Gene-Language Coevolution

Ted Briscoe

Computer Laboratory
Natural Language and Information Processing Group
University of Cambridge

ENS, Paris
Mar 2014
Genetic assimilation (Waddington)

Fruit flies and heat \leadsto cross veined wings:

If there were selection for the ability to use language, then there would be selection for the capacity to acquire the use of language, in interaction with a language-using environment; and the result of selection for epigenetic responses can be, as we have seen, a gradual accumulation of so many genes with effects tending in this direction that the character gradually becomes genetically assimilated (The Evolution of an Evolutionist, p305-6)

- “Gene-culture co-evolution” (Durham) – lactose tolerance
- “Baldwinian niche construction” (Deacon) – (un)masking
- “Evolutionary Bayesianism” (Geisler & Diehl) — priors evolve
Evolutionary Bayesian Learning

Repeated relearning of languages, based on the output of the previous generation, by learners with evolving learning biases

Mutate the prior probabilities of parameters / constraints in the learner
The Baldwin Effect (Pinker & Bloom)

- A (proto)language emerges
- **Learning Cost** – unsuccessful communication (fitness)
- **Natural Selection** – for individuals who learn better
- **Gradual Coevolutionary Adaptation**, not Saltation
- **Linguistic Universals** – evidence for GA/BE?
- But universals are result of *(convergent)* linguistic evolution
Languages don’t just change they evolve. And children themselves are the rigged game. Languages are under powerful selection pressure to fit children’s likely guesses, because children are the vehicle by which a language gets reproduced. Languages have to adapt to children’s spontaneous assumptions... because children are the only game in town. ... languages need children more than children need languages. (Terry Deacon, *The Symbolic Species*, 1997:109)
Deacon – (Un)Masking

- Genetic assimilation requires environmental constancy
- (Proto)language unmasked (sequential/symbolic) learning
- Linguistic evolution much faster than biological evolution
- No GA/BE – languages evolved to be learnable
- Predicts close fit between cognition and language
- Solves ‘problem’ of FLA / ‘Poverty of the Stimulus’ (Zuidema)
- But language change may not cover the entire hypothesis space
Deacon vs. Pinker & Bloom

Possible Language

- Learnable Language
 - Language Faculty
 - Attested Lgs
Coevolutionary Stochastic ILM

- **Language Agent**: \((LAgt_i)\)
 \[lg^j = LP(UG, fm_k), m_k = Parse(lg^j, f_k), \]
 \[f_k = Generate(lg^j, m_k), \text{Age}(0 : 9), \text{Fit}(0 : 1) > \]

- **Successful Interaction**:

 \((LAgt_i, LAgt_j), i \neq j,\)
 \[f_k = Generate(lg^i, m_k), m_k = Parse(lg^j, f_k) \]

- **Reproduction**: \((\propto \text{Fit})\):
 \((LAgt_i, LAgt_j), i \neq j, \text{Age}_{i/j} > 3, \)
 \[\text{Mutate(Crossover(Prior(LAgt_i), Prior(LAgt_j))))} \]

- **Migrations**: \(\{LAgt_1, \ldots LAgt_m + LAgt_{m+1}, \ldots LAgt_n\}\)
 \[LAgt_{m+i} :< lg \neq lg^d, \text{Age}(> 3) > \]
Coevolutionary Stochastic ILM

- **Language Agent:** \((L\text{Agt}_i)\)
 \[l^j = LP(UG, fm_k), m_k = Parse(l^j, f_k), \]
 \[f_k = \text{Generate}(l^j, m_k), \text{Age}(0:9), \text{Fit}(0:1) \]

- **Successful Interaction:**
 \((L\text{Agt}_i, L\text{Agt}_j), i \neq j, f_k = \text{Generate}(l^i, m_k), m_k = Parse(l^j, f_k)\)

- **Reproduction:** \((\propto \text{Fit}):\)
 \((L\text{Agt}_i, L\text{Agt}_j), i \neq j, \text{Age}_{i/j} > 3, \)
 \(\text{Mutate(\text{Crossover(Prior(L\text{Agt}_i, Prior(L\text{Agt}_j)))))}\)

- **Migrations:** \(\{L\text{Agt}_1, \ldots L\text{Agt}_m + L\text{Agt}_{m+1}, \ldots L\text{Agt}_n\}\)
 \(L\text{Agt}_{m+i} :< l^g \neq l^g_d, \text{Age}(> 3) \)
Coevolutionary Stochastic ILM

- **Language Agent**: \((L\text{Agt}_i)\)

 \[
 lg^j = LP(UG, fm_k), m_k = Parse(lg^j, f_k), \\
 f_k = Generate(lg^j, m_k), Age(0:9), Fit(0:1) >
 \]

- **Successful Interaction**:

 \((L\text{Agt}_i, L\text{Agt}_j), i \neq j, f_k = Generate(lg^i, m_k), m_k = Parse(lg^j, f_k)\)

- **Reproduction**: \((\propto \text{Fit})\):

 \((L\text{Agt}_i, L\text{Agt}_j), i \neq j, Age_{i/j} > 3, \text{Mutate(Crossover(Prior(L\text{Agt}_i, Prior(L\text{Agt}_j))))}\)

- **Migrations**: \(\{L\text{Agt}_1, \ldots L\text{Agt}_m + L\text{Agt}_{m+1}, \ldots L\text{Agt}_n\}\)

 \(L\text{Agt}_{m+i} :< lg \neq lg^d, Age(>3) >\)
Coevolutionary Stochastic ILM

- **Language Agent**: $(L\text{Agt}_i)$
 \[lg^j = LP(UG, fm_k), m_k = Parse(lg^j, f_k),
 f_k = Generate(lg^j, m_k), Age(0:9), Fit(0:1) >

- **Successful Interaction**: $(L\text{Agt}_i, L\text{Agt}_j), i \neq j,$
 \[f_k = Generate(lg^i, m_k), m_k = Parse(lg^j, f_k)

- **Reproduction**: $(\propto Fit)$:
 $(L\text{Agt}_i, L\text{Agt}_j), i \neq j, Age_{i/j} > 3,$
 \[Mutate(Crossover(Prior(L\text{Agt}_i, Prior(L\text{Agt}_j))))

- **Migrations**: \{L\text{Agt}_1, \ldots L\text{Agt}_m + L\text{Agt}_{m+1}, \ldots L\text{Agt}_n\}
 \[L\text{Agt}_{m+i} : < lg \neq lg^d, Age(>3) >

- **The Coevolutionary Model**
Coevolution

The Coevolutionary Model

LAgt Fitness

1. Generate cost: 1 (GC)
2. Parse cost: 1 (PC)
3. Success benefit: 1 (SI)
4. Fitness function: \(\frac{SI}{GC+PC} \)
5. Indirect selection for expressivity – learning a partial grammar will impact on successful interactions
6. Mutation +/-1 on single prior numerator/denominator with correction for neutral, unset (p=0.5) priors so genuinely ‘random’
Coevolution of Languages and Language Faculties

Diagram:
- **Agts** (Agents)
 - LAgts
 - prior1
 - prior2
 - ...
 - priorN
- **Lgs** (Languages)
 - Lrnable Lgs
 - form-mean1
 - form-mean2
 - ...
 - form-meanN

Arrows:
- GA (Genetic Algorithm)
- LS (Language Selection)
Assimilation of Soft Biases
Simulation Assumptions / Results

- Communicative success confers **fitness** on its users (larynx/choking)

- Lg change about **an order of magnitude faster** than the fastest genetic change (i.e. no. of int. cycles to fixation)

- **Speed limit** to lg change – >90% succ. int. in a speech community

- **Population / Grammar Size** – mean 5% of grammar space explored in time it takes a mutation to go to fixation in population

- **Genetic assimilation asymptotes** in the face of lg change – no prediction of genetic fixation on one grammar

- **Soft biases** are preferred to hard constraints
Gene-Sign (De)Correlation

- P-setting encoding of prior/posterior parameter values
- Phenotype (A Grammar) and Genotype ($LP(UG)$) correlate
- Epistasis and Pleotropy suggest not realistic
- Decorrelate P-setting via Mutate
- Locality mutate more settings per mutation
- Degree alter priors more – random stronger lrng biases
(De)Correlation Results

1. More learners fail to acquire (full) grammars (1–24%)
2. More preemptive mutations cause linguistic change (2–99%)
3. More speech communities converge to subset grammars (5–100%)
4. More language change without migration (4-84%)
5. Complex adaptive systems poised at ‘edge of chaos’ (Kaufmann) – the evolution of evolvability (slight decorrelation is optimal)
The Logical Problem of Lg Evolution

- How did UG emerge? (Chater, Christiansen, et al)
- UG is arbitrary (not functional) (why?!)
- UG not by saltation – prob 2^{-2500} (Pinker & Bloom)
- UG by gradual evolution, but fast lg. change (Deacon)
- Lg emerge 100KYA, people dispersed, different UGs? – need to track fast change! (Dediu – tone)
- Brain shapes lg. = neural network, processing limits, etc
- Poor simulation model – no communicative success, etc.
Language-specific Learning Biases?

- **Creolisation**: SVO word order, Tense-Aspect system (Bickerton)

- **Atomisation**: not / ne..pas lex./clitic/morph. negation (Wanner/Gleitman)

- **Linear sequencing**: rolling down manner/path motion, serial verbs (NSL, Senghas)

- **Abstract parameters of variation**: Pro-drop – Italian/English Old/Mod. French, 2 possibilities not 64 (Baker)

- **Overregularisation / errors restricted**: goed / falled my dolly down / did you saw (see) it but not: did the man who saw? the did man see
Timescales, Sizes, and Speed Limits

- Speed limit to **linguistic evolution** – successful interactions must predominate in a speech community: SI > 90%, language contact, networks of interaction, etc?

- Speed limit to **biological evolution** – phenotypes must function even under strong selection: 1 bit/generation (Worden), \(N \) bits/generation (Mackay), \(N = \) population size, (10K out of Africa)

- When did (proto)language emerge? 2.5M (Deacon) – 50K (Chomsky) years ago: 2.5KB – 20MBs?!

- **FOXP2**, lactose, etc – 10% of human genome affected by selection in past 50K years (but phenotypic effects?)

- Even at lower bound, room for modest **GA on priors**, and generic inductive bias (Occam’s Razor) is present either way
Coevolution

Summary

- **Evolutionary Bayesianism** – good model for examining how inductive bias might have evolved in linguistic evolutionary niche

- Deacon’s argument that languages change too fast for GA wrong so long as some part of the hypothesis space is not manifest during time mutation to go to fixation

- **Biased parameters** rather than principles or single grammars will emerge by GA given language change

- GA is real and there has been enough time since (proto)language emerged

- (Domain-specific) inductive bias for ‘natural grammars’ might explain e.g. commonalities amongst creoles
www.cl.cam.ac.uk/users/ejb/
Zuidema, W., “How the poverty of the stimulus solves the poverty of the stimulus”
Christiansen, M, Chater, N., et al “Language as shaped by the brain”
www.langev.com