Making the World's Scientific Information (More) Organized, Accessible, and Usable

Ted Briscoe

Natural Language and Information Processing Group Computer Laboratory University of Cambridge

Berkeley Version

Exponential Growth of Papers

Google Scholar

... wingless expression and is not required for reception of the paracrine wingless ... EJ Rulifson, SS Blair - Development, 1995 - dev. biologists.org

In the imaginal wing disc of Drosophila, sensory mother cells (SMCs), the precursors of the sensory organs differentiate in a highly stereotyped pattern (Shysen and O'Kane, 1989; Huang et al.

FlyBase Proforma / Information Extraction

The Paper Annotation Pipeline

Evalution Measures

Precision: $\frac{TruePositives}{TruePositives + FalsePositives}$

Recall: $\frac{TruePositives}{TruePositives + FalseNegatives}$

F-measure: $\frac{Precision \times Recall \times 2}{Precision + Recall}$

Mean Av. Prec.: $\frac{\sum_{r=1}^{N}(Prec(r) \times TP?(r))}{TruePositives + FalseNegatives}$

N = no. of TPs and FPs, r = rank

PDF to (Sci)XML

Citation Recognition

For each paper:

- 1 Find candidate names in references section: Ashburner
- **2** Find citation dates: 19|20xx(a|b)
- 3 Mark-up occurrences of name candidates leftwards from dates: Ashburner *et al.* (1985), (see Ashburner, 1983)

97% F-meas.?

Sentence Detection / Tokenization

- Resolve abbreviatory / sentential periods:
 ... et al. Adh vs. ... Adh. However
- Separate punctuation / remove some hyphenation: Adh ., insulin-like, phosphoryl-ation
- 3 Normalize Greek super/sub-scripts, footnote indices, etc: Adh^{α} , $Adh.^{\dagger}$

95% F-meas.

Named Entity Recognition

- FlyBase: 18k Genes, 75k Gene Names
- Overlap with general English: But, Can, Mad, spliced
- Spelling variation: Fas-III, fas III
- Annotate gene names in abstracts automatically using FlyBase
- Train a Conditional Random Field sequential classifier
- 3 Label tokens as (part of) gene names

85% F-meas. (abstracts) 83% F-meas. (full papers)

Sentence Parsing

- 1 Assign Part-of-Speech (PoS) Labels to tokens using Hidden Markov Model: we name/VV0 ...
- 2 Build graph of Grammatical Relations (GRs) between words using probabilistic LR model: subject(name, we)
- 3 Models trained on general English 20% unseen words
- 4 Correct PoS labels for gene names to proper noun

75% F-meas. overall, 80% Recall for top 10 analyses

Anaphora Resolution

- Assign more semantic classes to biological entitites: DNA, promoter, ... using the Sequence Ontology
- 2 Link coreferential definite descriptions / pronouns to antecedents: IL-2 promoter... This protein / It...
- 3 Link associative definite descriptions to antecedents: IL-2 is overexpressed... The promoter...
- Weighted Rule-based classifier using GR-context and semantic classes

58% F-meas. (69% with correct GRs)

PaperBrowser - Gene Mentions

PaperBrowser – Associated Entities

Image Processing

- Low-dimensional feature vector to summarise content of each image
- Colour and Intensity global bitstring, concatenated with:
- Wavelet decomposition for edge information
- Project vectors to randomly generated hyperplanes
- Use their signs as key for locality sensitive hashing

Indexing for Search

- Lucene open source IR library, native XML handling, scalable
- Fields: word stems & lemmas, GRs, and named entities
- Ranked search overlaid with Boolean operators that alter rank
- Search by word stems and named entity (classes) in search box
- Refine search over sentences using lemmas and GR-patterns

Distributed Paper Recovery and Annotation

- Each paper takes av. 10mins to run thru' pipeline
- Use (UK part of) Grid (for LHC data processing) 200K CPUs
- 15K FlyBase papers, 8K hours CPU, 3 days, max 100 jobs
- Ganga: error handling and job resubmission
- Distrbuted Spider: retrieved over 350K PDFs for papers

Goal: Find out which genes are involved in eye development and what they do.

Query: Find all sentences in figure captions within the document collection which contain any gene name premodifying the term *expression*, where the figure is a picture of an eye.

Method: Incrementally and interactively combine term search, image clustering, and pattern search over GRs to realize this query.

Screenshots:

Highlighted search terms, Gene names, Gene products

Step1: Captions containing eye

Step2: Select an image of an eye

Step3: Clustered images (captions not shown)

Step4: Refine text search within caption for one image

Results of refined text search

Gene Expression

```
Query 1: express AND Adh
Query 2: express \rightarrow^+ Adh
Query 3: Query 1 + OR overexpress... CG32954...
Query 4: Query 2 + OR overexpress... CG32954...
```

- express Adh
- expression of Adh
- Adh is one of the most highly expressed genes

Query	1	2	3	4
MAP	0.735	0.758	0.855	0.933

GRs and Gene Naming

GRs, anaphora and naming

Complexity = Problems!

S4P0: The Drosophila gene CG17952 encodes a protein that exhibits similarities with vertebrate LBR so we propose to name this protein Drosophila lamin B receptor (dLBR).

Gene Naming Queries

```
Query 1: bioG:CG* AND name
Query 2: bioG:CG* AND (name OR call OR refer OR ...)
Query 3: Query 2 + (CGid 'refer to as' GENE) OR ('name' CGid
GENE) OR (CGid '(' GENE ')') ...)
Query 4: Query 2 + CGid \rightarrow<sup>+</sup> GENE
Query 5: Queries 2, 3 + 4
```

Query	1	2	3	4	5
MAP	0.116	0.461	0.552	0.512	0.562

User Interface and Usability

- Term/class queries over sentences useful
- Image handling useful, clustering unintuitive
- Intuitive construction of GR-patterns
- But complex patterns cannot be easily constructed
- Ranking of complex (refined) query results often unintuitive
- 3/3 Curators are enthusiastic, but often frustrated...

Conclusions and Further Work

- 1 From PDF to SciXML using NLP
- 2 Integration of image and text search
- 3 Generic: domain-independent or weakly-supervised
- Make it all work better!
- IR to IE: Saving searches and search results
- Inference: e.g. transitivity (genes → proteins → diseases)

Acknowledgements

Contributors	Affiliation	Funding
Rachel Drysdale	Cambridge Univ	BBSRC
Caroline Gasperin	Cambridge Univ	CAPES
Karl Harrison	Cambridge Univ	STFC
Nikiforos Karamanis	Cambridge Univ	BBSRC
lan Lewin	Cambridge Univ	BBSRC
Andrew Naish	Camtology Ltd	Camtology
Andrew Parker	Cambridge Univ	STFC
Marek Rei	Cambridge Univ	EPSRC
Advaith Siddharthan	Cambridge Univ	STFC
David Sinclair	Imense Ltd	Imense
Simone Teufel	Cambridge Univ	BBSRC
Andreas Vlachos	Cambridge Univ	BBSRC
Rebecca Watson	iLexIR Ltd	iLexIR

Papers: 'FlySlip Project' / 'Ted Briscoe' / Questions: Ask, Email...