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1 Introduction

In this paper, I expand on and update the arguments concerning the evolutionary
emergence and maintenance of an innate language acquisition device (LAD) dis-
cussed in Briscoe (2003). By a LAD, I mean nothing more or less than a learning
mechanism which incorporates some language-specific inductive learning bias in
favour of some proper subset of the space of possible grammars.1 The existence
of an innate LAD has remained controversial, and it is certainly the case that
many arguments that have been proposed in its favour are questionable or wrong
(e.g. Pullum and Scholz, 2002; Sampson, 1989, 1999; Lappin and Shieber, 2007).
However, I will still argue that all adequate extant models of language acquisi-
tion do presuppose a LAD in the sense above. These arguments put the onus
on non-nativists to demonstrate an adequate, detailed and precise account of the
acquisition of grammar which does not rely on a LAD.

Chomsky has consistently downplayed the role of evolution in the emergence of
the LAD, emphasized the discontinuities between human language and animal
communication systems, and speculated that the LAD arose as a result of a
macromutation or saltationist jump, even in his most recent work (e.g. Hauser
et al. 2002). Pinker and Bloom (1990) developed an account of the gradual
evolutionary emergence of the LAD via genetic assimilation (or in their terms, the
Baldwin Effect). More recently, Briscoe (1997), Deacon (1997) and others have
argued that languages themselves are adaptive systems and that the universal
constraints on grammar that underpin much argumentation for the LAD can
be explained as a consequence of convergent evolution under similar linguistic
selection pressure. However, I will argue that this important insight does not
undermine the existence of the LAD, though it certainly undermines arguments
for the LAD based solely on the existence of linguistic universals.

Genetic assimilation is a neo-Darwininan mechanism (e.g. Waddington, 1942) by
which organisms can appear to inherit acquired characteristics though, in fact,
it is changes in their behaviour or more generally their environment (e.g. niche
construction) which create novel selection pressures and thus cause information
to be assimiliated into the genome2. Genetic assimilation of grammatical in-
formation exemplified in the environment of adaptation of the LAD potentially
would facilitate more rapid and robust acquisition of grammar by first language
learners. Thus, if mastery of language increases fitness, we might expect natural

1The term, LAD, is taken from Chomsky (1965). In more recent work, it has been dropped
in favour of universal grammar (UG) (e.g. Chomsky, 1981), reflecting the increasing focus on
constraints on the space of learnable grammars. Here I stick to the older term as I believe that
it is only possible to evaluate empirically claims about UG when they are embedded within a
precise account of the acquisition of grammar.

2I have reviewed the evidence for genetic assimilation in areas other than language evolution
elsewhere (e.g Briscoe, 2003). See also Pigliucci et al. (2006), for a recent more extensive review
and discussion.
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Figure 1: The emergent linguistic environment potentially creates new (natural)
selection pressures on our cognitive machinery

selection to improve language learning. I have argued (e.g. Briscoe, 2005) for
a coevolutionary account incorporating this process in which natural languages
are treated as complex adaptive systems undergoing often conflicting selection
pressures, only some of which emanate from the LAD or indeed more general
cognitive mechanisms, and where the LAD itself evolved via genetic assimilation
in response to (proto)languages in the environment of adaptation.

In terms of Kirby et al. (this vol., Fig. 2), the question we are considering is
whether it is appropriate to add a further arrow to their diagram depicting the
interaction of natural selection and linguistic selection which ‘closes the loop’
between natural selection for cognitive machinery and the linguistic environment
created via cultural transmission, as illustrated in Figure 1. Thus I am not
arguing that cultural evolution and linguistic selection have not had a profound
effect on the nature of natural languages, nor that many if not most linguistic
universals have emerged as a consequence of cultural or linguistic selection for
more learnable or otherwise cognitively or socially advantageous linguistic forms
or constructions. The only question I will consider is whether genetic assimilation
of language-specific grammatical information into the LAD is also plausible given
the coevolutionary scenario entailed by Figure 1. In particular, I will consider
the extent to which formal or computational models could and do contribute to
an answer to this question.

I do not intend to revisit all the arguments for and against genetic assimilation
reviewed in Briscoe (2003), nor to rereview the various models discussed there.
Instead I will focus on some recent arguments, sometimes supported by models
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and simulations, against genetic assimilation of linguistic information. However,
before addressing these arguments the next section defines grammatical acquisi-
tion and presents a Bayesian account of the task.

2 Grammatical Acquisition

In Briscoe (2003), I discuss five desiderata that adequate accounts of grammati-
cal acquisition during first language learning must satisfy: 1) coverage of attested
grammatical constructions; 2) realistic input to the learner consisting of a finite,
positive, but partly noisy sample from the target language; 3) realistic contex-
tual enrichment of this sample with only partial, noisy representations of the
form-meaning mapping; 4) selectivity in which a consistent grammar is acquired
and random noise is rejected; and 5) accuracy in which the acquired grammar
captures the form-meaning mappings of the target grammar – learners do not
‘hallucinate’ or invent grammatical properties regardless of the input, though
they do (over)generalize and, in this sense, ‘go beyond the data’. If accuracy is
defined in terms of formal learnability from realistic, finite, positive but noisy
sentence-meaning pairs over a hypothesis space with adequate coverage, even
when drawn from a single stationary target grammar, then inductive bias in the
acquisition model is essential.3

The term inductive bias is utilized in learning theory to characterize both hard
constraints on the hypothesis space considered by a learner, usually imposed by
a restricted representation language for hypotheses, and soft constraints which
create preferences within the hypothesis space, usually encoded in terms of a cost
metric or prior probability distribution on hypotheses (e.g. Mitchell, 1997:39f).
Bayesian probabilistic learning theory is a general domain-independent formu-
lation of learning (see e.g. Mitchell, 1997:154f for an introduction) which relies
on statistical inference and can thus cope with noise. Bayes’ theorem provides a
general formula and justification for the integration of prior bias with experience:

P (H | D) =
P (H)P (D | H)

P (D)
(1)

We compute the posterior probability of a hypothesis, H, given some data, D,
by multiplying the prior probability of the hypothesis by its likelihood given the
data, and normalize to obtain a probability by dividing the result by the overall
probability of the data. We typically choose the hypothesis with the highest
posterior probability. If we don’t need to know this exact probability we can
skip the normalisation step and simply choose the highest value hypothesis after

3See also Lappin and Shieber, 2007; Nowak et al. 2002 for related discussions of learning
theory drawing similar conclusions.
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multiplying prior and likelihood:

H = argmax P (H)P (D | H) (2)

The most general formulation of learning in this framework (Kolmogorov Com-
plexity) posits a learner able to learn any generalisation with a domain-independent
bias (the so-called ‘universal prior’) in favour of the smallest, most compressed
hypothesis (e.g. Li and Vitanyi, 1997). However, nobody has demonstrated that
this general formulation could, even in principle, result in a learning algorithm
capable of accurately acquiring a specific grammar of a human language from real-
istic input. However, there have been many demonstrations that grammars from
more restrictive though infinite hypothesis spaces, such as the class of context-free
grammars, can be acquired given a general bias in favour of the smallest or most
probable hypothesis (e.g. Horning, 1969). However, when such a general bias
is applied to a domain-specific and restrictive representation, then it will create
bias in favour of certain form-meaning mappings. This is where domain-specific
inductive bias appears to be unavoidable if the desideratum of learning accuracy
is to be met. And thus, this is the basis on which a LAD, in the sense of section
1, is unavoidable in any adequate account of grammatical acquisition. To relate,
this back to the equations above, if the space of possible hypotheses, H, is that
of unrestricted rewrite rules or Turing machines, then we might argue reasonably
that we have a domain-independent inductive bias. On the other hand, if this
space is defined as the (infinite) class of context-free or indexed grammars, which
cannot express some types of possible dependencies within sequential strings and
thus some possible mappings between meaning and form, then we are positing a
LAD, possibly with additional soft bias deriving from the prior.

Gold’s (1967) original negative ‘in the limit’ learnability results are founded on
the intuition that any amount of finite, positive data from a target grammar in
a class containing grammars capable of generating an infinite set of sentences is
always compatible with a hypothesized grammar generating all and only the data
seen so far and also with any one of a potentially infinite set of other grammars
from the candidate class which generate some superset of the learning sample.
Notwithstanding more recent developments in learnability theory and machine
learning (e.g. Nowak et al. 2002; Lappin and Shieber, 2007), this basic point still
holds. A prior distribution or cost metric encoding a preference, for example,
for smaller, more compressed grammars will, in general, select a single grammar
which predicts the grammaticality of of a specific superset of the learning sam-
ple. The exact form of the representation language in which candidate grammars
are couched and/or the addition of factors other than just size to the prior dis-
tribution or cost metric will determine which of the potentially infinitely many
grammars generating a superset of the learning sample is selected by the learner.

Consider a potential class of languages consisting of clauses constructed from a
verb (V), a subject (S) and object (O), where S and O are always realized as single
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(pro)nouns (N) or as noun phrases consisting of a noun and a (relative) clause –
the S and O labels are a shorthand for the mapping from forms to meanings (in
this instance just predicate-argument structure). By stipulation, there is one root
clause per sentence and all relative clauses modify the immediately preceding or
following noun. Potentially, grammatical sentences in this class of languages can
consist of any infinite sequence of Ss, Vs and/or Os, where we will use subscripts
to indicate which S or O is an argument of which V, when there is more than
one V in a sentence. Thus, without further stipulation, any clausal ordering of
S, O and V is possible, as well as any arrangement of root and relative clauses
like those in (1).

(1) a SiViOiSjVjOj

(e.g. cats like dogsi whoi like cats)

b SiViOiSjVjOj

(e.g. whoi like dogs catsi like cats)

c SiVjOjSjViVkOkSkOi

(e.g. catsi like dogs whoi like eat mice whoj

catsj)

These examples illustrate that post- and pre-nominal relative clauses with clause-
initial and -final relative pronouns are all potentially grammatical sequences.

A learner over context-free grammars (CFGs) with preterminals N and V will be
capable, in principle, of acquiring any target grammar in this space. Suppose that
the learner prefers, a priori, the smallest grammar compatible with the input,
defined as the grammar with the least number of nonterminals and the least
number of rules with the least number of daughters (where each nonterminal and
rule costs one and each daughter of each rule costs one). Then a learner exposed
to a sample of unembedded SVO sequences and (1a) might learn the grammar
(2).4

(2) a Sent → NPS V NPO

b NP → NP Sent

c NP → N

This grammar has a cost of 2 for nonterminals, 3 for rules and 6 for daughters
(making 11), and predicts the grammaticality of postnominal subject-modifying
relative clauses and of centre-embedded and right-branching sequences of rel-
ative clauses. (Given this cost metric, the learner could equally well learn a

4Once again, I use superscripted S and O and subscripted indices to show the mapping to
predicate argument structure and leave implicit that required to characterize the predicate-
argument structure of sentences containing relative pronouns. The details of how this mapping
is actually realized formally are not important to the argument, but either a rule-to-rule se-
mantics based on the typed lambda calculus or a unification-based analogue would suffice.
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non-recursive variant of (2b) with N substituted for NP as leftmost daughter.)
Without the preference for smaller grammars, defined as above, a learner might
have acquired the less predictive (3).

(3) a Sent → NS V NO

b Sent → NS
i Vi NO

i NS
j Vj NO

j

This grammar has a cost of 1 for nonterminals, 2 for rules and 10 for daughters
(making 13), and it does not predict the grammaticality of subject-modifying
relative clauses or multiply-embedded relative clauses. Moreover, a cost metric
which assigned a cost of 2 to each rule would also select (3) in preference to (2).5

If the input also includes (1b), containing a prenominal subject-modifying relative
clause, then a learner utilizing grammar (2) might acquire a further right-recursive
rule analogous to (2b), predicting complementary distribution of pre- and post-
modifying relative clauses. A learner utilizing (3) might acquire a further rule
analogous to (3b) predicting only subject-modifying prenominal relative clauses.

Example (1c) provides evidence for a root SVO language containing postnominal
VOS relative clauses. A learner with no cost metric might well acquire a grammar
with a rule analogous to (3b) with 9 daughters predicting this and only this exact
sequence. A learner with the cost metric exposed to SVO unembedded sequences
and (1c) would acquire grammar (4) with a total cost of 16.

(4) a Sent → NPS V NPO

b RC → V NPO NPS

c NP → NP RC

d NP → N

Thus, this learning model predicts that mixed root and embedded constituent
orders is a dispreferred or more marked option that will only be adopted when
the learner is forced to do so by positive evidence.

By contrast, if the learner represents the class of CFLs in ID/LP notation instead
of standard CFG, acquiring immediate dominance (ID) rules independently of lin-
ear precedence (LP) rules (e.g. Gazdar et al. 1985), but utilizing a similar cost
metric which also assigns a cost of one to each LP rule, then the preference or-

5The point is not new, of course. Chomsky (1965:38) recognized the need for an evaluation
measure based on simplicity to choose between grammars during language acquisition, and
others criticized the arbitrariness of such measures. Kolmogorov Complexity (e.g. Li and
Vitanyi, 1997) and the related Minimum Description Length (MDL) Principle (e.g. Rissanen,
1989) provide a less arbitrary metric based on the cost of compressing a hypothesis. The MDL
principle can and has been applied to grammatical acquisition (e.g. Ristad and Rissanen, 1994),
but once again coupled with restricted hypothesis representation languages. These complexities
are ignored here to keep the example simple as they do not alter the fundamental point about
the domain-specificity of cost metrics or prior distributions defined over restricted hypothesis
representation languages.
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dering on specific ID/LP grammars predicts that order-free variants of the above
grammars with no LP rules will be preferred and that the inclusion of examples
like (1b) or (1c) in the input will not alter the learner’s hypothesis. Thus by
changing the hypothesis representation language but keeping the cost metric the
same, we create inductive bias in favour of different grammars which general-
ize in different ways from the evidence. Similarly, by keeping the representation
language the same but modifying the cost metric, we can also create differing
inductive biases.

The Bayesian learning framework also provides a general and natural way to un-
derstand and model how stronger grammar-specific inductive biases might have
come to be integrated with the LAD, in terms of the evolution of more and more
accurate prior distributions over the hypothesis space with better and better ‘fit’
with languages in the environment of adaptation. Cosmides and Tooby (1996),
Geisler and Diehl (2003) and Staddon (1988) argue in detail that Bayesian learn-
ing theory is an appropriate framework for modelling learning in animals and
humans and that evolution can be understood within this framework as a mech-
anism for optimizing priors to ‘fit’ the environment, and thus increase fitness.
Thus, it provides a framework for making precise the effects of genetic assimi-
lation, as section 4 details. Cost metrics applied to such restricted hypothesis
representation languages entail that learners will ‘go beyond the evidence’ in dif-
ferent ways and, thus, will have different specifically-linguistic inductive biases
(i.e. different mappings between form and meaning). However, learners without
cost metrics, or equivalently prior distributions, cannot acquire target grammars
accurately, as Gold’s (1967) and Horning’s (1969) work demonstrated.

All extant models which learn form-meaning mappings assume a LAD, in the
sense of section 1, because they utilize prior distributions or cost metrics defined
over restricted hypothesis representation languages selected to facilitate encoding
of grammars for human languages. The onus is on non-nativists to develop a
precise account of grammatical acquisition which meets the above desiderata
and does not utilize a LAD in this sense. Work utilizing simple recurrent neural
networks or other forms of statistical classification purporting to address issues of
grammar learning is largely irrelevant as such models can at most learn to classify
segmemnts of the input and/or predict the class of the next unit of input. They
do not learn a form-meaning mapping which requires the ability to construct a
relational encoding using two-place predicates over constituents or lexical heads,
such as ‘subject-of’, ‘object-of’, and so forth

Independently of these logical and theoretical arguments, there is psycholinguis-
tic evidence that human language learners are biased in linguistically-specific
ways. There are learning stages in which overgeneralisation of regular mor-
phology is common, tense is assigned to auxilaries and main verbs in subject-
auxiliary inverted constructions, and so forth. Whilst, the exact interpretation of
such phenomena is a matter of complex analysis within a theoretical framework,
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psycholinguists most often describe them as linguistically-specific biases, for in-
stance, Wanner and Gleitman (1982:12f) argue that children are predisposed to
learn lexical compositional systems in which ‘atomic’ elements of meaning, such
as negation, are mapped to individual words. This leads to transient production
errors, for example, where languages mark negation morphologically.

In summary then, non-nativists must develop an effective detailed grammar learn-
ing procedure which meets the desiderata outlined in the opening paragraph of
this section which doesn’t utilize some form of cost metric applied to a restricted
representation language. Until this is done, we must continue to assume that
grammar learning requires at least a weak inductive bias able to choose betwen
different form-meaning mapping rule sets (grammars) which predict the gram-
maticality of different supersets of the learning data.

3 Linguistic Evolution

Linguistic evolution proceeds via cultural transmission (primarily, first language
acquisition) at a faster rate than biological evolution. The populations involved
are generally smaller (speech communities, rather than entire species), and lan-
guage acquisition is a more flexible and efficient method of information transfer
than genetic mutation. Clearly, vocabulary learning and, at least, peripheral
grammatical development are ongoing processes that last beyond childhood, so
that linguistic inheritance is less delineated or constrained than the biological
mechanisms of genetic evolution. Several consequences emerge from the evo-
lutionary account of languages as adaptive systems which must be taken into
consideration by any plausible account of grammar learning. Firstly, several
researchers have considered what type of language acquisition procedure could
not only underlie accurate learning of modern human languages but also predict
the emergence of protolanguage(s) with undecomposable form-meaning corre-
spondences and the (subsequent) emergence of protolanguage(s) with decompos-
able (minimally grammatical) sentence-meaning correspondences (e.g. Oliphant,
2002; Kirby, 2002, Brighton, 2002). They conclude that the language acquisi-
tion procedure must incorporate inductive bias resulting in generalisation, and
consequent regularisation of the input, in order that repeated rounds of cultural
transmission of language regularize random variations into consistent and coher-
ent communication systems.6 Secondly, the account of languages as adaptive
systems entails that linguistic universals no longer constitute strong evidence for
a LAD. Deacon (1997), Briscoe (1997) and others make the point that univer-
sals may equally be the result of convergent evolution in different languages as a

6Newport (1999) reports the results of experiments on sign language acquisition from poor
and inconsistent signers which clearly exhibit exactly this bias to impose regularity where there
is variation unconditioned by social context or other factors.

9



consequence of similar evolutionary pathways and linguistic selection pressures.
For example, the fact that in attested languages irregularity is associated with
high frequency forms is unlikely to be a consequence of a nativized constraint and
much more likely to be a universal consequence of the fact that low frequency
irregular forms are less likely to be reliably learned by successive generations of
first language learners (see Kirby, 2001, for an elegant simulation).

Zuidema (2003) has argued, following Deacon (2007), that if languages have
evolved to be learnable this undermines the learnability arguments of Nowak et
al. (2002) that for speech communities to evolve, the probability of children being
able to learn a target grammar must be higher than a ‘coherence threshold’, below
which no single communal grammar, and thus language, can be maintained. He
presents a simulation of an iterated learning model in which early generations
of learners do not acquire the target language, but a compression-based prior
bias for small context-free grammars leads to the evolution of languages which
can be acquired accurately by this learning procedure. Thus over generations, the
population of learners evolves languages which meet the coherence threshold even
though the starting conditions do not. However, to achieve this result, Zuidema
must assume that the learners in his population come equipped with an invariant
learning algorithm equvalent to that of Horning (1969), as a prior bias for small
stochastic context-free grammars is equivalent to a compression-based learner of
context-free grammars (see e.g. Rissanen, 1989). Thus, contrary to his claims,
the model does not really address Gold’s ‘in the limit’ negative results, because of
the assumed inductive bias for smaller grammars. However, the model does show
very elegantly how the fit between languages and prior bias is predicted to become
very close in many if not all such models (e.g. Griffiths and Kalish, 2007; Kirby
et al. 2007)7 The question, I wish to address here is where might this grammar-
specific bias have come from, given that it is evolutionarily implausible to assume
that it simply emerged de novo before the emergence of (proto)language.

4 Genetic Assimilation

Although Pinker and Bloom (1990) and many others use the term ‘Baldwin Ef-
fect’, I prefer Waddington’s (1942, 1975) notion of genetic assimilation to describe
the process by which changes in the behaviour of a population, i.e. niche con-
struction, can cause changes to the environment of adaptation, and thus create

7Kirby et al.(2007) argue, contra Griffiths and Kalish, that cultural transmission in the form
of an ‘information bottleneck’ (i.e. exposure to a finite positive sample of a language which
doesn’t completely determine the target grammar) can overcome prior bias for learners who
select the most probable grammar rather than selecting a grammar with a bias determined
by the posterior probability distribution over grammars. However, this result is questionable
given the need for noise in lingustic production, which essentially reincorporates the effect of
posterior biased selection of a grammar in the original simulation.
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novel selection pressures on that population. Unlike Baldwin, and others writing
before the modern synthesis, Waddington was able to demonstrate experimen-
tally with fruit flies that environmental changes combined with artificial selection
for flies that responded in a phenotypically specific way to such changes results
in “canalization” of the phenotypic response, i.e. phenotypic plasticity is sup-
planted by a genetically encoded invariant response in the evolved population,
which no longer requires the original environmental stimulus8 .

Deacon (this vol.) argues that in addition to the unmasking of genes to novel
selection pressure demonstrated by Waddington, niche construction may also
mask selection for other genes. He gives the example of the loss of the ability in the
primate lineage to internally synthesize asorbic acid, as a consequence of masking
of selection for a gene which coded for a protein essential to this process caused
by adoption of a diet containing fruit and thus an external supply of asorbic
acid. Deacon characterizes the process of genetic assimilation as the unmasking of
selection pressure on genes coding for cognitive neural mechanisms (e.g. the LAD)
as a consequence of niche construction (e.g. the emergence of (proto)language).
However, he argues that masking of selection on the genes coding for neural
mechanisms and their consequent “relaxation” is a more plausible explanation
for our linguistic abilities because “highly distributed synergistic organisation
emerges from this type of process” and because “epigenetic parsimony” entails
that the genes should only encode what cannot be offloaded to “self-organizing
developmental processes” in interaction with the environment (Deacon, this vol.).

If Deacon is right (and the analogy with the development of more complex song
in the Bengalese Finch is certainly compelling), then masking in the linguistic
niche means that we evolved into a genetically “degenerated ape” rather than a
more finely-adapted one. However, even under this scenario, “stabilizing selec-
tion” for the suite of epigenetic responses to linguistic stimuli is still required for
maintenance of our language learning abilities. So under this scenario, genetic
assimilation still plays a role, but a reduced one in which the emergent complexity
of language and its acquisition is more a consequence of serendipitous synergies
amongst various less-constrained epigenetic developmental processes, rather than
of active selection for a genetically-encoded LAD. One possible problem with this
account is that it relies on synergies whose probability may not turn out to be
much higher than those required by saltationist accounts of the emergence of the

8Longa (2006) argues, rather incoherently, that I resort to Waddington’s mechanism of
genetic assimilation in order to motivate my account of the emergence of a LAD via the Baldwin
Effect. He claims that I conflate the two processes and that somehow my arguments and
simulation model rest on the parity of the two processes. In fact, I only refer to the Baldwin
Effect at all because of its widespread use by others to mean something like genetic assimilation
where phenotypic plasticity is supplied by a within-lifetime learning mechanism. I am not
particularly concerned with the pre-modern synthesis speculations of Baldwin and others nor
with the various (re)interpretations of these speculations, and the coevolutionary model and
account of the emergence and maintenance of the LAD in no way rests on them.
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LAD (see Pinker and Bloom, 1990). Whether one places the emphasis more on
masking or unmasking, it is hard to see why this would impact on the issue of
language-specificity given the arguments in 2 and 3 above. Deacon endorses the
simulation and modelling work of Yamauchi (e.g. 2001), which Yamauchi argues
undermine the plausibility of genetic assimilation. However, in my own modelling
work (Briscoe, 2005) replicating Yamauchi’s decorrelation of genotypic and phe-
notypic space within a coevolutionary model of the evolution of the LAD and of
languages themselves, I showed that these results rest more on the simplifying
assumptions of his model than on any substantive extension of Mayley’s (1996)
original work on decorrelation and genetic assimilation. I believe the distinc-
tion between an unmasking and a masking account reduces to one of causation
in an evolutionary (pre)history that we as yet have only very indirect access
to. Either way, there is a critical role for genetic assimilation and on balance
I believe current evolutionary theory suggests unmasking (i.e. Waddingtonian
genetic assimilation) would play the larger causative role in the development of
novel traits.

5 Models and Simulations

The value of formal modelling and computational simulation of linguistic evo-
lution and of associated cognitive neural evolution is that it can lend greater
precision to argumentation concerning interactions between at least two complex
and only partially understood domains. However, if a model supports a particular
argument, this does not mean the argument is correct. Rather the required preci-
sion and detail needed to make a particular prediction exposes the assumptions,
some perhaps implicit, whose plausibility can then be more directly evaluated.

For instance, Deacon (1997) argues, along with others, that genetic assimilation
could not have been a significant factor in the development of the LAD because
the speed of linguistic evolution so outpaces biological evolution that genes track-
ing grammatical regularities would not have time to go to fixation in the pop-
ulation before these changed and the associated selection pressure they entailed
disappeared. This sounds plausible, but when tested by modelling and simulation
turns out to require an unstated assumption that the full range of grammatical
possibilities available in the hypothesis space of grammars be manifest during the
period of adaptation. No matter how much apparent linguistic change is mani-
fested, if this only covers a proper subset of the hypothesis space of grammars,
then there will be selection pressure for genes which constrain the hypothesis
space to just this proper subset under the assumptions that this makes learning
more robust and efficient and that mastery of language confers a fitness benefit.
Of course, this doesn’t prove that genetic assimilation of this kind occurred, but
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it does suggest Deacon’s argument is flawed in this form9.

In Briscoe (2003, 2005) as well as in earlier work referenced there, I review,
evaluate and model a number of arguments and models both for and against
genetic assimilation of grammatical information, concluding that this remains a
coherent and evolutionarily plausible account of the emergence and maintenance
of the LAD. One theme that is often implicit but always present in this work
is that designing a useful model and deriving results from it is a non-trivial
business which, although apparently largely a mathematical and computational
exercise, is in fact replete with complex judgements about the appropriate level of
abstraction to adopt and what simplifying assumptions it is legitimate to make.

For instance, Christiansen et al. (2006), summarized in Kirby et al. (this vol.),
revisit the relative speed of change argument, albeit without considering either
Deacon’s arguments or my own work, and present a series of simulations which
they argue demonstrate that only functionally motivated features of language
can become genetically encoded because of the rapidity of linguistic change com-
pared to biological evolution. They take this as a refutation of Pinker and Bloom’s
(1990) claim that arbitrary features of language might become encoded in uni-
versal grammar (the LAD) to make language learning more robust. The model
of learning is based on that of Hinton and Nowlan (1987) and language change is
simulated by introducing a new language at each time step of the model. They
do not measure the communicative success of the evolving learning agents after
each time step and they do not investigate the proportion of the original hy-
pothesis space explored during an average simulation run. The description of the
simulation isn’t detailed enough to infer either, however, it seems likely that the
former will be low, contrary to attested language change, and the latter high when
change is not closely correlated with the genetic make-up of the population at
the previous time step. It is, therefore, not surprising nor particularly interesting
that genetic assimilation does not occur under these conditions. They perform a
second simulation run in which agents are selected on the basis of their commu-
nicative success where they observe genetic assimilation but take this to mean
that only functionally motivated traits can be assimilated. They appear to miss
the point that arbitrary features of grammar if assimilated become functional in
this sense if they make learning more efficient and thus increase communicative
success – reinforcing Pinker and Bloom’s original point that “parity” is func-
tional in its own right without any additional “functional” requirements for ease
of acquisition, product or comprehension.

Similarly, Reali and Christiansen (submitted) argue that there is evidence of
considerable overlap in the cognitive machanisms used in sequential learning and

9I’d like to make clear that I focus here on Terry Deacon’s work not because I think it
is generally flawed but, on the contrary because I find it very stimulating and often very
convincing, and this provokes me to evaluate it carefully, even to the extent of building and
modifying quite complex computational models
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language learning. They evolve the initial weights of a population of simple recur-
rent neural networks (SRNs) to perform optimally on a sequential learning task.
They then used these evolved SRNs to “learn” (in fact, predict string sequences
of) languages in an iterated learning model, also allowing the SRN weights to fur-
ther evolve, subject to the proviso that they maintained the same performance
on the original sequential learning task. The result is that languages emerge with
consistent head ordering, but the networks themselves do not evolve further. Re-
ali and Christiansen interpret this to mean that a sequential learning mechanism
exapted for language learning predicts that languages will evolve in typologically
plausible ways without any specific linguistic biases being genetically assimilated.
I think this is a potentially interesting claim and line of research which is unfor-
tunately undermined by the use of SRNs, which are incapable, in principle, of
grammar learning (see 2 and by the fact that the specific class of SRNs deployed
may be unable to even reliably predict the sequences of many languages in the
space explored given any possible weight settings. Rather than using the iter-
ated learning paradigm with a population of learners it would have been more
informative to demonstrate the predictability of plausible and implausible word
order sequences by networks with various weight settings, and then demonstrate
that a network optimized for non-linguistic sequential learning incorporates a
bias against certain word order sequences.

6 Conclusions

Modelling and simulation are potentially very valuable in such a complex domain
of enquiry where the constraints on theory are weak given the available evidence.
However, such modelling has a largely negative impact, mostly exposing the flaws
and implicit implausible assumptions in arguments. Even to achieve this much,
models must meet certain criteria before they become relevant. They must model
the acquisition task realistically, track communicative success in many contexts,
and make realistic assumptions about rates and types of language change.

To date, I believe that the evolutionarily most plausible account of the emer-
gence and maintenance of the LAD is that a representation language evolved
out of the (compositional) ‘language of thought’ capable of mapping meaning to
sequential or spatial realizations which disambiguate argument relations to pred-
icates. Most likely the simplest such mappings, requiring the least additional
apparatus, embody substantive constraints on such mappings and thus are low
or intermediate on the Chomsky hierarchy of language classes and associated au-
tomata. In this sense, the LAD already incorporated grammar/language-specific
bias. However, the linguistic niche created new selection pressures for robust and
efficient language acquisition, and genetic assimilation provided the mechanism
by which adaptations encoding ever more informative prior biases could evolve.
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These would most likely be weak biases rather than hard constraints, in the face
of continuing linguistic evolution and then subsequent change within the space
of modern human languages, and would asymptote at the point where, given
such variation in the linguistic environment of adaptation, no further gains were
possible or all relevant genetic variation had gone to fixation.
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