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I discuss the ubiquity of power law distributions in language organisation (and elsewhere), and
argue against Miller’s (2000) argument that large vocabulary size is a consequence of sexual
selection. Instead I argue that power law distributions are evidence that languages are best
modelled as dynamical systems but raise some issues for models of iterated language learning.
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1. Introduction

A diagnostic of a power law distribution is that a log-log plot of frequency against
rank yields a (nearly) straight line. For instance, Zipf (1935) plotted word token
counts in a variety of texts against the inverse rank of each distinct word type and
showed that typically such plots approximate a straight line. The characteristic
“Zipf curve’ of word frequency against rank deviates from this line because the
relative frequency of very common word types, such as the English determiners
the and a, tend to be more similar than the power law predicts, as also does the
relative frequency of very rare words in the tail of the distribution. Zipf’s ‘law’ is

often expressed as:
1
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where B > 1, the exponent, defines the slope of the plot, frequency c(w) is the
token count of word type w in text, and rank r(w) is the position of word type w
in the list of word types sorted in descending order of frequency, ¢(w). Guiraud’s
(1954) related law states that the number of word types V' in a text is proportional
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to the length of that text V:
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Although the models of power law distributions of which I am aware have a dy-
namical component, they have received little attention from evolutionary linguists.
I know of only one argument, due to an evolutionary psychologist (Miller, 2000),
which utilises Zipf’s observation about word frequencies in attempting to explain
large, redundant vocabularies in terms of sexual selection. I argue against this
explanation in §4, but, before doing so, I discuss the ubiquity of power law dis-
tributions in §2, some relevant models of them in §3, return to Miller’s argument
in §4, and then discuss some issues power law distributions raise for evolutionary
models of iterated language learning in §5.

2. Manifestations of Power Law Distributions

Power law distributions are very different from normally distributed phenomena,
such as height, which yield the characteristic ‘Bell Curve’. The factors that in-
fluence a person’s height, such as nutrition and genetic inheritance, combine in
a more linear manner so that (relatively minor) variation in height is normally
distributed around a mean that can be accurately estimated from a representative
sample of the population. Zipf (1949) noted that Pareto’s observations about the
distribution of wealth in the population could also be modelled using a version of
his ‘law’. What makes wealth different from height intuitively is that the factors
that influence the amount of money we have combine non-linearly and there are
strong (positive) feedback effects (i.e. ‘the rich get richer’). We now know that
power law distributions are good approximations of many other non-linguistic
phenomena, such as the distribution of people within cities, citations amongst
scientists, accesses of web pages, species within habitats, authors amongst scien-
tific articles, actors within films, links between web pages, activation of genes,
size of earthquakes, number of sexual partners, and many more (e.g. Albert &
Barabasi,2002).

There are similar results regarding extrinsic properties of languages: for in-
stance, the distribution of languages within language families approximates a
power law (Wichmann, 2005). In terms of inherent properties of language, Zipf
also showed that plotting the length or the number of meanings of word types
against their frequency also yields similar distributions. With the increasing avail-
ability of annotated electronic corpora, these observations have been extended to
many other areas of language organisation, such as the frequency of contiguous
sequences of words (bigrams, trigrams, and more generally ngrams), of grammat-
ical rules, of construction types, of lexical relations between word types, as well
as the length of constituents, and the association of verbs with constructions (e.g.
Sharman, 1989; Manning & Schutze, 1999; Korhonen 2002; Yook et al., 2001).



Given these results, it is tempting to speculate that all distributions relating to
language will approximate power laws. However, this is not always the case; or,
at least, deviations from the approximation can have significant practical import:
for instance, Preiss et al. (2002) show that the average frequency mass assigned to
the first WordNet sense of high frequency verbs is about 45%, the second around
25% and the third around 5% (ignoring the tail of infrequent senses which account
for the last 25% of the mass). This is still a skewed distribution, but a prediction
based on the power law assumption would underestimate the frequency of the
second sense in order to better approximate the tail. The empirical data though
tells us that we ignore the second sense at our peril if we wish to capture the bulk of
the behaviour of tokens of such verbs in texts. Arguably, this specific observation
reduces to the more general one that we tend to see ‘Zipf curves’ rather than
straight lines. However, here the lack of fit between curve and line is made more
severe by the lower number of types — even polysemous verbs rarely have more
than 15 senses, while there will be in excess of 50K word types in a typical text
corpus of around 1M word tokens.? Similarly for external features of languages,
Schulze and Stauffer (2006) point out that the distribution of speakers amongst
languages is better approximated by a lognormal distribution than a power law.

As well as being careful about the goodness of fit between a power law and
the more frequent types of any linguistic distribution, we also need to consider the
nature of the tail. All such distributions are characterised by a long tail consisting
of a high proportion of very infrequent types. However, these also often bunch
together curving downwards graphically in a manner closer to an exponential dis-
tribution than a power law. Ferrer i Cancho & Sol’e (2001) demonstrated using
the 100M word British National Corpus that the tail of frequency-rank word plots
of singly-authored subcorpora are more bunched than plots of multiply-authored
text which, therefore, more closely approximate a power law. Zipf’s original ex-
amples are mostly singly-authored and relatively small text samples, so this result
suggests that vocabulary distributions for idiolects or I-language may differ from
those of the general (E-)language.

3. Models of Power Law Distributions

So far I have used the term ‘distribution’ ambiguously between the linguistic and
probabilistic sense. The most important insight about such distributions with
large numbers of rare events (e.g. Baayen, 2001) is that it is unwise to convert
a frequency-rank plot into a probability-rank plot via maximum likelihood (i.e.
relative frequency) estimation, and treat the result as a probability distribution.

2There have been many attempts to model ‘Zipf Curves’ more accurately beginning with Man-
delbrot (1953) and Simon (1955) and continuing more recently with Church & Gale (1995) who use
mixtures of Poisson distributions to model word and ngram distributions for applications such as in-
formation retrieval and speech recognition. I ignore these here as they aren’t relevant to the specific
goals of this paper.



Since the counts of the tail are very low, statistical estimation theory tells us that
they will be unreliable. A rare word, for instance, may suddenly become fashion-
able (e.g. the frequency of egregious and serendipity has increased markedly in the
last five years) and thus increase in relative frequency over a given time period.
Since, we always see a long tail of rare events no matter how much (more) text
we sample, and the number of types grows in proportion to the size of this sam-
ple (Guiraud’s law), power law distributions are often described as ‘scale-free’.
In statistical terms, power law distributions which remain invariant over different
sample sizes are a strong indication that we may be sampling from a statistically
unrepresentive non-stationary (i.e. dynamical) system.

One of the most intuitive models of such a system, due to Bak (1996), is that of
a sand pile built up on a flat surface of finite size by addition of sand grains. When
the pile reaches ‘self-organized criticality’ (i.e. the slopes of the sides are steep),
a new grain will trigger a landslide. Frequency-rank plotting of the size of the
landslides produces a power law distribution. What is apparent about this rather
simple, though mathematically complex, model is that it is a dynamical system in
which the addition of each individual grain of sand represents a discrete time step.
Most landslides are small, but occasionally individually-unpredictable larger ones
occur.

Baayen (1991), following in the tradition of Mandelbrot (1953) and Simon
(1955), develops a stochastic Markovian model of phonotactically legal Dutch
word strings and relates it to empirical data on similarities between words by
phonological form and by relative frequency. He finds that to model these effects
accurately, it is necessary to add a second ‘dynamical’ stochastic model which
introduces or removes word types with probability proportional to their token fre-
quency. This has the effect of increasing overall frequency-based and decreasing
form-based similarity. For present purposes, it is indicative that the second dy-
namical word ‘birth-death’ processs is required even though it says nothing di-
rectly about the relationships between word types.

Albert & Barabasi (2002) provide a recent survey of work on ‘small world’
networks in which most nodes of a network can be reached by any other in a
small number of (node) steps, though the overall number of nodes can be arbi-
trarily high. They define a dynamical algorithm for generating such networks, by
continuously adding new nodes and attaching them to old nodes with probabil-
ity proportional to their number of existing links. They prove that such networks
evolve to a scale-free organisation obeying a power law distribution in which there
is a long tail of nodes with low numbers of links and a small number of ‘popular’
nodes with many links. They also prove that both ‘growth’, the dynamical compo-
nent, and ‘preferential attachment’ are necessary for this pattern to emerge. Such

bSuch effects can be monitored, for example, using the ‘top 20’ on-line dictionary queries published
by Cambridge University Press, http://dictionary.cambridge.org/top20/top20_0205.asp



networks have been applied to models like that of Baayen (1991), described above
(e.g. Bornholdt & Ebel, 2001), and to lexical semantic organisation (e.g. Yook et
al.,2001).

4. Power Laws and Sexual Selection

Miller (2000:369f), in the context of a more general argument that human lan-
guage evolved by sexual selection, argues that large vocabulary size, in compar-
ison with those of other (artificial and natural) animal communication systems,
evolved through sexual selection. Women preferred men with large active vo-
cabularies but needed to acquire large passive vocabularies themselves to assess
the trait. Miller offers, as evidence for the non-functional nature of much of this
vocabulary, Zipf’s observation that vocabulary distributes like a power law and
contains many near synonyms:

...any of the words we know is likely to be used on average about
once in every million words we speak... Why do we bother to learn so
many rare words that have practically the same meanings as common
words, if language evolved to be practical? (Miller, 2000:370)

He argues that human variation in vocabulary acquisition correlates with intelli-
gence and has a heritable component, and thus is an (indirect) fitness indicator,
triggering an ‘arms race’ in which advertising excessive vocabulary size is a ‘dis-
play’ of fitness akin to the peacock’s tail, precisely because it does not contribute
usefully to communication.

It is plausible that human language evolved under selection for ‘communica-
tive success’. Otherwise, it is hard to understand how our cognitive abilities
adapted to support acquisition of large vocabularies and complex grammatical
systems (e.g. Briscoe, 2000). ‘Communicative success’ is defined in terms of
parity of form-meaning mappings between agents supporting accurate sharing of
meaning. It is essentially neutral about the extent to which this ability is exploited
for specific social acts. Language is certainly useful for courtship and seduction,
as Miller argues at length. But it is also useful for trading, teaching, bonding,
lying, and much more. To demonstrate that vocabulary size and distribution, or
any other linguistic trait, is under sexual rather than natural selection, it is neces-
sary to show that it wouldn’t evolve in any other way and doesn’t contribute to
communicative success. Miller fails on both counts.

In §2 we saw that power law distributions manifest themselves in many areas
of linguistic organisation. For instance, there is a tail of rare long constituents
in text samples (Sharman, 1989). However, there is no evidence that ‘display’
of such forms is a particular feature of courtship, nor that such forms are non-
functional. As we saw in §3 models predicting such distributions need only a
dynamical component and no element of natural or sexual selection whatever.
Evidence of power law distributions in both idiolects and language forces us to



conclude that both are best modelled as dynamical systems — rather than well-
formed sets, as in generative linguistics (e.g. Sampson, 2001:165f) — but nothing
more.

If vocabulary size were non-functional, we might expect there to be many
truly synonymous words. What we find in the organisation of vocabulary is that
partially synonymous words have different distributions in terms of specificity of
reference, syntactic potential, or genre and register. There is, in fact, consider-
able evidence that children avoid hypothesising synonyms in language acquisition
(e.g. Clark, 2003) and that language users adhere to the convention of preemp-
tion by synonymy, except where discourse or syntactic context triggers a non-
synonymous reading (e.g. Briscoe et al., 1995; Copestake & Briscoe, 1995). For
instance, cow, unlike chicken, is not generally used to refer to the meat because
of the existence of beef. However, in an appropriate context cow can be used this
way and triggers an implicature of ‘disgust’:

There were five thousand extremely loud people on the floor eager
to tear into roast cow with both hands and wash it down with bour-
bon whiskey. (Tom Wolfe, 1979. The Right Stuff, Farrar, Straus and
Giroux, New York (p. 298, Picador edition, 1991))

Similarly, the word stealer, formed by the fairly productive derivational rule of
agentive +er nominalisation, is blocked by thief, except in syntactic contexts
where the specificity of reference is narrowed:

He is an inveterate *stealer / thief / stealer of Porsche 911s

These and many similar observations suggest that partial synonymy is commu-
nicatively useful and actively exploited to convey meaning.

To understand why we have so many words and how the cognitive ability to
cope with them (co-)evolved, consider the likely environment of adaptation for
language. In a foraging, scavenging or hunter society, the ability to discriminate
— and thus name more and more species, according to nutritional value, location,
method of capture or harvesting, and so forth — would be of value for survival be-
cause it would allow efficent transmission of these skills to kin as well as survival
over larger and more varied habitats. Modern hunter-gatherers are known to have
large vocabularies specialised in this way (Diamond, 1997). This may not have
been the sole driver for increasing vocabulary size, but it has the advantage that it
predicts that vocabulary will be to a large extent organised by specificity of refer-
ence. It is useful not only to be able to talk about plants in general but also species
and subgroups (e.g. by location or edible part) in order to discriminate the edible,
find the source, and harvest effectively. Once we accept such a pressure to name
in an increasingly complex and multifaceted environment, then the tendency for
there to be smaller numbers of high frequency words of generic reference and a
larger number of rarer words with highly specific denotations is just a case of the
structure of vocabulary mirroring (our perception of) this environment.



5. The Real Challenge — Iterated Learning

One achievement of recent evolutionary models of language is the demonstration
that treating languages as complex adaptive systems responding to conflicting se-
lection pressures (e.g. Briscoe, 2000) leads to insightful acccounts of typologi-
cal and other linguistic universals without the need to invoke innateness. These
accounts rely heavily on the iterated learning model (ILM, e.g. Kirby, 2001)
in which linguistic traits must undergo repeated relearning by successive gen-
erations of language learners acquiring their language from that of the previous
generation. For instance, Kirby (2001) demonstrates that languages in the ILM
evolve to have compositional structure in which only high frequency irregular
form-meaning mappings are stable, given the following assumptions:

1. an invention strategy for form-meaning pairs,

2. a production bias to express meanings using short forms,

3. an inductive bias to learn small grammars and lexicons,

4. alearning period in which not all form-meaning pairs appear
5. and environmental structure which favours some meanings

In the simulation, initial (proto)languages are holistic and non-compositional but
chance regularities which emerge in form-meaning mappings are acquired by
learners, who then reliably exemplify them for the next generation of learners,
because regularities are, by definition, more frequent in data. Thus, over time the
language evolves to be mostly compositional and regular. However, (short) irreg-
ular mappings can survive provided they are associated with meanings which are
expressed frequently and, therefore, also occur reliably during the learning period.

This instantiation of the ILM neatly explains the observation that irregularity
correlates with high frequency in attested languages: children would continue to
say goed into adulthood if went were not a high frequency form. The corollary,
however, is that rare unpredictable properties of language which do not follow
from some regularity manifest during the learning period should be unstable and,
therefore, rarely observed.

Rare word-meaning associations are unpredictable and may also influence
lexico-grammatical behaviour. For example, the verb obsess is a stable lexeme of
English, but does not appear in any of the 40 or so case studies of child-directed
speech in CHILDES®. It is transitive but usually appears in the passive in adult
speech accompanied by a PP headed by by, with or over. However, vocabulary
acquisition continues through adulthood, so the ILM (and other models) simply
predict that such vocabulary will be acquired later (and less universally).

Chttp://childes.psy.cmu.edu/data/



Marked but predictable constructions, such as multiple centre-embeddings,
which Sampson (2001:21) estimates occur once in every 250K words on aver-
age, are also not counter-examples if one believes that they are a consequence
of learners acquiring, on the basis of more frequent constructions, grammatical
rules which correctly predict the appropriate form-meaning mapping for center-
embedded constructions.

A more challenging case for the ILM is diathesis alternation, in which verbs
of certain semantic classes semi-predictably occur in alternant constructions of-
ten with predictable meaning changes. For instance, eat can appear in intransi-
tive and transitive constructions but when it occurs intransitively the theme of the
action is ‘understood’. However, verbs with similar senses, such as devour or
consume do not undergo this alternation. There is evidence that children learn at
least some of these alternation rules by around three years old because they pro-
duce errors, such as Don’t fall my dolly down, an apparent overapplication of the
causative-inchoative alternation, and because novel alternant constructions with
pseudo-verbs can be elicited from children of this age under experimental condi-
tions in which they have only heard the pseudo-verb in one construction (Conwell
and Demuth, 2007). Nevertheless, the rate at which errors of this type naturally
occur in children’s spontaneous speech also suggests that alternation rules are
learnt conservatively and only rarely overapplied. There are on the order of 100
such alternation rule types in English, when productive meaning change is taken
into account.

Korhonen et al. (2006) describe Valex, a lexicon of over six thousand English
verbs constructed from nearly one billion words of automatically-parsed English
text containing occurrences of these verbs. In Valex, verbs are associated with one
or more of over 150 verb-headed constructions based on the frequency with which
they have been observed with them in the automatically-parsed text. Because the
automatic parses are somewhat noisy, the final lexicon is constructed using statisti-
cal filtering and smoothing techniques which make use of extant manually-created
dictionaries and of information about the prototypical constructions associated
with verbs in specific semantic classes, such as verbs of motion, transfer of pos-
session, and so forth. Our most accurate lexicon created this way has a F-measure
of 87.3%, which equals the accuracy of manually-created dictionaries (see Ko-
rhonen et al. for details of the evaluation, filtering and smoothing), but includes
information about the relative frequency of any given construction occurring with
any of these verbs.

Figure 1 shows a plot of the inverse rank of these verb-headed constructions
against their log frequency for all the verbs in Valex before and after filtering.
The unfiltered line shows the output of the automatic parser and the filtered line
shows the predicted distribution of the most accurate lexicon. Both exhibit highly-
skewed distributions, especially for the higher frequency constructions; for exam-
ple, the most common transitive construction has over twice as many counts as
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Figure 1. Overall Distribution of Verb-headed Constructions

the next most common intransitive construction, while the sentential complement
construction (with or without a complementiser that, as in [ believe (that) the
world is round) is ranked fifth but has more than one order of magnitude less
counts than the transitive construction.

Figure 2 shows a similar plot of the inverse rank of verb-headed constructions
against their log frequency for the verb believe before and after filtering. The plot
for believe is prototypical of that for other verbs of varying frequencies which are
associated with multiple constructions. Both the overall distribution for all verbs
and that for believe loosely approximate to power laws, shown as straight lines
on the graphs, though we make no stronger claim than that these distributions are
highly-skewed with a few very frequent constructions and a tail of far less frequent
ones. Crucially, however, the correlation between the overall distribution of verb-
headed constructions and the specific distribution for any given verb is low. For
instance, although the sentential complement construction is ranked fifth in the
overall distribution and predicted to occur about one tenth as often as the transitive
construction, believe occurs most frequently in this construction with the transitive
in second place. There are various ways to measure the correlation between the
overall and verb-specific distributions, all of which lead to similar conclusions (see
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e.g. Korhonen, 2002). One which is straightforward to interpret is the Spearman
Rank Coefficient, which measures the similarity between the frequency ranked
order of constructions between the distributions and yields a value between O (no
correlation) and 1 (perfect correlation). According to this measure, the similarity
of the filtered overall distribution and that for believe is 0.73, while the average
similarity of all the verb specific distributions to the overall distribution is only
0.48. The correlation improves when we compare verb-specific distributions to
those prototypical for the same semantic class of verbs (e.g. manner of motion
or propositional attitude), but typically only to around values of 0.7 on the same
measure. Therefore, even if the learner has access to such classes in some way,
predicting verb-construction associations from such imperfect correlations would
be highly errorful.

This comparative lack of correlation, taken together with the fact that analysis
of the CHILDES database shows that child-directed speech only reliably exem-
plifies the common verb-construction associations and not the longer tail of rarer
associations (e.g. Buttery & Korhonen, 2005), suggests that children may not
have reliable evidence for the existence of most alternation rules — assuming that
evidence would be several exemplars of the same alternation involving several



different verbs. For example, returning to the causative-inchoative alternation, a
child would need to be exposed to at least the following four sentences (or ana-
logues) to have the minimum evidence from which to infer the existence of a rule
which relates the a) and b) cases.

a) The Duke of York marched his men up the hill.
b) The men marched up the hill.

a) The cowboy galloped his horse across the prairie.
b) The horse galloped across the prairie.

From such evidence, a child might induce, for example, that manner of motion
verbs may participate in the causative-inchoative alternation and thus make appro-
priate inferences about external/internal causation of motion in the face of novel
verbs in these constructions, and may even occasionally and sometimes inappro-
priately use such a rule to generate novel utterances, as with Don’t fall my dolly
down.

The ILM in its current form predicts that over successive generations such
rules should tend to become more productive in the evolving language if there is
enough data to support their induction in the input to any child. However, this
doesn’t seem to be the case with such semi-productive alternation rules, they ap-
pear to remain stably semi-productive. For example, for most British English
speakers it is inappropriate to extend dative movement from give to donate de-
spite the existence of the alternation rule, and of both verbs within the ‘transfer of
possession’ semantic class, for about the last thousand years.

It may be that such semi-productive rules are acquired later in life, despite
the occasional apparent overapplication errors in children’s speech and despite
some experimental evidence supporting their early acquisition. This is a general
strategy that proponents of ILM-style explanations can take. But on the other
hand, there must also be some learning ‘bottleneck’, caused by limited exposure
to data during the learning period, for ILM accounts of linguistic evolution to
work. Cases like this pose interesting challenges for the approach because they
suggest that linguistic data is distributed in such a fashion that there may still be a
‘poverty of stimulus’ issue during the sensitive period for acquisition, though this
is not to suggest, of course, that the correct solution is necesarily a more nativist
account of acquisition.

More empirical work on language acquisition is needed to determine whether
the ILM’s predictions hold up for such specific cases. For example, in the case
of diathesis alternations it would be very useful to know whether children’s input
provides the necessary data for acquisition of the rules and whether their out-
put provides evidence of productive use of such rules, yielding verb-construction
combinations that they haven’t been exposed to in caretaker input.
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