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INTRODUCTION
The number of non-native speakers of English is
growing every year, and automated learner er-
ror detection and correction has recently become
a popular application area for machine learn-
ing (ML) algorithms in natural language process-
ing. Most previous research focuses on function
words and casts the task as a multi-class classi-
fication problem. In our research, we look at er-
ror detection and correction for more challenging
errors in content words and investigate how ML
algorithms can be applied.

OBJECTIVES
The focus and objectives of this research:

1. We automatically detect and correct learner
errors in written English

2. We investigate errors in the choice of con-
tent words: adjectives, nouns and verbs

3. We take the meaning into account → use
compositional distributional semantics

4. We use machine learning (ML) algorithms
to detect and correct errors

SEMANTIC APPROACHES

Figure 1: Distributional profiles

� Features: extract features that describe the dif-
ferences between the vectors for the correct and
incorrect combinations:

• vector length
• distance/cosine to input words
• density of the neighbourhoods
• overlap between the neighbours for the combina-

tions and for the input words

� Distributional approach: “You shall know a word
by the company it keeps" (Firth)
We collect the word co-occurrences from data and
build semantic vectors for words within combina-
tions. Distributions capture word meaning.

� Compositional approach: we create word com-
bination vectors via composition of word vectors.

• (blue_rose)i = bluei + rosei
• (blue_rose)i = bluei × rosei

Figure 2: Distance to the input noun
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FUTURE RESEARCH

There is an increasing need in error detection and
correction algorithms for non-native speakers and
writers. We plan to extend current research inves-
tigating error types other than those currently ad-
dressed, wider use of context (e.g., via topic mod-

elling), feature engineering and other feature types
(e.g., neural network language models currently
applied), and other machine learning algorithms.
The next step is to apply an error correction algo-
rithm to the errors identified.
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• We have showed that our algorithm detects
errors with high accuracy (close to UB)
• There is still some room for improvement
• The features derived using semantics and

capturing word meaning are useful
• The algorithm shows high precision → it is

reliable in practice
• Major source of misclassification –

cases where confusion occurs due to
similarity in meaning:
*small speech vs short speech
*rise punctuality vs increase punctuality

DATA & METHODS
� Data is extracted from the Cambridge Learner
Corpus (CLC), and contains texts written by non-
native English speakers with the examples of the
correctly as well as incorrectly chosen words.
� The task is to automatically distinguish be-
tween the two classes.
� Previous research has cast the task as multi-
class classification, but focused on predefined set
of classes (= number of potential corrections).
� Challenges for content words:

• How many classes (e.g., as many as there
are adjectives in English)?
• Corrections depend on the original word:

*big history vs long history
*big conversation vs long conversation
vs serious conversation
• Confusions are caused by different reasons:

*big anger vs great anger [meaning]
*classic dance vs classical dance [form]

� Method: treat as binary classification (correct
vs. incorrect); encode semantics in the features

ML FOR ERROR DETECTION
Features encode properties of semantic vectors.
We use Decision Tree classifier with feature value
binning.

Combinations Accuracy LB UB

AN−context 0.8113 0.7889 0.8650
AN+context 0.6535 0.5084 0.7467
VN−context 0.6577 0.5557 0.8217
VN+context 0.6491 0.6086 0.8467

Table 1: Results

LB = lower bound, majority class distribution
UB = upper bound, inter-annotator agreement

Combinations Precision Recall F1

AN−context 0.8193 0.9762 0.8909
AN+context 0.7500 0.2488 0.3736
VN−context 0.6173 0.7226 0.6558
VN+context 0.7071 0.5898 0.6409

Table 2: Precision, recall and F1


