Using Structured Events to Predict Stock Price Movement

Ekaterina Kochmar

A paper by: Ding et al. (2014). Using Structured Events to Predict Stock Price Movement: An Empirical Investigation

URL: https://www.emnlp2014.org/papers/pdf/EMNLP2014148.pdf

"News events influence the trends of stock price movements"

Today we are going to discuss:

- How to extract the structured information from unstructured data
- How to use this information in a Machine Learning framework to make optimal predictions

Background

A bit of history

- Idea: a lot of relevant information comes in the form of natural language text, e.g. news. Events reported in financial news are important for stock price movement prediction
- Prediction is valuable to investors, public companies, governments
- Random Walk Theory (1973): prices are determined randomly → impossible to outperform the market
- *Efficient Market Hypothesis* (1965): the price of a security reflects all of the information available and everyone has a certain access to this information

A bit of history

- Early studies used **bag-of-words** approach doesn't help to define the relations between entities
- Later studies that focused on events struggled with **scalability**
- Emotions and sentiment matter: negative words carry the signal about the future stock market moves, however this is **subjective**

The approach taken in this paper is objective, event-based and does not suffer from scalability problems

Why Natural Language?

Natural Language

- Speaking
- Listening
- Writing
- Reading
- Planning
- Dreaming
- Discussing
- Conveying information
- etc.

Natural Language in stock market prediction

- Shares of Apple Inc. fell after news piece about the death of Apple's former CEO
- Google's stock fell after grim earnings came out

Challenges for Natural Language Processing (NLP)

- This information is unstructured how can we make sense of it?
- Three approaches attempted in the past:
 - *Bags-of-words*: {Apple, has, sued, Samsung, Electronics, for, copying}
 - *Noun phrases*: {Apple, Samsung Electronics, copying}
 - *Named entities*: {Apple, Samsung Electronics}
- Alternative attempted in this work events model

Events model

- The "Who" bit is called **actor** O₁
- The "did what" bit is called **relation** or **predicate** P
- The "to whom" bit is called **object** O₂

Method

- NLP bit: information extraction & representation
- ML bit: prediction

Sep 3, 2013 - Microsoft agrees to buy Nokia's mobile phone business for \$7.2 billion.

- Build an event model $E = (O_1, P, O_2, T)$
 - \circ $O_1 = Microsoft$
 - *P* = buy
 - \circ O₂ = Nokia's mobile phone business
 - *T* = Sep 3, 2013

Instant view: Private sector adds 114,000 jobs in July: ADP

- How to extract structured information from unstructured input?
- **Bag-of-words**: simply list all words {Instant, view, Private, ...}
- Predefined event type (template) doesn't generalise
- Alternative Open IE (Banko et al., 2007; etc.) framework

NLP (2): Event extraction

- Apply NLP tools parsing: identify the relations between words
 - *P* has to denote an action (verb)
 - Both O_1 and O_2 have to denote some objects (nouns)

Microsoft swallows Nokia's phone business for \$7.2 billion

Microsoft purchases Nokia's phone business for \$7.2 billion

- How can we establish equivalence between different forms?
 - <u>WordNet</u>: an hierarchical database for all words
 - <u>FrameNet</u>: classes for verbs. E.g., add = multiply_class

ML (1): Overview

ML (1): Bag-of-words feature representations

- **Bag-of-words** features: offset by Tf-ldf
 - Offset by term-frequency (TF): TF = freq(t) / length(d)
 - Offset by inverse-document-frequency (IDF): log(N / documents with t)
- Example: we see "Microsoft" 2 times in document d₁ and 2 times in document d₂
 - If feature f_1 ="Microsoft", should we include [2, ...] in the feature vector of d_1 and d_2 ?
 - Suppose length(d_1)=100 words and length(d_1)=200 words is there a difference in contribution of f_1 ="Microsoft" to d_1 and d_2 ?
 - Suppose we have 100 documents in the whole dataset and they all mention "Microsoft" how informative is this word as a feature then?

ML (1): Bag-of-words feature representations

- **TF:** Offset by term frequency: TF = freq(t) / length(d)
 - Contribution of f_1 ="Microsoft" to d_1 is equal to $tf(f_1, d_1) = 2/100 = 0.02$
 - Contribution of f_1 ="Microsoft" to d_2 is equal to $tf(f_1, d_2) = 2/200 = 0.01$
 - The longer the document, the more word occurrences we'll see!
- **IDF**: Offset by inverse document frequency log(N / documents with t)
 - If each document in the collection has feature f_1 ="Microsoft" present, its contribution is not very high: idf(f_1) = log (100 / 100) = 0
- The final weight of the feature in each feature vector is defined not by the absolute occurrence count, but by tf * idf

ML (1): Event-based feature representations

- Events-based features: + sparseness reduction applied via FrameNet
 - \circ O₁ = "Microsoft"
 - P = "buys"
 - \circ O₂ = "Nokia's business"
 - \circ O₁ + P = "Microsoft buys"
 - \circ P + O₂ = "buys Nokia's business"
 - \circ O₁ + P + O₂ = "Microsoft buys Nokia's business"

ML (1): Event-based feature representations

• For example, f₁=("*Microsoft*", "*buys*", "*Nokia*'s *business*"), ... ,

 f_{100} =("Microsoft", "buys"), ..., f_{400} =("Microsoft"), and so on

- Note that f_i=("Microsoft") as O₁ and f_j=("Microsoft") as O₂ will be different features
- For each text, the feature vector will register which of the events are present: e.g., if f₁=("*Microsoft*", "buys", "Nokia's business") and the tuple is present in document d₁, then feature vector will be [1, ...], and [0, ...] otherwise

ML (2): Linear model – Support Vector Machines

Class = +1 (all documents that predict increase in price)

- Training set: $(d_1, y_1), (d_2, y_2), ..., (d_N, y_N)$
- Learn: $w * \boldsymbol{\Phi} (d_{n'} y_{n})$
- Predict: y = argmax {Class = -1, Class = +1}
- Using the labelled training data, learn weights in order to build the separation boundary

ML (3): Nonlinear model – Neural Network

$$y_{cls} (cls \in \{+1, -1\})$$

$$y_{cls} = f(net_{cls}) = \sigma(w_{cls} \cdot y_2)$$

$$y_{2k} = \sigma(w_{2k} \cdot y_1) \quad (k \in [1, |y_2|])$$

$$y_{1j} = \sigma(w_{1j} \cdot \Phi(d_n)) \quad (j \in [1, |y_1|])$$

$$u_{layer}$$

$$u_{layer}$$

$$u_{layer}$$

$$u_{layer}$$

ML (3): Nonlinear model – Neural Network

- Input: feature vector Φ with values
 for *M* features in doc
- For the first hidden layer, **learn** matrix (*M x J*) of weights **w1**
- Output: first layer of hidden neurons y1

$$\Phi = [\Phi_1, \dots, \Phi_M]$$
"Translate" with w1
$$y1 = [y1_1, \dots, y1_i]$$

Experiments

- Data
- Evaluation
- Results

- Financial news from Reuters and Bloomberg: titles and contents
- Time period: October 2006 to November 2013
- Data split into train : dev : test = 80% : 10% : 10%

	train	dev	test
number of instances	1425	178	179
number of events	54776	6457	6593
time inter-	02/10/2006	19/06/2012	22/02/2013
val	-	-	-
	18/16/2012	21/02/2013	21/11/2013

Experimental setup

- 2 x 2 features by methods setup
- x 3 time intervals: short (1 day) / medium (1 week) / long (1 month)

bag-of-words & SVM	event-based & SVM
bag-of-words & Neural Net	event-based & Neural Net

Evaluation strategies

- Accuracy = number of correct predictions / total
- Matthews Correlation Coefficient (MCC):

	Predicted Class 1	Predicted Class -1
Actual Class 1	True positives = TP	False negatives = FN
Actual Class -1	False positives = FP	True negatives = TN

 $MCC = TP \cdot TN - FP \cdot FN$ $\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}$

Results (1): Overall development results

Results (2): Take-away messages

- 1. **Structured (event-based) vs unstructured (bag-of-words)**: structured features consistently outperform; carry essential information
- 2. Linear (SVM) vs nonlinear (Neural Net) models: nonlinear model consistently outperforms; learns hidden relationships
- 3. **Time interval effects**: short-term volatility easier to predict; many news have immediate effect; historical data is hard to get hold of

Results (3): Neural Network architecture effects

How deep should the model be?

- The deeper the better, but there is a natural constraint on training

		1 day	1 week	1 month
1 layer	Accuracy	58.94%	57.73%	55.76%
	MCC	0.1249	0.0916	0.0731
2 layers	Accuracy	59.60%	57.73%	56.19%
	MCC	0.1683	0.1215	0.0875

Results (4): Amount of data effects

How much data should be used?

- Titles encode most relevant information
- Contents helps less
- There is a huge overlap between the news sources (up to 80%!)

	title	content	content + title	bloomberg title + title
Acc	59.60%	54.65%	56.83%	59.64%
MCC	0.1683	0.0627	0.0852	0.1758

Results (5): Individual stock prediction

Can better prediction be achieved using company / sector / all news?

- Company news are very relevant
- Sector and all news damage performance

		Googl	e Inc.		
Company News		Sector News		All News	
Acc	MCC	Acc	MCC	Acc	MCC
67.86%	0.4642	61.17%	0.2301	55.70%	0.1135
		Boeing C	Company		
Company News		Sector News		All News	
Acc	MCC	Acc	MCC	Acc	MCC
68.75%	0.4339	57.14%	0.1585	56.04%	0.1605
		Wal-Mar	rt Stores		
Company News		Sector News		All News	
Acc	MCC	Acc	MCC	Acc	MCC
70.45%	0.4679	62.03%	0.2703	56.04%	0.1605

Generalisation over 15 companies:

- Amount of available news matters – lower for lower fortune rankings

Results (7): Towards black box interpretability

- Positive events shown to relate to class +1 prediction
- Negative events shown to relate to class -1 prediction

Questions?

Contact:

Ekaterina Kochmar

Ekaterina.Kochmar@cl.cam.ac.uk www.cl.cam.ac.uk/~ek358/

