Cambridge ALTA

COMPLEX WORD IDENTIFICATION WITH ENSEMBLE-BASED VOTING

SIAN GOODING, EKATERINA KOCHMAR \ DEPT. OF COMPUTER SCIENCE AND TECHNOLOGY

(1) MOTIVATION

Example: <u>Hundreds</u> of <u>protesters</u> have been <u>detained</u> in both <u>cities</u>.

- hundreds \sim more than 100
- protesters \sim demonstrators
- detained \sim arrested
- cities \sim ?

Word	Binary	Proportion
hundreds	1	0.05
protesters	1	0.30
detained	1	0.75
cities	0	0.00

CWI is an important task in its own right:

(2) CWI SHARED TASK 2018

(WINS) and Wikipedia (WIKI)

- 1. facilitates more targeted text adaptation
- 2. helps avoid unnecessary & educationally harmful "oversimplification"
- 3. alleviates data sparsity: definition can be provided if no simpler alternative available

• 3 data sources: News (NEWS), WikiNews

Content words and phrases annotated via

speakers (metadata not used or released)

• 2 settings: bin if at least one annotation as

CW, prob – proportion of annotators

MTurk by 10 native and 10 non-native

(3) CHALLENGES

1. Context-specific annotation: up to 10% words receive different annotations; e.g., *tragedy* from 0.00 to 1.00 – interaction of surrounding context, multiple senses and sequence labelling effect

2. Sequence labelling effect:

Beethoven's $Symphony_{0.6}$ No.7, Bruckner's $Symphony_{0.1}$ No.6 and Mendelssohn's $Symphony_{0.0}$ No.4 comprise a nearly complete list of $symphonies_{0.3}$ in this key in the Romantic era.

3. Phrase annotation:

- $future_{0.05} \cup generations_{0.25} = future generations_{0.15}$
- $traditional_{0.2} \cup connection_{0.0} \cup country_{0.05} \neq traditional connection to that <math>country_{0.0}$
- **4. Proper nouns**: 0.0 0.45 for Eurozone, 0.0 0.05 for Barack, 0.05 0.3 for Brexit, and 0.0 0.1 for Copenhagen, Estonia, Hungary, Warsaw, etc.

(4) CAMB SYSTEM OVERVIEW

- Preliminary experiments confirm that ensemble-based approaches work best
- Method for bin setting:
 - Wikipedia & News AdaBoost with 5,000 estimators
 - WIKINEWS ensemble voting classifier using AdaBoost and Random Forest
- Method for prob setting: Linear Regression; round the classifier's predictions to the nearest value on [0.00, ..., 1.00] with the step of 0.05

(5) EXPERIMENTAL RESULTS

Features Overview:

- 1. **Word N-grams and PoS**: words, character bigrams and PoS tags
- 2. Lexical Features: word length, number of syllables, number of senses, hyper- and hyponyms from the WordNet
- 3. **Dependency Parse Relations**: number of dependency relations for the target word
- 4. Lexicon-Based Features: presence/absence in the SubIMDB, the Simple Wikipedia and Ogden's Basic English list; CEFR level from the Cambridge Advanced Learners Dictionary
- 5. Word Frequency in the Google N-grams
- 6. **Psycholinguistic Features** from the MCR Psycholinguistic Database: word familiarity, imageability, concreteness, age of acquisition, etc.

Feature selection:

- bin: all features for NEWS & WINS; all but MCR features for WIKI
- prob: all features for NEWS; all but MCR features for WINS & WIKI

	Binary	Probabilistic
	(F-Score)	(MAE)
NEWS	0.8736	0.0558
WINS	0.8400	0.0674
Wiki	0.8115	0.0739

- bin: NEWS trained on NEWS; all training data on WINS & WIKI
- prob: all training data on NEWS & WINS; WIKI
 & WINS training data on WIKI

(6) ANALYSIS

• Per-Genre Performance: Unique words

	NEWS	WINS	Wiki
Total	13,461	7,559	5,439
Unique	3,376	3,334	3,157
%	25.08	44.10	58.44

- Classifiers in both settings perform best on NEWS: NEWS contains lowest number of complex words & lowest number of unique words ⇒ less challenging
- WIKI more challenging for humans (highest CW %) and machines (lowest results) + highest number of unique words

Phrase Classification

Data	Acc	P	R	F-Score
CW pres.	0.6987	0.8049	0.8231	0.8139
N-gram	0.8004	0.8015	0.9977	0.8889
Greedy*	0.8004	0.8004	1.000	0.8891

Performance across PoS

Data	Size	Acc	P	R	F
Total	3,701	0.86	0.82	0.79	0.85
Nouns	2,427	0.86	0.80	0.76	0.84
Verbs	718	0.84	0.83	0.81	0.84
Adj's	435	0.88	0.86	0.86	0.87
Adv's	111	0.91	0.89	0.92	0.91

- Nouns represent the largest proportion of all test items, while showing the lowest precision and recall
- Dependency on context: 88.94% of misclassified instances in NEWS, 61.31% in WINS and 52.78% in WIKI have multiple labels
- Proper nouns are problematic: 12.56% of misclassified instances in NEWS, 22.02% in WINS and 22.92% in WIKI

(7) CONCLUSIONS

Our systems **scored first** on all 3 text genres in the bin classification track, and on 2 out of 3 genres in the prob track. Further analysis identifies future directions for this research.

- 1. contextualisation of CWI
- 2. better phrase complexity prediction
- 3. personalisation of CWI with level of education, L1 and level of language competence

CONTACT INFORMATION

Email Sian.Gooding@cl.cam.ac.uk Ekaterina.Kochmar@cl.cam.ac.uk

Web www.cl.cam.ac.uk/~ek358/

Annotation: Data

Data:

Data	0_{bin}	$ig 1_{bin}$	0.05_{prob}	1.0_{prob}
$\overline{NEWS_{tr}}$	60.41	39.59	13.52	0.39
${\sf NEWS}_{dev}$	60.54	39.46	13.83	0.28
$NEWS_{ts}$	61.72	38.28	12.70	0.29
$\overline{ ext{WiNs}_{tr}}$	58.48	41.52	16.25	0.17
${\sf WiNs}_{dev}$	59.43	40.57	14.25	0.11
${\sf WiNs}_{ts}$	57.58	42.42	16.71	0.16
$\overline{ ext{Wiki}_{tr}}$	55.07	44.93	16.66	0.52
Wiki_{dev}	51.15	48.85	19.31	0.14
Wiki_{ts}	49.54	50.46	18.62	0.23