

the neighbours for the input noun considered.

• Overlap between the 20 nearest neighbours for the AN and the nearest

neighbours for the constituent adjective (NOverA) is a variant of NOverAN

with the neighbours for the input adjective considered.

5.3.4 Tests on corpus-attested word combinations

The CLC-FCE dataset contains 3, 294 correct corpus-attested ANs and 286 corpus-attested

ANs that are annotated as incorrect in the learner data. We first run the tests applying

the proposed measures to the set of distributional AN vectors for the corpus-attested

combinations. Since the distributional vectors are sparse, this may affect the results.

The results are reported in Table 5.3, and the measures that show the difference at the

p < 0.05 level are marked in bold. Since for all our measures we initially predict higher

values on the correct ANs than on the incorrect ones, we mark the results that support

this intuition in blue. When we see that the values on the incorrect combinations are

higher than those on the correct ones, with p < 0.05, we mark these results in red.

We note that we can reliably distinguish between distributional vectors for correct and

incorrect combinations using VLen. This confirms our original hypothesis that the vec-

tors representing incorrect combinations are shorter than those representing correct ones.
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Metric distributional

VLen 8.28∗10−4

cosN 0.6625

cosA 0.1394

cosAN 1

dens 0.3316

densAll 0.0712

RDens 0.0363

num 0.0493

OverAN 0.5114

OverA 0.6774

OverN 0.4418

NOverAN 0.7142

NOverA 3.87∗10−4

NOverN 0.1416

Table 5.3: p values on the CLC-FCE AN corpus-attested subset

When AN vectors are derived by application of a composition function to the word dis-

tributional vectors it is assumed that the difference in distribution of the co-occurrence

counts results in a shorter vector length for incorrect combinations. In the case of dis-

tributional AN vectors this phenomenon is a result of the fact that corpus-attested ANs

annotated as incorrect in our data generally have lower frequency than corpus-attested

ANs annotated as correct. As a result, they have lower counts along semantic space

dimensions.

The measures based on calculation of the distance from the AN vector to the adjective

and noun vectors do not show a difference at the given level. Possibly, corpus-attested

ANs that are annotated as incorrect in learner data are not strongly semantically deviant.

We also note that even though the p values for the differences in cosN and cosA on the

two groups of vectors are higher than 0.05, the vectors for the correct combinations return

higher values, thus are semantically more similar to the input nouns and adjectives than

incorrect combinations.

Two measures based on quantitative assessment of the vectors’ neighbourhood, RDens and

num, show differences at the given level but return higher values for the ANs annotated as

incorrect than for those annotated as correct. Neither dens and densAll show differences

between the two groups of vectors and also return higher values for the ANs annotated

as incorrect. These results are similar to those obtained by Vecchi (2013) who concluded

that semantically anomalous ANs might be located in artificially dense neighbourhoods

surrounded by neighbours that share more in common with the input adjectives than the

nouns. All four measures that are based on quantitative assessment show that vectors



CHAPTER 5. SEMANTIC MODELS FOR ERROR DETECTION 120

for the incorrect combinations are surrounded by closer neighbours than vectors for the

correct combinations.

Among the measures based on qualitative assessment of the vectors’ neighbourhood, only

NOverA shows a difference at the given level, with the correct ANs being surrounded by

neighbours that are more similar to the input adjectives than for the incorrect combina-

tions. The results obtained for the other measures show that corpus-attested ANs are

surrounded by neighbours that are semantically similar to or that lexically overlap with

the input words, and these properties are not sufficiently different for the two groups of

vectors.

Distributional AN vectors are sparser than model-generated AN vectors (see §2.4), and

compositional distributional semantic models are applied to overcome the problem of data

sparsity and to generate more reliable representations for the composite vectors. Not all

of the proposed measures can perform well on sparser vectors. In addition, some measures

may be particularly suitable for model-generated vectors as they take into account the

contribution of each of the input words: for example, the cosN and cosA are based on

measuring how far the composite vector is moved from the input words. It is interesting

to note that VLen for model-generated vectors is also based on the idea that the combi-

nation of vectors for two semantically incompatible words results in a composite vector

with substantially different properties. However, it performs well on the distributional

vectors for a different reason: since the corpus-attested ANs annotated as incorrect in the

learner data are, on average, less frequent than those annotated as correct, this property

manifests itself in the length of the distributional vectors. In general, we conclude that

the distributional vectors for the corpus-attested ANs annotated as correct are too simi-

lar to the distributional vectors for the corpus-attested ANs annotated as incorrect to be

reliably distinguished from each other with some of the proposed measures.

5.4 Experiments on the AN datasets

We present the results of our experiments on the CLC-FCE and on the controlled an-

notated datasets. The crucial difference between the two datasets is that the CLC-FCE

dataset contains corpus-attested as well as corpus-unattested examples, and consists of

adjective–noun combinations with many more input adjectives than in the controlled an-

notated dataset: the full CLC-FCE dataset contains combinations with 1, 061 distinct

adjectives, while the annotated dataset contains only 61 input adjectives. To be able to

compare the results on the datasets and check how different factors affect the results, we

run a number of additional experiments on the subsets of the CLC-FCE dataset, as well

as on the full CLC-FCE and annotated datasets:

• CLC-FCE dataset
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– all ANs (4, 681 correct and 530 incorrect)

– corpus-attested ANs (3, 294 correct and 286 incorrect)

– corpus-unattested ANs (1, 387 correct and 244 incorrect)

– ANs with the set of 61 selected most problematic adjectives (1, 185 correct and

210 incorrect)

– corpus-attested ANs with the selected set of adjectives (1, 029 correct and 145

incorrect)

– corpus-unattested ANs with the selected set of adjectives (156 correct and 65

incorrect)

• annotated dataset

– combinations annotated OOC (630 correct and 168 incorrect ANs)

– combinations annotated IC (406 correct and 392 incorrect ANs)

We expect certain factors to have different effect on the results, and we expect to see

certain similarities in the results between the annotated dataset and the subset of corpus-

unattested examples with the chosen set of adjectives from the CLC-FCE dataset. Since

the CLC-FCE dataset contains error annotation for the ANs in context, we also expect

the results to be closer to those on the annotated dataset with IC annotation. For the alm

model we can only report the results on selected subsets of the data consisting of the ANs

with the set of 61 adjectives, since for this model we generate a matrix for each adjective.

5.4.1 CLC-FCE dataset

We run our experiments on 6 different subsets starting with the full CLC-FCE AN dataset

(the results are presented in Table 5.4) and then considering smaller and more specific

subsets (Tables 5.5 through 5.9). We believe that the full dataset combines ANs with dif-

ferent properties, and setting apart specific subsets helps eliminate potentially interfering

factors and assess the performance of the models on more homogeneous sets of ANs.

We use the one-shot t-test to indicate the scale of the effect observed, and for each model

and semantic measure, we report the p value denoting the difference between the groups of

vectors for the correct and incorrect ANs. We mark the results that support our original

hypotheses at the p < 0.05 level in bold blue, while those that demonstrate the difference

between the properties of the vectors at the given level but in the direction opposite to

the original hypotheses are in bold red.

Measures of semantic anomaly

We see that VLen only shows a difference at the given level with the mult model. The

mult model zeros or diminishes values along semantically incompatible dimensions in the
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Metric add mult alm

VLen 0.2440 0.0361 –

cosN 0.6952 0.2214 –

cosA 0.8418 0.9298 –

dens 0.5649 6.80∗10−5 –

densAll 0.8528 0.0010 –

RDens 0.5047 0.5699 –

num 0.1760 0.5047 –

OverAN 0.6642 0.1845 –

OverA 0.2181 0.0262 –

OverN 0.5339 0.9571 –

NOverAN 0.6961 8.82∗10−6 –

NOverA 0.2869 0.0027 –

NOverN 0.2303 8.11∗10−4 –

Table 5.4: p values on the CLC-FCE AN dataset (all)

Metric add mult alm

VLen 0.3365 0.1217 –

cosN 0.5739 0.2038 –

cosA 0.5462 0.2800 –

cosAN 0.9259 0.8061 –

dens 0.4290 0.3092 –

densAll 0.3072 0.4520 –

RDens 0.4488 0.2111 –

num 0.6476 0.0698 –

OverAN 0.2802 0.8222 –

OverA 0.7211 0.3704 –

OverN 0.2106 0.3387 –

NOverAN 0.7067 0.1679 –

NOverA 0.5362 0.3242 –

NOverN 0.4279 0.3510 –

Table 5.5: p values on the CLC-FCE AN

dataset (all, attested)

Metric add mult alm

VLen 0.0846 1.70∗10−5 –

cosN 0.0465 0.3351 –

cosA 0.2464 0.5717 –

dens 0.0912 0.0162 –

densAll 0.0596 0.0751 –

RDens 0.2179 0.4663 –

num 0.7195 0.9312 –

OverAN 0.7022 0.4217 –

OverA 5.43∗10−4 0.3143 –

OverN 6.15∗10−4 0.7115 –

NOverAN 0.9319 0.0713 –

NOverA 0.0015 0.5021 –

NOverN 0.0036 0.0756 –

Table 5.6: p values on the CLC-FCE AN

dataset (all, unattested)

composed vector whereas other models can still assign some combined value to such di-

mensions: for example, the add model aggregates the values from the two input vectors.

Our tests confirm that the mult model generates longer vectors for the correct ANs in the

all and selected datasets. However, we get results that contradict our intuition about vec-

tor length on the all-unattested and selected-unattested subsets: for the corpus-unattested
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Metric add mult alm

VLen 0.0526 3.25∗10−4 0.6049

cosN 2.25∗10−4 0.8933 0.1155

cosA 0.1870 0.0324 0.0217

dens 0.0074 1.32∗10−6 0.0401

densAll 0.0267 5.52∗10−5 0.1352

RDens 0.0978 0.2827 0.0291

num 0.0968 0.5177 0.0116

OverAN 0.2561 0.2596 0.1811

OverA 0.3296 0.0020 0.2551

OverN 0.1114 0.2376 0.4973

NOverAN 0.3012 0.0012 0.7618

NOverA 0.0716 2.62∗10−4 –

NOverN 0.2190 0.3500 0.7618

Table 5.7: p values on the CLC-FCE AN dataset (selected)

Metric add mult alm

VLen 0.7181 0.1003 0.2942

cosN 0.0019 0.2735 0.1431

cosA 0.0345 0.2201 0.0132

cosAN 0.7285 0.9395 0.6572

dens 0.2406 0.0147 0.1218

densAll 0.4632 0.0814 0.1086

RDens 0.8930 0.4083 0.1201

num 0.9327 0.2882 0.0099

OverAN 0.1728 0.8487 0.1527

OverA 0.1056 0.0467 0.2606

OverN 0.0326 0.1329 0.3916

NOverAN 0.9337 0.1599 0.6049

NOverA 0.0280 0.0334 –

NOverN 0.0275 0.8628 0.6049

Table 5.8: p values on the CLC-FCE AN

dataset (selected, attested)

Metric add mult alm

VLen 0.6259 0.0228 0.9241

cosN 0.1615 0.8513 0.1759

cosA 0.3651 0.2903 0.8769

dens 0.5655 0.2909 0.6466

densAll 0.7625 0.3551 0.6138

RDens 0.6828 0.4969 0.4539

num 0.5491 0.2560 0.9186

OverAN 0.4070 0.5971 0.8539

OverA 0.8850 0.3189 0.8539

OverN 0.8025 0.3211 –

NOverAN 0.4684 0.8911 –

NOverA 0.3843 0.4096 –

NOverN 0.6464 0.5971 –

Table 5.9: p values on the CLC-FCE AN

dataset (selected, unattested)

examples, the mult model generates shorter vectors for the ANs annotated as correct than

for those annotated as incorrect. We note that as the set of examples extracted from the

CLC-FCE is not controlled in the same way as the examples in the annotated dataset,

this result might be due to the fact that fewer examples annotated as incorrect in the

CLC-FCE are truly semantically deviant.
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The two measures that are based on the relations between the input and the output

vectors – cosN and cosA – show the differences at the given level on some subsets of

the data with all three models. We note that the differences are more evident on the

selected subset which contains examples for only the selected set of 61 most problematic

adjectives. We also see that on these subsets the vectors modelled with the add model

show results that contradict our original hypothesis: the vectors representing incorrect

AN combinations tend to be closer to the input noun vectors than vectors representing

correct ANs. At the same time, the mult and alm models generate vectors for the correct

combinations that are closer to the input noun and further away from the input adjective,

while the opposite holds for the vectors representing incorrect ANs. Therefore, the cosN

measure shows the results that we expect to obtain: the meaning of the input noun is

preserved in the correct combinations and the vectors for the correct combinations are

closer to the input nouns. We note that both mult and alm models generate vectors for

the incorrect AN combinations that are closer to the input adjective vector than for the

correct AN combinations.

The measures that are based on quantitative assessment of the vector neighbourhood in

the semantic space – dens, densAll, RDens and num – with the add and mult models

show the differences at the given level between the two groups of vectors that support the

hypothesis of Vecchi (2013): the vectors for the ANs annotated as incorrect are placed

in denser neighbourhoods than vectors for the correct combinations. This hypothesis is

also supported by our tests on the distributional AN vectors presented in the previous

section. It is interesting to note that with the mult model the measures that assess vector

neighbourhood qualitatively show that even though the vectors for correct combinations

are placed in sparser neighbourhoods, these neighbourhoods are populated by more simi-

lar neighbours than vectors for incorrect combinations. The add model places the vectors

for the correct combinations in the neighbourhoods that share neighbours with the in-

put nouns, but vectors for the incorrect combinations in the neighbourhoods that share

neighbours with the input adjectives.

Model performance

All models are able to detect the difference between the generated vectors for the correct

and incorrect combinations at least with some measures and on some subsets of the data.

Alm, previously reported as a more promising model, on our data does not outperform

the add and mult models. Among the three models, the mult model shows best results

overall, since it detects the difference between the vectors more often and the results of

this model are similar to those obtained on the distributional vectors (Table 5.3).

Performance on different subsets of data

Except for the occasional changes in the results for some models and measures (for exam-

ple, VLen with the mult model on the all and selected subsets), performance of the models

is generally consistent on the different subsets of the data. For example, the models
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cannot reliably distinguish between the vectors for the correct and incorrect combination

among those that are corpus-attested (Table 5.5) because many of the combinations from

the CLC-FCE dataset that are annotated as incorrect may not be truly deviant or may

be incorrectly used in context, so they are not sufficiently different from the combinations

annotated as correct. When we specifically look at the corpus-attested combinations with

the selected set of the most problematic adjectives (Table 5.8) a number of models and

measures prove to be able to detect the difference. At the same time, it proved hard to

distinguish between correct and incorrect combinations with the chosen set of models and

measures in the corpus-unattested subset of ANs with the selected adjectives (Table 5.9).

5.4.2 Annotated Dataset

As before, we report p values for each model and semantic measure. The results for the

OOC annotation are reported in Table 5.10, and for the IC annotation in Table 5.11.

The p values below the 0.05 level are marked in bold, with those supporting the original

hypotheses in blue, and those showing the opposite results in red.

Metric add mult alm

VLen 0.7589 0.7690 0.1676

cosN 0.1621 0.0248 0.0227

cosA 0.0029 0.4782 0.0921

dens 0.6731 0.1182 0.1024

densAll 0.4967 0.1026 0.1176

RDens 0.2786 0.8754 0.1970

num 0.3132 0.4673 0.3765

OverAN 0.8529 0.1622 0.9663

OverA 0.0151 0.6377 0.5051

OverN 0.0138 0.0764 0.4656

NOverAN 0.6572 0.9745 0.0858

NOverA 0.0015 0.4436 0.1575

NOverN 0.0018 0.2182 0.1497

Table 5.10: p values, OOC AN annotation

Metric add mult alm

VLen 0.6675 0.0027 0.0111

cosN 0.0417 0.0070 0.1845

cosA 3.26*10−5 0.1791 0.1442

dens 0.4756 0.7120 0.1278

densAll 0.2874 0.7139 0.6183

RDens 0.8934 0.8664 0.1985

num 0.7077 0.7415 0.4369

OverAN 0.1962 0.8635 0.6682

OverA 7.20*10−5 0.7271 0.6358

OverN 0.0022 0.9680 0.9867

NOverAN 0.1066 0.6304 0.1587

NOverA 6.92*10−6 0.7354 0.1576

NOverN 2.89*10−5 0.6978 0.2610

Table 5.11: p values, IC AN annotation

A number of measures show a difference at the given level between the two groups of

vectors. For most measures that show such differences on the OOC-annotated dataset

the effect is strengthened on the IC-annotated dataset: for example, cosA distinguishes

between the add model-generated vectors with p < 0.01 on the OOC-annotated dataset,

and with p < 0.001 on the IC-annotated dataset.

At the same time, we see some unexpected results on the IC-annotated dataset: the VLen

measure shows that model-generated vectors for the ANs annotated as incorrect in context
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are longer than for the ANs annotated as correct, which contradicts our original hypoth-

esis. However, we have seen similar results on some CLC-FCE subsets: for example, with

the mult model on the unattested ANs (see Tables 5.6 and 5.9).

In general, the results obtained on the controlled annotated datasets follow the same

patterns as the results on the CLC-FCE dataset: the add model performs better than other

models. We note quite a consistent pattern with this model: the model-generated vectors

for the correct ANs are closer to the input adjectives (cosA), show higher lexical overlap

(OverA) and overlap in terms of the neighbours shared with the adjectives (NOverA), while

the model-generated vectors for the incorrect ANs tend to stay closer to the input nouns.

This is similar to what we have observed on the CLC-FCE dataset (see Table 5.8).

5.5 Experimental Setting for VO Combinations

For the VOs, we construct the semantic space in a similar way: we populate it with

distributional vectors for a large number of target elements including some frequent verbs

and nouns, verbs and nouns from the test combinations, as well as VOs with these verbs

and nouns. Since we use a similar set of measures for detecting semantic anomaly in

VOs and a number of those measures are based on exploration of composite vectors’

neighbourhoods, we need additional noun and verb vectors which are not necessarily part

of the test VOs, as well as some additional VO vectors to populate the semantic space.

The semantic space is represented by a matrix encoding sentence-internal word co-occurren-

ces for the target elements and the same 10K context words as have been used for the

ANs: this set of 10K context words consists of the most frequent 6, 590 nouns, 1, 550 ad-

jectives and 1, 860 verbs in the combined corpus. The raw sentence-internal co-occurrence

counts have been transformed into LMI scores.

We collected the target elements for the VO semantic space using a similar procedure to

AN semantic space construction: we selected the 4K verbs and 8K nouns which are most

frequent in the concatenated corpus, excluding the top 50 most frequent words in each

case. We also add the component verbs and nouns from the test VOs to the semantic

space, and collect some frequent verbs that occur more than 100K but less than 740K

times in the combined corpus. As a result, we augment the semantic space with additional

noun and verb distributional vectors. The VO semantic space contains 8, 357 nouns and

4, 053 verbs.

We generate all possible VOs by crossing the set of verbs with the set of nouns, and check

the generated VOs against the BNC. We randomly choose VOs that occur at least 10

times in the BNC and at least 100 times in the concatenated corpus consisting of the

BNC and ukWaC. This results in a set of 42, 080 VOs. We also add to this set corpus-

attested VOs from the CLC-FCE test set that are not yet included in the set of VOs.
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As a result, the semantic space contains 43, 671 VOs, and in total, the number of target

elements equals 56, 082.

We apply SVD to the noun and verb components of the matrix, consisting of 12, 410

vectors, and then project the 43, 671 VO vectors onto the same semantic space. Using

this method, we reduce the original 56, 082× 10K matrix encoding VO semantic space to

a 56, 082× 300 matrix that we use in our experiments.

5.6 Semantic Models for VO Combinations

We apply the same set of compositional distributional semantic models to generate the

composite VO representations from the input verb and noun distributional vectors.

For the simple add and mult models, we derive the VO (vn) vectors by component-wise

addition and multiplication applied to the verb (v) and noun (n) vectors:

vni = vi + ni (5.5) vni = vi · ni (5.6)

We also adapt the alm model to derive the VO combinations in a similar way to AN com-

binations. In §2.4, we have noted that certain words, for example, nouns, can be directly

defined by their distribution, while some other words, for example, adjectives and verbs,

might “adjust” their meaning depending on the words they modify. The particular alge-

braic representation of such words depends on their subcategorisation frame. Adjectives

and intransitive verbs are first-order one-argument distributional functions which can be

encoded with matrices, while transitive verbs are higher-order functions which can be

encoded with tensors of the appropriate dimensionality depending on the number of ar-

guments. Baroni et al. (2014a, p. 43) suggest analysing an intransitive verb as a mapping

from noun space to sentence space, and representing it as a matrix of shape K×J mapping

from the J-dimensional noun space in which subject vectors live onto the K-dimensional

sentence space. In contrast, a transitive verb is a third-order (K × J) × J tensor map-

ping from the J-dimensional noun space where object vectors live onto a VP-space, or an

intransitive-verb-like K × J matrix.

The group of models that treats adjectives and verbs as distributional functions repre-

sents intransitive verbs as matrices or second-order tensors, transitive verbs as third-order

tensors, and di-transitive verbs as fourth-order tensors. VOs in our datasets contain verbs

with two or more arguments, and within this type of model these verbs should be rep-

resented with different structures. However, we only keep the combinations of the verbs

with their direct objects. If we represent each verb with the higher-order algebraic rep-

resentation, their combination with the object noun vector will result in structures of a
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different order: *close computer will be represented with a matrix which then should be

applied to a subject noun vector, while tell advice will be represented with a third-order

tensor which then should be applied to second object and subject noun vectors.

We are primarily interested in violation of compositionality between a verb and its direct

object. Therefore, for this data we do not fully model the verb argument structure with all

verb arguments, and we would like to have a simple verb–object semantic representation

of the same dimensionality for different types of verbs. Then, using an approach similar to

that applied to the AN combinations, we can distinguish between semantic representations

for the acceptable and deviant VOs.

Baroni et al. (2014a) show how tensor representations for verbs can be learned from

the observed examples using a multi-step regression algorithm. The procedure is similar

to that used to learn matrices for the adjectives in alm models. Since we address the

verb–object pairs only, we believe that the verbs can be encoded as matrices with one

argument slot for the direct object encoded with distributional noun vectors. The matrices

can be learned from the observed examples of VOs with the particular verb using one-step

regression. The matrices then will encode the interaction of the semantic components of

the verb and its direct objects in the observed VOs. When applied to the input noun

vectors, they will map from the noun space to the space of VOs, where the derived

VOs are encoded with model-generated vectors. This representation is different from

that commonly used in compositional distributional semantics (Clark, 2015; Baroni et al.,

2014a; Grefenstette et al., 2013), however, we think that for this task a matrix-based

representation of the verbs is justified.

We refer to this model as verb-specific linear maps (vlm), and for each verb from our test set

we estimate the weight coefficients with multivariate partial least squares regression using

the R pls package (Mevik and Wehrens, 2007) and applying the leave-one-out training

regime. Similarly to the adjective case, we change the number of latent variables used by

the training algorithm depending on the number of available noun–VO training pairs. In

our experiments, this number ranges from 3 to 40. As a result, a weight matrix encoding

verb–object interaction for each verb in the test set is obtained.

We apply the three models of semantic composition to generate VO vectors, and use the

same procedure to distinguish between vectors representing correct VOs and incorrect

VOs (see §5.2). We use one-shot unpaired t-tests assuming a two-tailed distribution, and

report the difference to indicate the scale of the effect observed. The p values lower than

0.05 are marked in bold.
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5.7 Measures of Semantic Anomaly for VO Combi-

nations

Below, we list the measures that we apply to the model-generated VO vectors. These

measures are based on those applied to the ANs. As before, we group the 14 measures by

their type based on the underlying hypotheses:

1. Measures based on the properties of the model-generated vector:

• Vector length (VLen) – see §2.4 for a description.

2. Measures based on the relations between the input and the output vec-

tors:

• Cosine to the input noun (cosN) – see §2.4 for a description.

• Cosine to the input verb (cosV) is analogous to cosA proposed for the

ANs: we hypothesise that the model-generated VO vector should be situated

further away from the vector for the input verb since in anomalous VOs the

original verb meaning is distorted. We also can expect a stronger effect for

the cosV measure than for cosN measure since VO combinations are verb-like

rather than nominal-like.

• Cosine to the distributional vector for the corpus-attested VOs (cosVN).

For the VOs which are attested in the corpus, we measure the distance from the

model-generated vector to the distributional vector and assume that seman-

tically acceptable VOs should be located closer to their distributional vectors

than semantically deviant and non-compositional ones.

3. Measures based on the neighbourhood of the model-generated vectors:

• Density of the neighbourhood populated by 10 nearest neighbours

(dens) – see §2.4 for a description.

• Density among the 10 nearest neighbours (densAll) is estimated as an

average of the 11 density values calculated for each member of the set {VO

vector, its 10 nearest neighbours}, where each density value is estimated as an

average distance from the member of the set to all other members of the set.

• Ranked density in close proximity (Rdens) is estimated as a weighted

sum of the distances of the neighbours within close proximity, where each neigh-

bour’s distance value is weighted with its rank. It is assumed that semantically

acceptable and correct VOs have more close neighbours and, as a result, get

higher values for the RDens measure.
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• Number of neighbours within close proximity (num) is used as a sepa-

rate measure and is assumed to have lower values for incorrect combinations.

• Lexical overlap between the 10 nearest neighbours and constituent

noun and verb (OverVN) is estimated as the proportion of the 10 nearest

neighbours containing the same constituent words as in the tested VOs. We

assume that correct VOs are surrounded by words and combinations similar

to the input noun and verb: for example, we might expect to see the verb

close and noun door among the 10 nearest neighbours of close door, as well as

some other VOs with close and door. At the same time, we assume that *close

computer is less semantically similar to either close or computer, and we expect

to see lower number of words and VOs with close or computer.

• Lexical overlap between the 10 nearest neighbours and input noun

(OverN) is a variant of OverVN for the input noun.

• Lexical overlap between the 10 nearest neighbours and input verb

(OverV) is a variant of OverVN for the input verb.

• Overlap between the 20 nearest neighbours for the VO and the near-

est neighbours for the constituent noun and verb (NOverVN) is es-

timated as the proportion of the common neighbours among the 20 nearest

neighbours for the model-generated VO and the 20 nearest neighbours for the

distributional vectors of the constituent words, and we assume that correct

VOs and their constituent words should be placed in similar neighbourhoods.

• Overlap between the 20 nearest neighbours for the VO and the

nearest neighbours for the constituent noun (NOverN) is a variant

of NOverVN for the input noun.

• Overlap between the 20 nearest neighbours for the VO and the

nearest neighbours for the constituent verb (NOverV) is a variant

of NOverVN for the input verb.

5.7.1 Tests on corpus-attested word combinations

The CLC-FCE dataset contains 4, 557 corpus-attested VO combinations, 3, 997 of which

are annotated in the learner data as correct and 560 annotated as incorrect. We run the

first set of experiments on the distributional VO vectors. The results are reported in Table

5.12, and as before we mark the metrics that show differences at the given level in bold,

the results that support our original hypotheses in blue, and those that show differences

in the opposite direction in red.

We note again that corpus-attested combinations that are annotated as correct in the

learner data, in general, have higher frequency than those that are annotated as incorrect.
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Metric distributional

VLen 1.79∗10−22

cosN 0.0434

cosV 5.52∗10−4

cosVN 1

dens 0.0235

densAll 0.0538

RDens 0.4837

num 0.3735

OverVN 0.4978

OverV 0.5116

OverN 0.1508

NOverVN 0.5361

NOverV 0.5496

NOverN 0.8668

Table 5.12: p values on the CLC-FCE VO corpus-attested subset

We assume that this can be used as a reliable cue for detecting incorrectness in corpus-

attested combinations. When the vectors for the VOs are built from the distributional

data, lower frequency of the incorrect combinations results in lower co-occurrence counts

along vector dimensions, and, as a consequence, in lower vector length for deviant VOs.

Similar to the ANs, the VLen measure performs well on corpus-attested combinations and

distinguishes between the vectors for correct and incorrect combinations most reliably.

CosN and cosV show differences at the given level between the distributional vectors for

correct and incorrect VOs, but return higher values for the incorrect VOs. That shows

that, contrary to our prediction, the distributional vectors for the incorrect VOs stay closer

to the verb and noun vectors. Not all of the VOs annotated as incorrect in the learner

data show strong semantic deviance and some of them are annotated as incorrect due to

their mismatch with the surrounding context: for example, *meet world corrected to enter

world and *learn knowledge corrected to acquire knowledge are clearly more deviant than

some other examples annotated as incorrect including (*)miss course corrected to miss

class or (*)understand question corrected to understand request. The verb type might also

have an effect. For example, the correct combinations with light verbs can be situated

further away from the input verbs: do shopping, while being correct, has less to do with

the verb do than with the verb shop, while make plan can be expected to be closer to

plan than to make. We assume that such factors may contribute to the result obtained,

but still expect to obtain the predicted results when the vectors are generated with the

models rather than extracted from the data.

The dens measure shows a difference at the given level and supports our original hypoth-
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esis: the distributional vectors for VOs annotated as incorrect in the learner data are

located in sparser neighbourhoods in the semantic space than those annotated as correct.

We also note that the densAll measure shows results close to the chosen threshold and

returns higher values for the correct VOs.

The other measures do not show differences at the given level of p < 0.05, and we conclude

it might be due to reasons similar to those outlined for the corpus-observed ANs (see §5.3).

5.8 Results on VO Combinations

We run the experiments on CLC-FCE and on the controlled annotated dataset, setting

apart different subsets of the data. The full CLC-FCE VO dataset contains combinations

with 603 distinct verbs, while the annotated dataset contains only 77 input verbs.

We run the experiments on the following subsets in our data:

• CLC-FCE dataset

– all VOs (4, 911 correct and 789 incorrect)

– corpus-attested VOs (3, 997 correct and 560 incorrect)

– corpus-unattested VOs (914 correct and 229 incorrect)

– VOs with the set of 77 selected most problematic verbs (1, 378 correct and 316

incorrect)

– corpus-attested VOs with the selected set of verbs (1, 166 correct and 224

incorrect)

– corpus-unattested VOs with the selected set of verbs (212 correct and 92 in-

correct)

• annotated dataset

– combinations annotated OOC (445 correct and 356 incorrect)

– combinations annotated IC (314 correct and 487 incorrect)

5.8.1 CLC-FCE dataset

We run the experiments on 6 subsets of the data starting with the full CLC-FCE VO

dataset (the results are presented in Table 5.14) and then considering smaller and more

specific subsets (Tables 5.14 through 5.18). For each model and semantic measure, we

report the p value, marking the values lower than 0.05 in bold.

Measures of semantic anomaly
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Metric add mult vlm

VLen 1.01∗10−4 0.0968 –

cosN 6.89∗10−5 0.2522 –

cosV 0.1403 0.0522 –

dens 7.59∗10−4 2.31∗10−6 –

densAll 0.0442 0.0010 –

RDens 5.89∗10−4 1.61∗10−3 –

num 0.0040 0.1860 –

OverVN 0.4177 7.80∗10−5 –

OverV 0.0297 0.0047 –

OverN 0.0015 0.0018 –

NOverVN 0.0015 0.0024 –

NOverV 1.13∗10−4 0.1352 –

NOverN 0.0117 5.85∗10−4 –

Table 5.13: p values on the CLC-FCE VO dataset (all)

Metric add mult vlm

VLen 0.0028 0.1340 –

cosN 1.09∗10−4 0.2235 –

cosV 0.3687 0.0233 –

cosVN 4.38∗10−4 1.35∗10−6 –

dens 0.0737 1.80∗10−7 –

densAll 0.3442 7.95∗10−5 –

RDens 0.0055 0.0027 –

num 0.0152 0.3471 –

OverVN 0.9871 5.65∗10−5 –

OverV 0.2350 8.28∗10−4 –

OverN 0.0228 0.0128 –

NOverVN 1.76∗10−4 0.0016 –

NOverV 0.0016 0.0900 –

NOverN 0.1172 5.27∗10−4 –

Table 5.14: p values on the CLC-FCE

VO dataset (all, attested)

Metric add mult vlm

VLen 0.6278 0.0047 –

cosN 0.8704 0.5256 –

cosV 0.6344 0.3420 –

dens 0.5373 0.0995 –

densAll 0.8035 0.2386 –

RDens 0.6833 0.2236 –

num 0.1945 0.3897 –

OverVN 0.2948 0.6214 –

OverV 0.3376 0.5673 –

OverN 0.9960 0.9956 –

NOverVN 0.3587 0.8897 –

NOverV 0.6369 0.8274 –

NOverN 0.9514 0.9479 –

Table 5.15: p values on the CLC-FCE

VO dataset (all, unattested)

VLen shows differences at the given level in a number of subsets. However, in all cases

the model-generated vectors for the combinations annotated as incorrect are longer than

the model-generated vectors for the combinations considered to be correct. Although this

contradicts our original hypothesis, this result is similar to those obtained on some of the

AN datasets.

Both cosV and cosN show differences at the given level of p < 0.05 with all models on

at least some subsets of VOs. In all cases, the model-generated vectors for the correct
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Metric add mult vlm

VLen 6.29∗10−4 0.2281 0.6766

cosN 0.0238 0.8670 0.3239

cosV 0.9574 5.45∗10−5 0.0495

dens 0.2143 2.21∗10−4 0.3486

densAll 0.3261 1.13∗10−5 0.3141

RDens 0.1059 0.0019 0.1921

num 0.0377 0.0600 0.6258

OverVN 0.3261 1.13∗10−5 0.3141

OverV 0.0246 6.94∗10−4 0.1334

OverN 0.1747 0.0430 0.5812

NOverVN 0.0781 4.25∗10−5 0.8580

NOverV 0.1778 7.23∗10−4 0.5618

NOverN 0.5928 0.0175 0.7780

Table 5.16: p values on the CLC-FCE VO dataset (selected)

Metric add mult vlm

VLen 3.54∗10−5 0.2570 0.8576

cosN 7.26∗10−5 0.8190 0.8510

cosV 0.0873 4.09∗10−5 0.0028

cosVN 0.0016 1.33∗10−4 0.0516

dens 0.6847 0.0030 0.4202

densAll 0.7312 0.0020 0.5829

RDens 0.1075 0.1788 0.0829

num 0.0422 0.9293 0.4924

OverVN 0.0727 5.44∗10−4 0.3029

OverV 5.41∗10−4 0.0065 0.1917

OverN 0.0108 0.0260 0.8932

NOverVN 0.1057 1.19∗10−4 0.6015

NOverV 0.0049 0.0075 0.6273

NOverN 0.0186 2.92∗10−4 0.6296

Table 5.17: p values on the CLC-FCE

VO dataset (selected, attested)

Metric add mult vlm

VLen 0.0549 0.3356 0.2975

cosN 0.0585 0.7447 0.1816

cosV 0.0018 0.4063 0.4533

dens 0.9823 0.0613 0.3988

densAll 0.4508 0.1200 0.4476

RDens 0.2469 0.1171 0.9619

num 0.6494 0.1231 0.9927

OverVN 0.2853 0.0626 0.2727

OverV 0.1614 0.0537 0.8735

OverN 0.0094 0.7302 0.2720

NOverVN 0.2783 0.4764 0.3091

NOverV 0.0253 0.2704 0.3202

NOverN 0.0016 0.7909 0.4569

Table 5.18: p values on the CLC-FCE

VO dataset (selected, unattested)

combinations are closer in the semantic space and, thus, semantically more similar to both

input noun and input verb. We also note that the cosV measure shows differences at the

given level on more subsets than cosN. CosN mostly works in combination with the add

model, while cosV shows differences on the vectors modelled by the mult and vlm models.

The group of measures based on the quantitative assessment of the vectors’ neighbourhood

– dens, densAll, RDens and num – shows differences at the given level of p < 0.05 with

all the models at least on some subsets. In all cases the model-generated vectors for
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the incorrect VOs are located in denser neighbourhoods and are surrounded by higher

number of close neighbours than vectors for the correct combinations. Although this

result contradicts the original hypotheses, it follows the same pattern as we observed for

the ANs.

Even though the model-generated vectors tend to have denser neighbourhoods, qualitative

analysis shows that these neighbourhoods are populated by lexically and semantically less

similar words and phrases: we observe the differences at the given level for the measures

OverVN through to NOverN, in particular, for the vectors generated with the mult model.

Vlm does not show differences with this group of measures, while the results for the add

model reveal a consistent pattern: the add model-generated vectors for the correct VOs

tend to have more in common with the input noun, while the model-generated vectors

for the incorrect combinations share more in common with the input verb. Semantic

similarity of the model-generated VO vectors with the input noun for the add model is

supported by the results for the cosN measure.

Model performance

We conclude that, similarly to the ANs, the mult model performs better overall than the

add and the vlm models. The vlm model, in spite of its expected superior performance at

modelling asymmetric relations, reliably distinguishes between the vectors for the correct

and incorrect combinations only with a limited subset of the proposed measures. The add

model shows differences at the level of p < 0.05 with a number of measures, but for some

of those it returns results contrary to expectations.

Performance on different subsets of data

We note that we get very consistent results on the general datasets and the subsets

of attested combinations (see Table 5.13 and 5.14, Table 5.16 and 5.17). Discriminating

between vectors for correct and incorrect VOs unattested in the corpus proved to be harder

for the chosen models and using the proposed measures: on the unattested subset of all

VOs only the mult model shows differences at the given level with the VLen measure, and

this result contradicts our prediction (Table 5.15), while on the unattested subset of the

VOs with the selected set of verbs only, the add model detects the difference between the

two groups of vectors with a smaller number of measures than on the attested examples.

We hypothesise that the difficulty in distinguishing between the unattested VOs that are

annotated as correct and those annotated as incorrect in the learner data can result from

the fact that these examples are extracted in a less controlled way. The two groups of

vectors prove to be similar to each other with respect to a number of their properties.

5.8.2 Annotated Dataset

We report the results obtained on the OOC-annotated dataset in Table 5.19, and those

for the IC-annotated dataset in Table 5.20, marking the p values lower than 0.05 in bold.



CHAPTER 5. SEMANTIC MODELS FOR ERROR DETECTION 136

Metric add mult vlm

VLen 0.2871 0.0020 0.0423

cosN 0.3411 0.6064 0.6409

cosV 2.49∗10−8 9.28∗10−8 0.9319

dens 4.84*10−5 0.0189 3.61∗10−4

densAll 6.84∗10−6 0.0471 0.0101

RDens 1.61∗10−10 0.0878 0.0067

num 5.04∗10−7 0.0031 0.7805

OverVN 0.3221 0.0462 0.3458

OverV 3.78∗10−7 0.0137 0.7586

OverN 8.04∗10−10 0.9267 0.3055

NOverVN 0.1310 0.1307 0.1147

NOverV 3.23∗10−6 0.0170 0.1377

NOverN 2.87∗10−10 0.7815 0.5042

Table 5.19: p values, OOC VO annotation

Metric add mult vlm

VLen 0.1023 3.84∗10−8 0.0086

cosN 0.0831 0.2317 0.4370

cosV 1.78∗10−13 3.58∗10−5 0.2559

dens 3.19∗10−7 0.0020 0.0364

densAll 1.62∗10−7 0.0049 0.1971

RDens 5.05∗10−9 0.0033 0.1378

num 1.22∗10−5 3.15∗10−4 0.9765

OverVN 0.0716 0.0446 0.6164

OverV 9.00∗10−9 0.0275 0.9265

OverN 2.41∗10−13 0.7487 0.2079

NOverVN 0.2378 0.0696 0.1839

NOverV 2.10∗10−8 0.0411 0.1376

NOverN 4.68∗10−15 0.6638 0.7543

Table 5.20: p values, IC VO annotation

We note that all but two measures (cosN and NOverVN) detect differences at the given

level between the two groups of vectors with at least one of the models. This result

supports our original assumption that cosV should be expected to detect the difference

between the vectors more reliably than cosN.

We observe the same pattern as for the ANs: the measures that show differences at the

level of p < 0.05 on the OOC-annotated dataset also show them on the IC-annotated

dataset. The only exception is the vlm model, but this model also detects the difference

with a lower number of measures in general.

The results obtained on the annotated dataset follow the same patterns as the results on

the CLC-FCE dataset. Both add and mult models perform well on the annotated dataset.

In particular, the add model demonstrates consistent results on the controlled dataset and

the CLC-FCE unattested VO subset with the selected set of verbs (cf. Table 5.18).

5.9 Discussion

To summarise, we have applied three models of compositional distributional semantics to

the AN and VO combinations. In spite of their theoretical weaknesses, the simple add and

mult models of Mitchell and Lapata (2008) showed promising results in our experiments.

From the practical point of view, these models do not require any further training and are

easy to implement. In contrast, the alm model and its adaptation to the VO combinations

that we have used in this work, in spite of its theoretical strengths and some promising

results in Baroni and Zamparelli (2010) and Vecchi et al. (2011), did not outperform the

simpler models on this task. We conclude that, overall, the mult model performs the best

of the three models in our experiments.

In this work, we have proposed and applied a number of measures for detecting errors
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in content word combinations. These measures help detect the peculiar properties of

the model-generated vectors, their relation to the input words and properties of their

neighbours in the semantic space. We conclude that, overall, the measures based on

assessment of the neighbourhood of the model-generated vectors consistently show good

results.

The measures based on quantitative assessment of the semantic space neighbourhood of

the model-generated vectors showed counter-intuitive results for most of the models and

on most of the datasets. We have originally hypothesised that vectors for the correct

combinations are located in denser neighbourhoods which should manifest itself in higher

density (dens and densAll measures) and higher number of close neighbours (RDens and

num measures). However, the results consistently show that the vectors for the correct

combinations are placed in sparser neighbourhoods than vectors for the incorrect combi-

nations. At the same time, our results support those obtained by Vecchi (2013), who has

shown that the close neighbours for unacceptable ANs are more often similar to the mean-

ing of the component adjective than the close neighbours for acceptable ANs which are

more often similar to the meaning of the component noun. Vecchi (2013) concludes that

in anomalous ANs the meaning of the AN is “pulled” by the adjective further away from

the original noun meaning, possibly to the artificially dense area populated by adjective-

related neighbours. We note that although the measures based on quantitative assessment

of the neighbourhood of the model-generated vectors yield results that contradict the orig-

inal hypothesis, the measures aimed at assessing whether the neighbours are semantically

similar to the content word combinations show more consistent results. Our experiments

show that even though the vectors for the correct content word combinations are placed in

sparser neighbourhoods, they are surrounded by neighbours which are semantically more

similar to them than the vectors for the incorrect combinations.

In conclusion, our experiments show that compositional distributional semantic models

can reliably distinguish between the groups of vectors representing correct and incorrect

content word combinations with a number of proposed measures. Therefore, the values of

these semantic measures can be used to derive discriminative features for an ML classifier.



Chapter 6

Error Detection Algorithm

We have implemented a supervised classifier which uses output of the semantic models

described in Chapter 5 as features. We describe the general principles of implementing

an ED algorithm as an ML classifier in §6.1, while the practical implementation issues are

discussed in §6.2. The results are presented in §6.3. We discuss the performance of the

algorithm and analyse the most difficult cases for ED in §6.4, and conclude with §6.5.

6.1 Error Detection as Classification

In §2.3.1, we discussed the general approach to ED and EDC in function words. We noted

that since function words belong to closed word classes, the set of possible confusions and,

therefore, corrections is a finite set in which the number of elements can be determined in

advance. This makes ML classifiers particularly suitable for performing ED on function

words. We have also noted that casting ED in content word combinations as a multi-class

classification task similar to that used on function words is much harder.

For instance, we can train a classifier on the multiple correct uses of a function word

using the surrounding words as some of the informative features. At the same time, if

we wanted to treat EDC in the use of adjectives in ANs in a similar way, we would run

into a problem of data sparsity even for the most frequent adjectives and most typical

of their uses. The use of adjectives cannot generally be described in terms of multi-class

classification with a limited number of classes. However, since we distinguish between

error detection and error correction and argue that ED is an important component of the

system even if the correction is not presented, we cast it as a binary classification task of

identifying for each content word combination whether it is correct or incorrect.

Selection of relevant and informative features is an important issue in ML. The features

should be chosen so that they can reliably distinguish between the correct and incorrect

cases, while being recurrent and generalisable enough. We noted earlier (see §2.3.1)

that the informative features for function words can be extracted from their surrounding

138
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contexts. Two aspects facilitate using contexts for ED in function words: they are strong

predictors of the function words, and they are highly recurrent. At the same time, the

surrounding contexts cannot be as easily used to generate features for ED in content

words. For example, extracting the surrounding words from a context such as I like

listening to *classic music would not help identify an error in this particular sentence or

in I have tried a *classic dance already.

Instead, we use the output of the compositional distributional semantic models presented

in Chapter 5, where each measure is used as a separate feature for an ML classifier. Such

features can be expected to be informative since our experiments confirm that they can

detect the difference in the correct and incorrect combinations, while also being recurrent

since every combination can be assigned with the same set of features.

6.2 Implementation of the Algorithm

6.2.1 Theoretical background

The choice of a particular ML classifier for the task should depend on the problem ad-

dressed, the hypothesis space and the way the features describe the instances to be classi-

fied. We have run preliminary tests with some classifier models, including Support Vector

Machines and Decision Trees, and obtained the best results so far with the Decision Tree

(DT) classifier.

DT is a conceptually simple algorithm with high expressive power. Its clear advantages

are that it is easy to implement and understand while being sufficiently effective. It

has previously been successfully applied to a number of tasks including grammatical

EDC (Gamon, 2010). In essence, decision trees encode logical expressions of the form if

... then ... and are able to combine multiple conditions. The different conditions which

are based on features in the feature space can interact with each other at the different

nodes within the tree.

Decision trees correspond to DNF (∨) expressions: every tree can be described with a

logical expression in terms of DNF traversing the tree from its root via every branch to the

leaves. It follows from this, that decision trees are maximally expressive: the only data

that they cannot separate is data that is inconsistently labelled, i.e., the same instance

appears twice with different labels (Flach, 2012).

Each internal node in a tree is labelled with a feature, and each edge emanating from an

internal node is labelled with a literal. The set of literals at a node is called a split. Each

leaf of the tree represents a logical expression, which is the conjunction of literals encoun-

tered on the path from the root of the tree to the leaf. The extension of that conjunction

(the set of instances covered by it) is called the instance space segment associated with

the leaf (Flach, 2012, p. 132).
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A tree is a compact way of representing a number of conjunctive concepts in the hypothesis

space. The tree induction learner tries to identify homogeneous groups within the instance

space, that would be homogeneous enough to be labelled with a single label. Labels in the

tree that describe a binary problem, like the one that we address here, are simply +1/-1

or correct/incorrect. The literals are the features in the feature space to be put at the

root of the tree or at the splits.

For our classification task, we assume that the set of instances Di is homogeneous, so that

the function Label(Di) can return the class label for all the instances within Di. Since

we address a binary task, we can denote the set of instances as D⊕ for the correct and

D	 for the incorrect combinations. Let’s assume that we use Boolean features, so that

D is split into D1 and D2 (or, similarly, D⊕1 and D⊕2 , and so on). The question is how

to assess the utility of a feature in terms of separating the examples into positives and

negatives. The best case scenario is when D⊕1 = D⊕ and D	1 = ∅, or when D⊕1 = ∅ and

D	1 = D	, in other words, when the feature unambiguously defines the instances of one

class. In that case, the children of the split are said to be pure.

In practice, this will rarely be the case. Therefore, for each split we need to measure the

impurity of a set of n⊕ positives and n	 negatives. The impurity can be defined in terms

of the proportion ṗ = n⊕/(n⊕ + n	) which also estimates the probability of the positive

class. Impurity should only depend on the relative magnitude of n⊕ and n	, and should

not change if we swap the positive and negative class (or replace ṗ with (1 − ṗ)). We

also want the function defining impurity to be 0 whenever ṗ = 0 or ṗ = 1, and reach its

maximum for ṗ = 1/2. One of the functions that meets these conditions and is frequently

used in practice is entropy which is estimated as:

−ṗ log2ṗ− (1− ṗ) log2(1− ṗ) (6.1)

Entropy measures, in bits, the amount of information that is conveyed by somebody telling

us the class of a randomly drawn sample. For example, the class of a pure set of instances

is predictable, therefore the amount of new information is very low, and so is the entropy;

for less homogeneous sets of instances where the class is less easily predictable the entropy

is higher. Entropy is one of the impurity measures that is widely used in decision trees,

and was introduced by Quinlan (1986).

If we denote the impurity of a single leaf Di in the tree as Imp(Di), then the impurity of

a set of mutually exclusive leaves {D1, ..., Dn} can be defined as a weighted average:

Imp({D1, ..., Dn}) =
n∑
i=1

|Di|
|D|

Imp(Di) (6.2)

where D = D1 ∪ ... ∪Dn.
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Using impurity estimation, we can assess the ability of each feature to split a parent node

D into leaves D1, ..., Dn. For that, we look at the purity gain Imp(D)−Imp({D1, ..., Dn}).
Since we use entropy to measure purity of the splits, the purity gain is called the infor-

mation gain splitting criterion as it measures the increase in information about the class

gained by including the feature, so that the feature which contributes to the highest in-

formation gain is chosen at each step. If we are looking for the best split of the instances

with the same parent, the impurity of the parent itself can be ignored and we can look

for the feature which results in the lowest weighted average impurity of the children.

Flach (2012, p. 137) defines the algorithm described above as follows:

Data: data D; set of features F .

Result: feature f to split on.

Imin ← 1;

for each f ∈ F do

split D into subsets D1, ..., Dn according to the values vi of f ;

if Imp({D1, ..., Dn}) < Imin then

Imin ← Imp({D1, ..., Dn});
fbest ← f ;

end

end

return fbest

Algorithm 1: BestSplit-Class(D,F) – find the best split for a decision tree

The learning process goes as follows: given the training data with the set of features, the

algorithm learns how to partition the training instance space given the set of features and

their values. It grows the tree for the training data, identifying the order of feature appli-

cation on the basis of the purity of splits at each point. Given the test data, the algorithm

is able to assign the classes learned on the training data instances to the unlabelled test

instances. Thus, the tree generalises the training data.

6.2.2 Practical implementation

We have used the DT classifier implementation provided with the NLTK toolkit (Bird

et al., 2009). Additionally, we apply some modification to the feature space.

The DT classifier puts a particular feature value at each node: for example, if we could

describe our classification task with binary-valued features, the values that the classifier

would consider at each split would be in the form if featurei = True then ... else ....

However, since the semantic measures return real numbers, our feature set consists of

real-valued features. In general, it is possible to use real-valued features with a decision
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tree classifier: the logical expressions used in that case might look like if cosN = 0.6891

then ..., but it is clear that in our case such a tree would grow unmanageably large. At the

same time, we might not want to distinguish between close feature values, for example,

between cosN = 0.6891 and cosN = 0.6892 or even cosN = 0.7000. The first step is to find

a way to optimise the feature space to make it easier for the feature selection algorithm

to order the features.

We apply feature binning which allows us to convert each real-valued feature in our original

feature set into a set of binary features for each bin. For example, suppose we have a range

of values for the cosN feature which are spread in the range of [−1,+1]. We can split this

range in 20 uniform bins each spanning 0.10 of the range, so that we have the set of bins

{bin1 = [−1.0,−0.9), ..., bin20 = [+0.9,+1.0]}. The classifier will then go through each

of the bins checking whether the cosN value falls within a particular range. For example,

the classifier can learn rules like “if ‘cosN ∈ bin1’ is True then return class −1” which is

equivalent to learning that if −1.0 ≤ cosN < −0.9 the combination should be assigned

to the class of incorrect instances. In practice, however, setting the bins in a uniform

manner is likely to produce a set of uninformative features. For example, the cosN values

in our dataset rarely fall below 0 so the classifier will not learn much from the first 10 bins

if those are set up uniformly. At the same time, the values are more densely distributed

between 0.2 and 1.0 with some of the ranges containing more values than others. This

suggests that some important distinctions can be missed by the ML algorithm if the bins

always cover a predefined range that does not reflect the actual distribution of the values.

Instead, we look at the distribution of the values and set the bins accordingly. Table 6.1

shows how values for the cosN feature are distributed in our data for the ANs and VOs,

and how bins are formed according to the distribution of values.

Bin cosNANs cosNV Os

1 [0.178, 0.458) [0.103, 0.238)

2 [0.458, 0.809) [0.238, 0.443)

3 [0.809, 0.870) [0.443, 0.653)

4 [0.870, 0.892) [0.653, 0.756)

5 [0.892, 0.906) [0.756, 0.818)

6 [0.906, 0.917) [0.818, 0.853)

7 [0.917, 0.928) [0.853, 0.887)

8 [0.928, 0.936) [0.887, 0.912)

9 [0.936, 0.948) [0.912, 0.939)

10 [0.948, 0.969] [0.939, 0.979]

Table 6.1: Distribution of cosN values on the AN and VO combinations

The general idea behind this procedure is that each bin now contains approximately the

same number of feature values, and this allows us to group feature values that are close
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to each other while also attaining a suitable level of feature granularity and reducing

feature space dimensionality. The classifier then learns the order of feature application

using information gain: for example, it might learn that checking whether a cosN value

falls within bin10 reliably identifies instances of a particular class +1 and place this rule

closer to the root of the DT.

Most of the features have their values ranging from 0 (or, theoretically possible −1 for

the cosine measures) to +1. VLen, RDens and num have their values in a different range,

so we apply normalisation by dividing the values by the maximum value for each feature.

This normalisation step simply puts the values for the three features on the same scale as

the values of other features.

In all our experiments on the annotated dataset, we apply 5-fold cross-validation and

report average accuracy over the folds. The full set of ANs and VOs is split into 5 subsets

with 80% in each of the splits used for training and 20% for testing. We keep the AN

and VO error rate in the training and test sets, as well as for each adjective or verb,

approximately the same across the splits to avoid any bias.

The full feature set contains 14 features, with 13 features derived from the semantic

measures, and 1 feature which represents adjective or verb identity. We hypothesise that

the introduction of this feature might help the classifier learn that, for example, an AN

containing classic has a higher chance of being incorrect, as most of the ANs with this

adjective in the learner data are incorrect and involve confusion with classical. We also

hypothesise that it facilitates learning correlation between the adjective and other feature

values: it might be the case that ANs with an adjective adj1 have on average higher

cosN values than ANs with an adjective adj2. This feature helps the classifier establish

such dependencies between the adjective and the values of the semantic measures. For

instance, in our data, ANs with the adjective true have significantly higher cosines between

AN vectors and vectors for their constituent nouns than ANs with the adjective false.

Intuitively, the ANs with true are closer to the original meaning of the noun: for example,

true happiness is more similar to happiness than false happiness is.

6.3 Results

In this section, we present the results of the ED experiments on the annotated AN and

VO datasets.

6.3.1 AN dataset

The best results in these experiments were obtained with the mult model. We note that

in the experiments with the semantic models in Chapter 5 the mult model generally

outperformed other models as well.
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We ran ablation tests incrementally removing features that did not improve classifier

performance in order to find an optimal feature set. The best-performing feature set for

the mult model on the OOC annotation uses a combination of three features including

adjective, cosN and RDens, while for the IC annotation the best-performing feature set

includes adjective, VLen, densAll, RDens, num, NOverA and NOverN features. In general,

the measures that assess the semantic neighbourhood of the model-generated vectors,

such as the ones based on density or neighbours overlap, have performed well in the

experiments described in Chapter 5 as well (see Tables 5.5 to 5.9).

At the same time, the sets of best performing features in the classification experiments

do not exactly coincide with the semantic measures that showed the highest differences

on the annotated AN dataset (Tables 5.10 and 5.11). We conclude that although the p

values reported in Tables 5.10 and 5.11 show that some semantic measures can distinguish

one group of ANs from another, when the measures are used as features for a classifier

the results depend on how these features interact with each other as well as on their

individual discriminativeness across the testset. We have also found that the feature

encoding adjective interacts with other features in the feature set. Figure 6.1 illustrates

a small part of the DT constructed using the best performing feature set on the IC

annotation.

Figure 6.1: Decision Tree classifier pseudocode.

Figure 6.1 shows how interaction of feature values for num and VLen in combination with

the adjective identity feature can help classify the two ANs containing adjective large as

correct (class 1) or incorrect (class -1).

In Table 6.2 we report the results for the OOC and IC annotation. The accuracy is

reported with its mean ± standard deviation over the 5 data splits. We compare the DT

classifier results to those obtained with the baseline system described in Chapter 4, as

well as to the lower and upper bounds set as before. The results show that a classifier

that uses the output of the semantic models as features outperforms the comparison-based

baseline system by a large margin.
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Type Classifier Baseline Lower Upper

accuracy system bound bound

OOC 0.8113 ± 0.0149 0.3810 (0.5313) 0.7889 0.8650

IC 0.6535 ± 0.0189 0.4624 (0.4937) 0.5084 0.7467

Table 6.2: Decision Tree classification results on ANs

6.3.2 VO dataset

Similarly to the experiments on the AN dataset, we run the classifier on the VO examples

using the mult model.

We ran ablation tests and found that the best-performing feature set for the mult model

on the OOC annotation uses a combination of four features including verb, cosV, dens

and OverN, while for the IC annotation the best-performing feature set includes VLen,

cosV, RDens, num and OverV. We note that the features that perform well with the ML

classifier also showed good performance in the previous experiments (see Tables 5.14 to

5.18) as well.

In Table 6.2 we report the results for the OOC and IC annotation. The accuracy is

reported with its mean ± standard deviation over the 5 data splits, and the ML classifier

results are compared to the results of the baseline system as well as to the lower and

upper bounds.

Type Classifier Baseline Lower Upper

accuracy system bound bound

OOC 0.6577 ± 0.0166 0.4969 (0.5220) 0.5557 0.8217

IC 0.6491 ± 0.0188 0.6048 (0.5997) 0.6086 0.8467

Table 6.3: Decision Tree classification results on VOs

We see that the ML classifier that uses the semantic models to derive its features outper-

forms the baseline system. The difference on the IC-annotated dataset, however, is only

0.0443. We see that the lower bound is itself hard to beat: for example, the lower bound

for the IC annotation is slightly higher than 0.60. The classifier does not reach the upper

bound, showing that there is still room for improvement.

6.4 Discussion

Our results in the previous section show that a classifier that uses the output of the

semantic models as features outperforms the comparison-based baseline system and shows

good accuracy. Comparison of the accuracy to the lower bound shows how well the

classifier performs in identifying whether a combination is correct or incorrect. However,
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in §2.5 we have motivated the usefulness of reporting other evaluation measures for the

ED systems. In particular, we believe that the systems should be oriented towards high

precision, therefore precision of the ED algorithm should be discussed when reporting

the results. Equation 2.11 in §2.5 shows that precision of less than 0.5 on the class of

errors means that the system misidentifies correct use as an error more frequently than it

correctly detects an error. When we discuss precision, we refer to the threshold of 0.5 as

a reasonable threshold for measuring system reliability.

In this section, we analyse the classifier’s performance in more detail. We report the

precision and recall on the classes of correct and incorrect instances separately. Then,

we also look at how the classifier performs on the different types of errors annotated

in our datasets: for example, how it performs in identifying errors that are caused by

semantically-related confusion or by form-related confusion.

6.4.1 AN dataset

Table 6.4 reports precision and recall for the classifier on the annotated AN dataset, as

well as the F1- and F0.5-measures. Since we focus on precision, we mark the precision

values in bold.

Type Correct Incorrect

P R F1 F0.5 P R F1 F0.5

OOC 0.8193 0.9762 0.8909 0.8465 0.7500 0.2488 0.3736 0.5346

IC 0.6173 0.7226 0.6658 0.6358 0.7017 0.5898 0.6409 0.6760

Table 6.4: Performance on correct and incorrect ANs

Our classifier achieves good precision values with respect to both OOC and IC annotation,

on correct and incorrect examples. In particular, we note that P is well above 0.5 on both

classes and with respect to both types of annotation. This shows that the implemented

ED system is helpful in guiding a learner to text regions in need of reformulation and that

it can be trusted with the instances it identifies as errors. For example, P = 0.75 on the

instances annotated as incorrect OOC means that 3 out of 4 cases detected as errors by

the system are indeed annotated as errors in our dataset.

Recall on the instances annotated as incorrect OOC is only 0.2488. This can be explained

by the fact that the OOC data is highly skewed: about 79% of the ANs in this dataset

are correct. The classifier has many more examples of the correct instances to learn from

and, as a result, has higher coverage for the class of correct instances. The classifier’s

performance on the IC dataset is more consistent since the dataset is more balanced.

We also investigate the performance of the classifier on the different error types. Since

the classifier does not assign particular error tags to the ANs, its performance on different
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error types can only be measured in terms of the error rate in assigning an instance

belonging to a particular error type to the appropriate class: for example, classic dance is

annotated with C-JF-N, since it is correct OOC but incorrectly used IC. If this example

is assigned by the classifier to the class of correct OOC and IC instances, it will boost

the classifier’s performance on the correct OOC instances but lower it on the incorrect IC

instances. Then, if there is a sufficient number of such misclassified C-JF-N examples, we

can say that it is problematic for the classifier to identify form-related errors.

Since the majority baseline on the ANs annotated OOC is very high (79% of ANs are

correct), the classifier achieves good performance on the class of correct instances and

performs worse on the class of incorrect ones. The highest error rate and the lowest

accuracy within the class of correct ANs is observed on the examples annotated as C-JF-N:

59% of such ANs are detected as correct by the classifier, which means that the error rate

on this particular group of instances is 0.41. For most other error types the error rate

is 0. It is interesting to note that the highest accuracy and the lowest error rate within

the class of incorrect ANs is observed on the instances annotated as I-JF-N: 71% of such

ANs are correctly identified as errors by the classifier. This suggests that the ANs that

involve form-related confusion are more readily recognised by the ED system as incorrect

since it might be the case that even when they are annotated as correct OOC they still

bear similarity to incorrect instances.

Among the ANs annotated as incorrect IC, the majority of ANs that are assigned to the

class of correct instances by the classifier belong to the group of combinations where the

error is caused by semantically related confusion (tag S): 70% of missed errors are on

the ANs with semantically-related confusion, while only 19% of those are on form-related

confusion. The instances which are incorrect due to some confusion which cannot be

explained by semantics or form relation (tag N) prove to be the easiest to detect – only

11% of missed errors belong to this category. However, this distribution is also subject

to the original distribution of error types in our data: as Table 3.10 shows, 56.20% of all

errors in ANs are due to semantically-related confusion, while 27.85% are due to form-

related confusion and 15.95% are due to other reasons.

The accuracy of ED within the groups of ANs which are annotated using S is only

54%, while for F it is 69% and for N it is 76%. It appears that the classifier relying

on semantically-motivated features misses a number of cases where the original AN and

its correction are semantically similar: for example, it misses the errors in *big|great

anger, *biggest|greatest painter and *small|short speech. Since the ANs in these pairs are

semantically similar, the features based on their semantic representations might not be

discriminative enough. In contrast, the classifier is more effective in detecting errors in

cases where the original AN and its correction are similar in form or not related.

Finally, Table 3.9 shows that most errors (66.50% of all errors in ANs) are due to the

confusion between the correct and the chosen adjective, while 27.66% of all errors are due
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to the confusion between the correct and the chosen noun. At the same time, it appears

that detecting an error when it is due to an incorrectly chosen adjective is easier for the

classifier as it correctly identifies that there is an error 66% of the time, while it appears

to be harder to identify an error if it is caused by the choice of a noun as only 47% of such

cases are recognised by the classifier. The possible reason for this is that in our dataset

we have a much smaller set of adjectives than nouns and the classifier learns the confusion

patterns for the adjectives more reliably than for the nouns.

6.4.2 VO dataset

Table 6.5 presents the results for VO combinations.

Type Correct Incorrect

P R F1 F0.5 P R F1 F0.5

OOC 0.6497 0.8688 0.7434 0.6842 0.6837 0.3767 0.4858 0.5879

IC 0.6027 0.3192 0.4174 0.5118 0.6637 0.8630 0.7503 0.6958

Table 6.5: Performance on correct and incorrect VOs

The precision values for both OOC and IC annotation and on both classes of correct

and incorrect instances are higher than 0.5, with P on incorrect instances slightly higher

than on the correct ones. We conclude that the classifier can reliably detect errors in the

VO datasets. Recall values for the OOC and IC annotation on the correct and incorrect

instances are in complementary relation to each other: high recall on the class of correct

OOC instances complemented by low recall on the class of incorrect ones shows that the

classifier tends to assign more VOs to the class of correct instances and most misclassified

examples are the errors missed by the classifier; at the same time, high recall on the class of

incorrect IC examples with low recall on the class of correct ones means that the classifier

tends to assign more VOs to the class of errors and most misclassified examples are correct

VOs misclassified as errors. The majority class for the OOC annotation is represented by

correct VOs (55.57% of VOs) while the majority class for the IC annotation is represented

by incorrect ones (60.86% of VOs). We suppose that the changes in the recall values are

due to the classifier choosing the majority class more frequently.

For the OOC annotation, the classifier performs well on the class of correct combinations,

and for most error types associated with the correct OOC annotation the error rate equals

0. The highest error rate of 0.15 for the class of correct combinations is observed on the

VOs annotated as C-VN-N. At the same time, the classifier shows poorer performance on

the incorrect instances which represent the minority class for the OOC annotation: among

the categories that show the worst performance are the VOs annotated as I-VM-N which

require a change of the direct object to indirect one as in the case of *ask explanation

instead of ask for explanation, or *pay study instead of pay for study. The error rate on



CHAPTER 6. ERROR DETECTION ALGORITHM 149

this group of VOs is 0.75 which shows that most of them are misidentified as correct by

the classifier. The best performance is achieved by the classifier on the VOs annotated as

I-VF-N – the error rate on these combinations is 0.31 which is the lowest for the incorrect

IC VOs. The examples of this type of VO include *rise child instead of raise child and

*loose contact instead of lose contact.

For the IC annotation, most of the misclassified instances are the correct VOs tagged

as errors by the classifier. The classifier’s performance on the error type-specific subsets

is quite stable: among instances which are annotated with S tag, 83% are recognised as

errors by the classifier, while for the F, N and M error types the recognition rate is as

high as 87%, 85% and 93%, respectively. These figures show that the classifier generalises

well on the incorrect instances of different subtypes, however, its performance on the

correct combinations is poorer. The distribution of missed errors is as follows: 42%

of those are of the type N (for example, *take|get hi-fi), 32% are the errors of type S

(*rise|increase punctuality), 19% are of type F (*attain|attend course), and the other 7%

are the errors of type M (*learn|learn about internet). This distribution is in accordance

with the distribution of error types in the data (see Table 3.10) with the N type being the

most frequent (37.64% of all the errors) and M type being the least frequent (13.90%).

Table 3.9 shows that most errors (76.28% of all errors in VOs) are due to the confusion

between the correct and the chosen verb, while 19.37% are due to the confusion between

the nouns. Unlike errors in the ANs discussed earlier, 71% of all the errors missed by the

classifier in the VOs are errors caused by the incorrect choice of the verb, and recognition

rate on such errors is 68%. At the same time, 83% of the errors caused by the incorrect

choice of a noun are detected by the classifier.

6.5 Summary

We have discussed how ED in content word combinations can be cast as a binary classi-

fication task and presented an ML classifier that performs ED on the content word com-

binations. Our preliminary experiments showed that a Decision Tree classifier achieves

good accuracy and precision on this task. We note that future research in this area can

investigate further what type of ML classification algorithms are most appropriate for

this task. The novelty of our approach is that we use the features based on measures of

semantic anomaly described in Chapter 5 and the total number of features is 14.

Our experiments have confirmed that features derived from the semantic measures perform

well on this task. In particular, measures based on the neighbourhood of the model-

generated vectors result in features that show the highest performance. The particular

ranking of the features and the order of their application to the classification task are

defined by the algorithm and the interaction of features. We have applied feature binning
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to convert the real-valued features into binary features to reduce the sparsity of the feature

space and boost informativeness of individual features.

We have obtained good accuracy on all annotated datasets for both ANs and VOs. The

results presented in §6.3 show that the classifier based on semantic features outperforms

the algorithms that have previously been applied to this task (see Chapter 4) by a large

margin. We note that the DT classifier using semantic features beats the baseline which

for this task is quite high. However, we also note that the classifier’s performance does

not reach the estimated upper bound. In particular, the upper bound on the OOC and

IC annotation of the VO examples is rather high (0.8217 and 0.8467 respectively) and the

classifier’s accuracy is about 0.2 below it. This shows that there is room for improvement

on the results presented in this work.

In §6.4, we analysed the performance of the classifier on the ANs and VOs in more

detail. We discussed why it is important to focus on precision of the ED algorithms and

reported precision, recall and F1-measures on the classes of correct and incorrect instances

separately. We have also discussed the cases that are most difficult for the classifier to

detect: for example, a significant number of missed errors in the AN dataset belong to

the S error type where the chosen incorrect word is semantically related to the correct

one. We conclude that a classifier that uses semantic information to derive features might

perform worse on the cases where the confusion is caused by semantic similarity.



Chapter 7

Conclusions

7.1 Contributions

This thesis has addressed the task of error detection in content word combinations, which

is to date an under-explored area in learner language research. The previous research

in error detection and correction has mainly focused on other types of errors, or per-

formed error correction rather than detection. We have focused on adjective–noun and

verb–object combinations. Our analysis of learner data has shown that these types of

combinations cover a substantial portion of learner errors in the use of content words, and

we hope that the results presented in this work will motivate the use of similar approaches

to address error detection in other types of content word combinations.

In Chapter 2, we reviewed the field of error detection and correction in learner data.

The tasks related to learner language have attracted much attention in recent years, but

the research has primarily focused on detection and correction of grammatical errors and

errors in function words. We show that errors in content words should be addressed with

different methods and that they are challenging for existing algorithms. We also show

that state-of-the-art approaches to error detection in content word combinations have a

number of limitations, and the current work aims to address this gap in the field.

Content word combinations allow higher variability and, in general, there are no clear-cut

rules of English that dictate the correct use of content words. In this work, we mainly

focus on error detection since we believe that learners benefit most from it and should

be notified of the incorrectly chosen content words in their writing. We argue that error

correction can be performed in an interactive way when the learner can be presented with

possible alternatives to incorrect word combinations and allowed to make the final choice

of correction.

The relative lack of attention to errors in content word combinations has resulted in

an absence of thorough analysis of the typical errors committed by learners, as well as

datasets exemplifying such errors that can be used by the NLP community. In this work,

151
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we have collected and presented a dataset of errors in AN and VO combinations that

are not attested in a native corpus of English. These combinations, on the one hand,

illustrate typical confusion patterns, and, on the other hand, are challenging for existing

error detection algorithms which are based on the idea that “correctness” in content

word combinations can be equated with higher fluency. We have devised an annotation

scheme for the datasets which allows us to annotate the combinations with respect to their

correctness and the possible source of error. The datasets of 798 AN combinations and

800 VO combinations are publicly available at http://www.ilexir.com/ and http://

www.cl.cam.ac.uk/~ek358/data/ together with the annotation scheme and annotation

guidelines. We believe that the annotation scheme that we devised for these datasets can

easily be applied to other types of content word combinations, or extended if necessary.

Chapter 3 discusses collection and annotation of the data.

In Chapter 4 we described a simple algorithm for detecting errors in content word com-

binations based on the idea that the most fluent content word combinations should be

chosen over less fluent ones since they are more “correct”. This approach has previ-

ously been applied to error detection in content words, and it is mainly aimed at writing

improvement rather than error detection per se. We showed the limitations of this ap-

proach and, in particular, discussed why it would not help detecting errors in learner

writing which contains a substantial number of rare or corpus-unattested combinations.

We maintain that approaches to error detection which are based on modelling the mean-

ing of the combinations using compositional distributional semantics are more promising

than approaches based on comparison of corpus occurrence counts.

Chapter 5 discusses implementation of models of compositional distributional semantics

and their application to error detection in content words. To the best of our knowl-

edge, this is the first work which treats the task of error detection with models based

on semantics. The novelty of this work is that we not only show that semantic models

can be applied to this task, but we also explore the properties of the model-generated

representations that highlight the differences between correct and incorrect combinations.

Finally, we have also shown how to cast the task of error detection in content words as a bi-

nary classification problem. In Chapter 6 we presented and discussed the implementation

of a machine learning classifier which uses features derived from semantic representations.

We showed that this classifier achieves high accuracy and precision on the datasets of AN

and VO combinations and outperforms the previous approaches to this task.

7.2 Directions for Future Research

In §2.3.2 we presented a three-step algorithm that describes error detection and correction

in content words. We also discussed that previous approaches mainly focused on steps two

(search for alternatives) and three (error correction) skipping step one (error detection),
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or merged the steps, making error detection dependent on the set of alternatives and,

thus, on correction. However, we believe that error detection is an important step that

should be performed independently of error correction and refer to Leacock et al. (2009)

who showed that a mere identification of the error location is often enough for the learners

to rewrite the text and correct the errors themselves. In this work, we have focused on

step one of the EDC algorithm, and our future research will address the subsequent steps

related to error correction.

Step two of the EDC algorithm is concerned with the search for possible alternatives. The

alternatives can be found among the set of related words, such as synonyms and hypo-

/hypernyms (see Chapter 4), or nearest neighbours in the semantic space (see Chapter

5). The majority of the errors in our annotated datasets are caused by confusion between

semantically related words or words spelled or pronounced similarly, so that the confusion

set consisting of such related words would cover a substantial amount of error cases (up

to 85% of the errors in ANs and up to half of the errors in VOs in our datasets). Manually

created resources such as WordNet can provide us with high-quality data, but they might

not cover all possible related alternatives, and distributional semantics can help overcome

the bottleneck. The recent studies of Cahill et al. (2013) and Madnani and Cahill (2014)

also show that one can use high-quality manual resources like Wikipedia with its submitted

revisions to collect possible corrections on a large scale.

In step three, the collected alternatives should be assessed and the most appropriate

one should be suggested to the learner as a correction. In §2.3.2 as well as in §4 we

explained that previous approaches used metrics based on frequency of occurrence to

choose the correction, but we maintain that (i) “correctness” should not be equated with

fluency, and (ii) unlike error detection which should be performed on learner text in an

unambiguous manner, error correction should be treated as an open-ended task. Previous

research (Chodorow et al., 2010; Andersen et al., 2013) has shown that learners are able to

make informed decisions about the appropriate corrections when presented with possible

alternatives. Since content words express meaning, the appropriate correction depends on

the communicative intent of the learner. For example, an ED algorithm may identify that

*big conversation is incorrect, but a correction algorithm has no means of deciding whether

the learner meant important conversation, great conversation or long conversation. We

believe that error correction should be implemented as an interactive process where the

learner is presented with a number of possible alternatives, with some supporting examples

and explanations, from which they can choose the one that fulfils their communicative

goal.

We believe that an error correction algorithm should not focus on finding a single best

correction but rather provide the learner with a set of alternatives. It has been shown

before that many contexts license several alternative corrections even for function words

and the performance of the systems that are assessed on the basis of a single correction

is underestimated. For example, Tetreault and Chodorow (2008a) focused on the use
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of prepositions and showed that when only a single correction was allowed, the inter-

annotator agreement was only about 76%. Lee et al. (2009) found that annotators often

identified more than one possible correct construction in an experiment on the use of arti-

cles and noun number, and according to their experiment, an EDC system’s performance

may be underestimated by 18% or more if multiple possible corrections are not taken into

account. Our example with *big conversation illustrates the need for multiple corrections

for content words, and an advantage of the interactive error correction algorithm that we

propose here is that it can provide the learner with a set of corrections. We note, however,

that the ability to make informed choices may depend on learners’ language proficiency,

and the extent to which students at the lower levels of proficiency are able to choose the

appropriate corrections should be taken into account.

We have shown that a machine learning classifier using features based on compositional

distributional representations achieves good results. However, since the results do not

reach the upper bound, future research should investigate ways to improve and extend

the implementation of the algorithm at different stages, such as:

• Semantic space construction: The way the semantic space is set has a direct effect

on the output of the semantic models. For example, we use LMI as the weight-

ing scheme and SVD for space reduction, which can both produce negative values.

Since the semantic space has a direct geometric interpretation, negative values can

be interpreted as coordinates in the geometric space defining the direction of the

distributional vector. At the same time, positive values in the dimensions of the

distributional vectors are easier to interpret. Recent work (Lazaridou et al., 2013;

Vecchi, 2013) has used Positive Pointwise Mutual Information for weighting and

Non-negative Matrix Factorisation for dimensionality reduction. Vecchi (2013) re-

ported that these methods produce a semantic space of better quality, which has

been confirmed by the results in the semantic similarity task. We conclude that

further experiments are needed to verify whether a different setting of the semantic

space has an effect on the results in our task.

• Different models of compositional semantics: The best results in our experiments

were obtained with the simpler models of semantic composition. Future research

can investigate the application of other models, such as w.add (weighted additive)

and dl (dilation), which have been reported to outperform simpler models in other

tasks (Lazaridou et al., 2013; Vecchi, 2013).

• Additional measures for detecting semantic mismatch: The ED algorithm in our ex-

periments relies on the set of 14 features based on semantic representations. Future

research should investigate ways to extend the list of measures that can capture the

difference between semantic representations of correct and incorrect combinations.

Such measures can be informed by research on lexical and compound processing in



CHAPTER 7. CONCLUSIONS 155

cognitive science and psycholinguistics: for example, it has been shown that the fre-

quency of occurrence of the constituents within compounds has an effect on lexical

processing (Andrews et al., 2009; Juhasz et al., 2003; Pollatsek et al., 2000), and it

can be assumed that more frequent constituents generally produce more acceptable

combinations than rarer constituents. Family size measured as the number of dis-

tinct words (for example, nouns) a given modifier (adjective) can be seen to modify

in a corpus also has an effect on word combination processing times, and it can be

assumed that highly productive words correspond to more flexible semantics and

should be found more often in acceptable ANs (Vecchi, 2013).

In the current implementation, we have applied a rather generic ED algorithm that does

not distinguish between different types of erroneous words. At the same time, we have

noted that errors in content words are more diverse and less systematic than those in func-

tion words, and distinguishing between different types of adjectives or verbs might prove

to be helpful for ED. For example, Rozovskaya et al. (2014) have applied a linguistically-

motivated approach to grammatical verb error correction that makes use of the notion of

verb finiteness to identify triggers and types of mistakes. Boleda et al. (2012) and Vecchi

(2013) have looked into different types of adjectival modification, distinguishing between

intersective use of colour terms such as white dress, subsective use of colour terms such

as white wine, and intensional use of adjectives such as former wife. Vecchi (2013) shows

that semantic treatment for these different types of adjectival modification needs to be

differentiated. On the one hand, the different types of adjectives and verbs can trigger

different types of errors, and on the other, they can contribute differently to the semantic

representations of the ANs and VOs. Future research can further investigate ways to use

information about different types of adjectives and verbs in ED.

Another factor that is not directly modelled by the semantic representations used in this

work is the effect of the particular context on the ANs and VOs. We have noted that

the semantic models applied in this work can model the general representation for the

word combinations, and we evaluate the ED approach on the type-based annotation (see

the discussion in §3.1). Future work can investigate ways to introduce context-sensitive

information into semantic models. One promising approach is to use topic coherence which

shows the semantic relatedness of the items in a given set of words (Steyvers and Griffiths,

2007; Newman et al., 2010), and therefore, can be assumed to drop in a context where

an incorrectly chosen word is used. The introduction of context-sensitive information in

semantic models has also been considered by Erk and Padó (2010), Reisinger and Mooney

(2010), and Thater et al. (2011).

In recent years, context-predicting models, commonly referred to as embeddings or neural

language models, have gained much popularity (Bengio et al., 2003; Collobert and Weston,

2008; Turian et al., 2010; Collobert et al., 2011; Huang et al., 2012; Mikolov et al., 2013).

Within this type of model, the weights in a word vector are assigned so as to maximise the



CHAPTER 7. CONCLUSIONS 156

probability of the contexts in which the word is observed in the corpus rather than set,

relying on various criteria, on the word vectors constructed using the contexts (Baroni

et al., 2014b). Baroni et al. (2014b) have performed a thorough comparison of the per-

formance of distributional semantic models built in the traditional way and those based

on context prediction and shown that the latter outperform the former in a number of

tasks including semantic relatedness, synonym detection and analogy. It is interesting

to note that the only task in which the models set in the traditional way (Herdaǧdelen

and Baroni, 2009; Baroni and Lenci, 2010) outperformed the models based on word em-

beddings is selectional preference detection, which is close to the task we address in this

work. However, given the success of the models based on word embeddings on other tasks,

we conclude that future work should investigate the implementation of such models and

perform a comparison to the system used in this work.

Finally, we plan to investigate the application of the approach presented in this thesis to

ED in other types of content word combinations.
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K. Erk and S. Padó. Exemplar-based models for word meaning in context. In Proceedings

of the 48th Annual Meeting of the Association for Computational Linguistics (ACL

2010): Short Papers, pages 92–97, 2010.

S. Evert. The Statistics of Word Cooccurrences. PhD thesis, Stuttgart University, 2005.

M. Felice and Z. Yuan. Generating artificial errors for grammatical error correction. In

Proceedings of the Student Research Workshop at the 14th Conference of the European

Chapter of the Association for Computational Linguistics (EACL 2014), pages 116–126,

2014.

M. Felice, Z. Yuan, Ø. Andersen, H. Yannakoudakis, and E. Kochmar. Grammatical error

correction using hybrid systems and type filtering. In Proceedings of the 17th Conference

on Computational Natural Language Learning (CoNLL 2014): Shared Task, pages 15–

24, 2014.

R. De Felice and S. G. Pulman. A classifier-based approach to preposition and determiner

error correction in L2 English. In Proceedings of the 22nd International Conference on

Computational Linguistics (COLING 2008), volume 1, pages 169–176, 2008.

J. R. Firth. A synopsis of linguistic theory 1930-1955. In Studies in Linguistic Analysis,

pages 1–32. Oxford: Philological Society, 1957.

P. Flach. Machine Learning: The Art and Science of Algorithms that Make Sense of Data.

Cambridge: Cambridge University Press, 2012.



BIBLIOGRAPHY 162

J. L. Fleiss. Measuring nominal scale agreement among many raters. Psychological Bul-

letin, 76:378–382, 1971.

P. W. Foltz, W. Kintsch, and T. K. Landauer. The Measurement of Textual Coherence

with Latent Semantic Analysis. Discourse Processes, 25:285–307, 1998.
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Appendix A

Metadata statistics

Table A.1: L1s represented in the data.

Code Language 100 ANs All ANs 100 VOs All VOs

ak Akan 0 2 0 1

ar Arabic 0 12 2 15

as Assamese 0 0 0 1

bg Bulgarian 0 1 2 4

bn Bengali 0 2 0 0

ca Catalan 2 21 4 21

cs Czech 1 18 2 12

da Danish 1 4 2 5

de German 14 90 11 76

el Greek 11 111 16 81

en English 1 8 0 6

es Spanish 13 109 15 134

et Estonian 0 1 0 0

eu Basque 0 1 0 1

fa Persian 0 5 0 6

ff Fulani 0 2 0 0

fr French 13 74 10 85

gsw Swiss German 1 24 3 25

gu Gujarati 0 1 0 2

hi Hindi 2 14 0 10

hr Croatian 0 0 0 2

hu Hungarian 0 5 0 6

id Indonesian 0 2 0 1

it Italian 3 45 5 42

ja Japanese 2 16 2 21

Continued on next page
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Table A.1 – Continued from previous page

Code Language 100 ANs All ANs 100 VOs All VOs

km Khmer 1 1 0 0

kn Kannada 0 0 0 1

ko Korean 3 13 0 16

ku Kurdish 0 1 0 0

lv Latvian 0 0 0 1

men Mende 0 2 0 0

ml Malayalam 0 2 0 2

mr Marathi 0 2 0 0

ms Malay 0 0 0 1

my Burmese 1 1 0 0

nl Dutch 1 14 2 10

no Norwegian 0 0 0 1

pa Panjabi 0 4 0 1

pl Polish 15 58 6 46

ps Pashto 0 1 1 3

pt Portuguese 13 61 5 61

rm Romansch 0 0 0 1

ro Romanian 1 9 1 11

ru Russian 2 28 1 17

sd Sindhi 0 2 0 1

si Singhalese 1 4 0 3

sk Slovak 1 6 0 0

sl Slovene 0 2 0 2

sq Albanian 0 0 0 1

sr Serbian 2 4 0 0

sv Swedish 5 26 3 12

ta Tamil 0 2 4 14

te Telugu 0 2 0 2

th Thai 1 5 2 10

tl Tagalog 0 4 0 5

tr Turkish 0 9 3 17

ur Urdu 0 7 2 6

vi Vietnamese 0 0 0 2

yap Yapese 0 0 0 1

zh Chinese 17 103 11 95
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CEFR Level Exam 100 ANs All ANs 100 VOs All VOs

A1 (Basic User) LNRSFLE1 (Skills for Life, Entry 1) 0 2 0 2

A1–A2 (Basic User) KET (Key English Test) 6 49 8 55

A2 (Basic User) LNRSFLE2 (Skills for Life, Entry 2) 3 10 0 3

A2–B1 (Basic BEC1 (Business English Certificate 1) 0 2 2 6

to Independent User) BECP (Business English Certificate – preliminary) 5 45 6 44

Basic (∼A) 11% 12%

B1 (Independent User) PET (Preliminary English Test) 6 56 6 66

LNRSFLE3 (Skills for Life, Entry 3) 2 6 0 1

CELSP (Certificate in English Lang. Skills – Preliminary) 2 14 5 18

B1–C2 (Independent IELTSA (IELTS academic) 9 79 7 75

to Proficient User) IELTSG (IELTS general training) 4 28 5 32

B2 (Independent User) FCE (First Certificate in English) 15 125 16 117

BEC2 (Business English Certificate 2) 0 5 0 10

BECV (Business English Certificate – vantage) 5 36 4 35

LNRSFLL1 (Skills for Life, Level 1) 2 9 1 5

CELSH (Certificate in English Lang. Skills – Higher) 2 14 0 4

B2–C1 (Independent ILEC (International Legal English Certificate) 3 8 2 8

to Proficient User) ICFE (Cambridge English: Financial) 1 2 0 1

Independent (∼B) 40% 40%

C1 (Proficient User) CAE (Certificate in Advanced English) 17 158 18 154

BEC3 (Business English Certificate 3) 4 16 2 14

BECH (Business English Certificate – higher) 4 63 9 80

LNRSFLL2 (Skills for Life, Level 2) 0 0 0 4

CELSV (Certificate in English Lang. Skills – Vantage) 0 9 2 15

C2 (Proficient User) CPE (Certificate of Proficiency in English) 40 216 25 177

Proficient (∼C) 49% 48%

Table A.2: Exam types.

Year 100 ANs All ANs 100 VOs All VOs

1993 31 206 23 207

1997 3 18 0 11

1998 10 46 4 38

1999 2 26 3 31

2000 4 33 4 41

2001 6 49 10 43

2002 4 55 7 62

2003 5 82 10 78

2004 7 56 4 40

2005 14 82 10 83

2006 5 50 12 76

2007 10 73 6 60

2008 27 173 25 166

2009 1 2 0 0

Table A.3: Examination years represented in the data.



Appendix B

Content word combination datasets

Tables B.1 and B.2 present the datasets in more detail:

1. Column 1 contains the identifier for the adjective/verb.

2. Column 2 contains the adjective/verb.

3. Column 3 contains the estimation of the frequency of the combinations with the

adjective/verb in the BNC. The first figure represents the total number of occur-

rences (the number of tokens) of the ANs with the given adjective or the VOs with

the given verb in the BNC. The figure in brackets represents the number of types –

the count of the unique ANs with the given adjective or VOs with the given verb.

These counts show how productive the adjective/verb is in native data.

4. Column 4 shows the number of examples with the given adjective/verb in the

datasets.

5. Column 5 presents the error rate for the given adjective/verb calculated on the

annotated CLC FCE dataset. It is estimated as the proportion of ANs/VOs with

the given adjective/verb annotated with the codes RJ/RV. These error rates were

used for choosing the most problematic adjectives/verbs for language learners.

6. Column 6 presents the error rate for the given adjective/verb calculated on the

dataset using OOC annotation. It is estimated as the proportion of ANs/VOs

with the given adjective/verb annotated with the error code I out-of-context, addi-

tionally checking that the combination is incorrect due to the incorrect use of the

adjective/verb (the error code on adjective/verb). The combinations annotated as

incorrect due to the incorrect use of nouns do not contribute to calculation of the

error rate. Error rates higher than 0.50 are marked in bold.

7. Column 7 presents the error rate for the given adjective/verb calculated on the

dataset using IC annotation. It is estimated as the proportion of ANs/VOs with the
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given adjective/verb annotated with the error code C or I out-of-context, and further

annotated as incorrect in context due to the incorrect use of the adjective/verb (the

error code on adjective/verb). The combinations annotated as incorrect due to the

incorrect use of nouns do not contribute to calculation of the error rate. Error rates

higher than 0.50 are marked in bold. The error rates for in-context annotation are

always higher or equal to those for out-of-context annotation;

8. Column 8 presents the error codes used on the adjectives/verbs in the ANs/VOs

annotated as incorrect, with the list of corrections suggested by the annotators.

Table B.1: AN combinations.

N Adjective Frequency Frequency Error rate Error rate Error rate Confusion set

(BNC) (dataset) (CLC) (OOC) (IC)

1 actual 5798 (1635) 6 0.590 0.00 0.50 S: current, existing

2 ancient 3922 (1293) 8 0.018 0.00 0.125 S: old

3 appropriate 5964 (1341) 7 0.154 0.00 0.14 S: suitable

4 bad 7338 (1096) 29 0.005 0.03 0.10 S: inappropriate, poor

N: big, serious

5 best 16181 (2413) 42 0.001 0.00 0.12 S: favourite, highest

N: major, most + adj

6 big 18157 (3089) 54 0.040 0.20 0.22 S: broad, extensive,

great, heavy, high, large,

long, serious, strong

7 bigger 1496 (671) 15 0.108 0.40 0.47 S: greater, larger,

longer, wider

8 biggest 3938 (1169) 15 0.024 0.00 0.07 S: greatest

9 certain 16279 (2643) 13 0.045 0.08 0.54 S: detailed, several,

some, specific, various

10 classic 2139 (872) 3 0.313 0.00 1.00 F: classical;

S: typical

11 classical 2655 (738) 5 0.063 0.20 0.60 F: classic;

S: ordinary, standard

12 clear 6645 (1190) 6 0.058 0.00 0.33 F: clean;

N: clever

13 common 11893 (1626) 16 0.363 0.00 0.56 S: joint, ordinary,

standard, team, typical;

N: political

14 convenient 798 (343) 7 0.176 0.00 0.14 S: suitable

15 correct 3027 (768) 6 0.088 0.00 0.17 S: wrong

16 deep 5997 (1336) 6 0.027 0.00 0.33 N: best, great, kind,

solemn

17 different 33964 (2827) 33 0.003 0.00 0.15 S: distinctive, other,

various

18 economic 17165 (1439) 7 0.143 0.00 0.29 S: financial, profitable

19 economical 164 (101) 25 0.750 0.48 0.92 F: economic

D: economy

N: rich

20 elder 841 (129) 4 0.391 0.25 1.00 F: elderly, older

21 electric 2801 (583) 5 0.185 0.20 0.80 F: electrical, electronic;

N: credit

22 electrical 1816 (360) 4 0.192 0.25 0.25 F: electric

23 false 2366 (564) 2 0.172 0.00 0.50 S: wrong

24 far 3894 (681) 4 0.095 0.25 0.25 S: distant

25 fast 1787 (616) 11 0.044 0.09 0.09 S: fast-changing,

fast-moving

Continued on next page
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Table B.1 – Continued from previous page

N Adjective Frequency Frequency Error rate Error rate Error rate Confusion set

(BNC) (dataset) (CLC) (OOC) (IC)

26 full 18113 (2302) 9 0.033 0.22 0.44 S: complete,

comprehensive, deep,

great, total, profound

27 funny 1435 (387) 14 0.090 0.00 0.21 F: fun;

S: strange

28 further 18881 (2813) 10 0.010 0.10 0.30 S: additional, other

29 good 47937 (4206) 56 0.004 0.00 0.02 S: big

30 great 34470 (4691) 33 0.007 0.06 0.24 S: big, good, high, huge,

large, marked, sharp,

significant, small,

strong, substantial,

tiny

31 greatest 4248 (1156) 9 0.015 0.11 0.44 S: best, biggest, highest

32 hard 7228 (1172) 9 0.040 0.00 0.22 F: hard-working;

S: strong

33 heavy 6662 (1575) 12 0.043 0.33 0.33 N: serious, sharp,

steep, strong

34 high 22199 (2611) 5 0.017 0.60 0.80 S: great, large

35 historical 4436 (874) 13 0.268 0.23 0.31 F: historic, history;

N: traditional

36 important 18073 (1860) 32 0.015 0.06 0.44 S: large, major, serious,

sharp, significant;

N: big, famous,

well-known

37 incorrect 296 (185) 2 0.056 0.00 0.00 –

38 large 26736 (3382) 9 0.042 0.33 0.55 S: baggy, big, broad,

long, significant,

strong, substantial

39 latest 5262 (1387) 6 0.022 0.00 0.00 –

40 magic 1018 (331) 1 0.273 0.00 0.00 –

41 main 19245 (2020) 10 0.008 0.00 0.20 S: most important

42 near 1027 (229) 3 0.116 1.00 1.00 F: nearby

43 nearest 1610 (570) 4 0.056 0.00 0.25 S: immediate

44 nice 4483 (1233) 54 0.007 0.09 0.18 S: best, good, kind,

lovely

45 particular 20424 (2730) 7 0.053 0.00 0.43 S: special

N: characteristic,

typical

46 precious 1119 (457) 5 0.102 0.20 0.60 S: great, luxurious,

valuable

47 present 9876 (1746) 4 0.063 0.00 0.00 –

48 proper 4845 (1386) 14 0.099 0.00 0.43 S: appropriate,

respectable, right,

suitable;

N: individual, genuine,

normal, own, real,

regular

49 rapid 2752 (663) 1 0.667 0.00 0.00 –

50 short 10679 (1441) 13 0.014 0.08 0.23 S: brief, slight

51 small 33279 (4224) 21 0.012 0.48 0.52 S: brief, light, minor,

narrow, restricted,

short, tight

52 soft 3719 (1122) 5 0.073 0.00 0.20 N: light

53 strong 10189 (1763) 19 0.088 0.63 0.63 S: big, extreme, fierce,

great, heavy, high,

intense, loud, profound,

serious, severe, strict;

Continued on next page
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N Adjective Frequency Frequency Error rate Error rate Error rate Confusion set

(BNC) (dataset) (CLC) (OOC) (IC)

N: considerable, deep,

extensive

54 suitable 2911 (1033) 8 0.034 0.00 0.00 –

55 true 5366 (1771) 6 0.074 0.00 0.33 S: genuine, real

56 typical 2898 (1281) 18 0.135 0.00 0.44 S: authentic, familiar,

local, traditional

57 unique 2574 (865) 8 0.143 0.00 0.25 S: exclusive, only

58 usual 4350 (1614) 4 0.114 0.00 0.00 –

59 various 13641 (2357) 10 0.069 0.10 0.30 F: varied;

S: different

60 whole 20141 (2222) 15 0.008 0.00 0.13 S: complete, full;

N: real

61 wrong 3806 (771) 12 0.032 0.08 0.50 S: bad, false, inaccurate,

mistaken, unfounded,

unsuitable
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Table B.2: VO combinations.

N Verb Frequency Frequency Error rate Error rate Error rate Confusion set

(BNC) (dataset) (CLC) (OOC) (IC)

1 achieve 6039 (1170) 8 0.103 0.375 0.625 S: reach;

N: conduct, fulfil, meet

2 acquire 2849 (934) 5 0.107 0.40 0.80 S: achieve, get

3 adapt 509 (277) 6 0.116 0.00 0.50 M: adapt to;

F: adopt;

N: apply

4 adopt 3348 (729) 8 0.134 0.375 0.625 F: adapt to;

N: gain, have, hire

place

5 affect 5903 (1568) 5 0.039 0.00 0.00 –

6 answer 3095 (401) 6 0.021 0.50 0.50 S: reply to, respond to;

N: do, sit

7 ask 11755 (2942) 23 0.011 0.61 0.70 M: ask about / for;

N: order

8 assure 543 (337) 4 0.055 0.00 0.50 S: guarantee

9 attain 507 (217) 3 0.073 0.67 1.00 F: attend, maintain

10 attend 4170 (627) 20 0.059 0.65 0.65 M: attend to;

F: attain;

S: go to, participate in;

N: expect, use

11 avoid 5857 (1911) 14 0.043 0.07 0.29 N: prevent

12 bare 102 (38) 2 0.091 1.00 1.00 F: bear

13 bear 4307 (1043) 6 0.083 0.00 0.00 –

14 bring 15386 (4071) 19 0.065 0.00 0.16 F: bought (∼brought);

N: work

15 care 393 (210) 5 0.095 1.00 1.00 M: care about;

S: look after

16 catch 4954 (1227) 8 0.105 0.125 0.875 S: get, grab;

N: collect, take

17 close 4223 (693) 7 0.028 0.13 0.13 N: switch off

18 concern 3723 (1562) 9 0.014 0.00 0.11 N: engage, hire

19 contain 10276 (2836) 10 0.183 0.00 0.40 S: have, hold, include;

N: run

20 cook 584 (188) 5 0.037 0.20 0.20 S: bake

21 cross 3358 (727) 5 0.066 0.60 0.80 S: go through;

N: go over, fly over

22 describe 6819 (2295) 12 0.022 0.00 0.08 S: express

23 do 36998 (6124) 12 0.102 0.25 0.25 N: exact, get, give,

play, take

24 earn 2332 (630) 5 0.018 0.60 0.80 S: acquire, get;

N: generate, meet,

satisfy

25 effect 488 (266) 11 0.750 0.82 1.00 F: affect;

N: experience

26 enjoy 6147 (1540) 27 0.006 0.00 0.07 S: benefit from, like

27 ensure 3283 (1067) 4 0.034 0.00 0.50 M: ensure for

S: confirm

28 experience 2316 (881) 8 0.013 0.00 0.00 –

29 fall 1900 (620) 5 0.333 0.60 0.60 F: feel

N: have

30 feel 9059 (1955) 14 0.033 0.14 0.21 N: see, smell

31 gain 4894 (867) 11 0.135 0.27 0.45 S: get, obtain, win;

N: experience, reach

32 get 44905 (6238) 18 0.056 0.22 0.39 D: get+noun −> verb;

M: get to;

S: achieve, obtain,

Continued on next page
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receive;

N: give, have, take

33 hope 460 (343) 4 0.056 0.25 0.75 M: hope for;

N: look forward to,

wait for

34 hurt 577 (249) 4 0.114 0.25 0.50 S: damage, harm

35 imply 1594 (747) 8 0.089 0.25 0.50 S: call for, entail;

N: cause

36 increase 11060 (1563) 15 0.044 0.40 0.40 S: expand, extend;

N: foster, improve

37 inform 1424 (670) 6 0.111 0.50 0.50 M: inform of

N: spread, tell, give

38 join 8000 (2318) 18 0.049 0.72 0.83 S: combine;

N: attend, become,

enlist in, enter,

experience, follow,

get into, have,

pursue, share

39 know 14905 (3770) 16 0.027 0.06 0.25 S: experience,

get to know, visit;

N: find out about

40 lead 7440 (2081) 6 0.103 0.33 0.33 M: lead to;

N: live

41 learn 4116 (808) 16 0.046 0.31 0.31 M: learn about;

S: acquire

42 live 3467 (836) 7 0.082 0.86 0.86 M: live in / through;

F: leave, relive;

S: experience;

N: have, share

43 look 4473 (1528) 9 0.042 1.00 1.00 M: look at;

F: took;

S: watch;

N: make

44 loose 65 (59) 33 0.911 1.00 1.00 F: lose

45 lose 10762 (1958) 20 0.040 0.05 0.20 N: leave, miss

46 make 85295 (7342) 22 0.130 0.45 0.55 D: make+noun −> verb;

S: create, set (up);

N: become, do, have,

hold, take, sit

47 obtain 5077 (1213) 10 0.100 0.60 0.80 S: achieve, get, take;

N: buy, make, receive,

win

48 open 9688 (1303) 9 0.021 0.22 0.22 F: open up;

N: turn on

49 pay 12514 (1637) 15 0.009 0.80 0.80 M: pay for;

N: buy, make, offer

50 place 5041 (1650) 7 0.089 0.29 0.57 S: locate, put;

N: conduct, make

51 play 14264 (2305) 7 0.008 0.29 0.29 N: perform, put on

52 prepare 2854 (875) 29 0.016 0.28 0.38 M: prepare for / to;

S: arrange, make;

N: provide, save up

53 prevent 6219 (2349) 6 0.072 0.17 0.50 S: block;

N: protect, warn

54 propose 1894 (669) 12 0.448 0.00 0.50 S: offer, suggest;

N: charge

55 put 25542 (4412) 9 0.079 0.22 0.44 S: install;

Continued on next page
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N: add, impose,

include, introduce

56 raise 10932 (1522) 3 0.129 0.33 0.67 S: improve, increase,

enhance;

N: call, stage

57 reach 10614 (2477) 26 0.053 0.42 0.42 N: achieve, attain,

grasp, have, receive,

understand

58 remind 835 (412) 5 0.550 0.60 0.80 S: recall, remember;

N: amend

59 request 890 (450) 13 0.019 0.00 0.08 S: ask for

60 rise 1450 (547) 11 0.615 0.82 0.82 F: raise;

S: increase;

N: draw

61 save 4165 (1288) 5 0.014 0.20 0.20 N: reduce

62 solve 1872 (188) 9 0.027 0.56 0.56 S: tackle;

N: deal with, ease,

eliminate, manage,

save

63 speak 1700 (458) 5 0.022 0.40 0.40 M: speak with;

N: spend

64 spend 8898 (857) 10 0.006 0.30 0.40 M: spend on;

S: pay;

N: hold, open

65 stop 4765 (1880) 16 0.026 0.06 0.06 N: put down

66 suffer 3352 (703) 5 0.020 0.40 0.40 S: endure;

N: reach

67 suggest 3885 (1622) 16 0.046 0.00 0.25 S: recommend (to)

N: choose

68 take 84449 (6636) 19 0.039 0.16 0.21 D: take+noun −> verb;

N: get

69 teach 2005 (696) 1 0.031 0.00 0.00 –

70 tell 14354 (3231) 17 0.049 0.12 0.24 S: recite, recount, say;

N: give, mention

71 wait 1257 (258) 12 0.046 0.92 0.92 M: wait for;

S: expect, hope for,

look forward to

72 want 12829 (3614) 10 0.013 0.10 0.10 N: have

73 watch 6565 (2187) 9 0.026 0.00 0.33 S: look at / upon, see

N: look after

74 wear 6339 (1073) 8 0.035 0.00 0.00 –

75 win 10394 (1473) 4 0.034 0.50 0.50 N: beat, make

76 wish 542 (376) 6 0.049 0.50 0.67 M: wish for

S: want


