Multimodal AI for Real-World Signals and the Role of Language

Dimitris Spathis

Sr Researcher Nokia Bell Labs Cambridge, UK

dispathis.com

AAAI 2024 Health Intelligence workshop • February 2024

Why don't models learn like humans or animals?

How do babies learn to interact with the world in a few months?

How do teenagers learn to drive with only a few hours of training?

Multimodal data → structurally different signals

NOKIA BELL LABS

The future of multimodal capabilities: on device AI + sensing

All-purpose devices with reliance on cloud services Smart cloud, "dumb" device

Enhanced sensing and on-device capabilities Smart device and cloud

easy

easy

hard

4.00+*/label

*assuming a sleep technician charging \$50/h and 90-120 sleep stage transitions per 8 hours of sleep

hard

SENSOR-BASED SLEEP TRACKING

>80x

easy

IMAGE RECOGNITION

Fitness is measured with expensive & high-risk treadmill tests

NO<IA

Low fitness: strong predictor of all-cause mortality

	The second se	
HR (95% CI)	P Value	
1.41 (1.36-1.46)	<.001	
1.29 (1.24-1.35)	<.001	-
1.40 (1.34-1.46)	<.001	-
1.21 (1.16-1.25)	<.001	
2.78 (2.53-3.05)	<.001	
5.04 (4.10-6.20)	<.001	_ _
3.90 (3.67-4.14)	<.001	-
2.75 (2.61-2.89)	<.001	-
1.95 (1.86-2.04)	<.001	-
2.59 (2.10-3.19)	<.001	
2.00 (1.88-2.14)	<.001	+
1.41 (1.34-1.49)	<.001	+
1.84 (1.49-2.26)	<.001	_ _
1.42 (1.33-1.52)	<.001	+
1.29 (1.05-1.60)	.02	-
	HR (95% CI) 1.41 (1.36-1.46) 1.29 (1.24-1.35) 1.40 (1.34-1.46) 1.21 (1.16-1.25) 2.78 (2.53-3.05) 5.04 (4.10-6.20) 3.90 (3.67-4.14) 2.75 (2.61-2.89) 1.95 (1.86-2.04) 2.59 (2.10-3.19) 2.00 (1.88-2.14) 1.41 (1.34-1.49) 1.84 (1.49-2.26) 1.42 (1.33-1.52) 1.29 (1.05-1.60)	HR (95% CI) P Value 1.41 (1.36-1.46) <.001

63

NOKIA

ndsager et al, 2018, JAMA Network Open

Adjusted HR

Converting raw wearable sensor data into cardio-fitness estimates

Spathis et al, 2022 (Nature Digital Medicine

Free-living wearable data + anthropometrics = best result

Anthropometrics

Age/Sex/Weight/BMI/Height

Resting Heart Rate

RHR (Sensor-derived)

Anthropometrics + RHR

Age/Sex/Weight/BMI/Height/RHR

Sensors (68 var.) + RHR + Anthro Acceleration/HR/HRV/MVPA Age/Sex/Weight/BMI/Height/RHR

Predicting substantial fitness change almost a decade later (AUC=0.74)

Spathis et al, 2022 (Nature Digital Medicine)

VOVI

RELL

Signal annotation is not straightforward and sometimes infeasible

Annotation is supposed to be the golden standard in collecting groundtruth but rater (dis)agreement introduces further confusion to the models

For some tasks such as sensor-based activity recognition, an additional video recording is required for annotation, which cannot scale to real-world settings

Self-supervised learning uses existing data as prediction targets

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

The first models were based on heuristic (pretext) tasks

https://lilianweng.github.io/

-ABS

We can even create pretext tasks across different modalities

Heart rate responses to activity are evident in wearable data

Spathis et al., CHIL 2021

Self-supervised learning enables transferrable models

And it comes in different variants

Spathis et al., Cell Patterns 2022

Current approaches focus on pre-processing & unimodal data

We have to create both positive and negative pairs (not straightforward to pick)

There are no considerations for learning both within and across different modalities

https://github.com/iantangc/ContrastiveLearningHAR

Pre-processing not straightforward: which augmentation first?

Masked Autoencoders offer a simpler architecture based on masking

https://multimae.epfl.ch/

Masking has been wildly successful in training (Chat)GPT

http://jalammar.github.io/how-gpt3-works-visualizations-animations/

Core idea: contrasting masked latent embeddings

1. Use a separate encoder for each modality/sensor

2. Merge all embeddings to a joint representation

3. Mask the representations in the latent space

4. Train the network to contrast the two views

5. After pre-training is done, we fine-tune the model with labels

Spathis et al., Cell Patterns 2022

Results

Spatial masking + fine-tuning outperforms other methods

Techni	que	Dataset				
Training	Method	SleepEDF	PAMAP2	WESAD		
End-2-End	Supervised	0.717 (.03)	0.879 (.12)	0.884 (.02)		
	DeepConvLSTM	0.601 (.02)	0.718 (.18)	0.791 (.04)		
	COCOA	0.628 (.02)	0.839 (.11)	0.669 (.01)		
SSL (Fixed enc.)	CroSSL (random)	0.628 (.00)	0.802 (.15)	0.642 (.02)		
	CroSSL (spatial)	0.722 (.02)	0.822 (.13)	0.667 (.02)		
	COCOA	0.678 (.01)	0.882 (.11)	0.913(.03)		
SSL (Fine-tuned enc.)	CroSSL (random)	0.726 (.00)	0.871 (.11)	0.894 (.02)		
	CroSSL (spatial)	0.741 (.00)	0.892 (.10)	0.939 (.03)		

CroSSL: we test our method in two modes

Masking

- Random
- Spatial

Transfer learning

- Fixed (frozen)
- Fine-tuned (re-training)

CroSSL is robust to missing modalities in prediction time

	Tec	hnique	Dataset				
Missing data at: Fine-tuning Inference		Masking	Method	SleepEDF	PAMAP2	WESAD	
			Supervised	0.717 (.03)	0.879 (.12)	0.884 (.02)	
N	N .T	random	Fixed SSL	0.628 (.00)	0.709 (.18)	0.629 (.02)	
No	No		Fine-tuned SSL	0.726 (.00)	0.825 (.13)	0.890 (.01)	
		emotiol	Fixed SSL	0.722 (.02)	0.822 (.14)	0.715 (.06)	
		spatial	Fine-tuned SSL	0.741 (.00)	0.892 (.11)	0.925 (.03)	
	Yes		Supervised	0.703 (.03)	0.897 (.11)	0.894 (.02)	
		random	Fixed SSL	0.602 (.03)	0.742 (.18)	0.622 (.03)	
No			Fine-tuned SSL	0.738 (.03)	0.859 (.13)	0.899 (.02)	
		spatial	Fixed SSL	0.694 (.01)	0.805 (.16)	0.655 (.02)	
			Fine-tuned SSL	0.739 (.02)	0.899 (.09)	0.923 (.03)	
Yes	Yes	-	Supervised	0.202 (.17)	0.469 (.36)	0.304 (.37)	
		random	Fixed SSL	0.206 (.35)	0.331 (.19)	0.186 (.16)	
			Fine-tuned SSL	0.200 (0)	0.440 (.28)	0.139 (.18)	
		spatial	Fixed SSL	0.667 (.13)	0.646 (.21)	0.278 (.14)	
			Fine-tuned SSL	0.581 (.24)	0.495 (.35)	0.234 (.17)	

Spatial masking is more robust in missing modalities on inference time

Fixed/base models outperform in data-scarce fine-tuning

while supervised models are heavily impacted by missing data

Spatial > Random, masking more effective in larger datasets

High latent masking ratios do not result in high performance, unlike in vision/MAE papers. Performance drop is more visible in random masking.

Fine-tuned CroSSL outperforms the fixed variant in most cases.

Fine-tuned models are label-efficient, fixed ones need warmup

Fine-tuning is as good as supervised models that have access to labeled data, but it is particularly effective in the low-data regime (1-10% of labels)

Takeaways

Achieves state of
art performance in
multimodal signalHandles missing
data/sensors in an
elegant mannerML tasks

3

Is data & label-efficient with performance on par or better to supervised models Requires no data preprocessing such as negative pair mining or hiding inputs

Problem solved?

Self-supervision needs large unlabeled data: where to find them?

	PPG	ECG
Number of participants	141,207	106,643
Number of segments	19,854,101	3,743,679
Average number of calendar days per participant	92.54	23.27
Total dataset time span (days)	890	1,240

Apple Heart and Movement Study

Dataset	#Subjects	#Samples	#Classes	Environment	References
UK-Biobank	$\sim 100 \mathrm{K}$	6 B	Unlabelled	Free-living	Doherty et al. (2017)
Capture-24	152	573K	4	Free-living	Willetts et al. (2018)
Rowlands	55	36K	13	Lab	Esliger et al. (2011)
WISDM	46	28K	18	Semi free-living	Weiss et al. (2019)
REALWORLD	14	12K	8	Lab	Sztyler and Stuckenschmidt (2016)
Opportunity	4	3.9K	4	Semi free-living	Roggen et al. (2010)
PAMAP2	8	2.9K	8	Lab	Reiss and Stricker (2012)
ADL	7	0.6K	5	Lab	Bruno et al. (2013)

UK Biobank (wristband) compared to benchmark HAR data

Large unlabeled data of that kind is hard to collect

Not publicly available on the web, unlike images or text

Number of potential modalities hampers progress because it requires aligned/paired data

Available pre-trained models are limited in size and generalization capabilities

to signals

But do Large Language Models understand numbers?

P = 48 ft

length = 24 ft

6		
	H mm	
	P = 34 mm length = mm	
hes		

width = ____ cm

h (long side) of two sides. Subtract the two

LLM tokenizers are not designed for numbers

Consecutive digit chunking

Input \rightarrow			Token IDs							
480,	481,	482	\rightarrow	22148,	11,	4764,	16,	11,	4764,	17

Floats

Input \rightarrow Token IDs 3.14159 \rightarrow 18, 13, 1415, 19707

Case sensitive, trailing whitespaces, arbitrary integer grouping, inconsistent long integer chunking, model-specific behaviours, ...

A case study with activity timeseries data and the GPT tokenizer

Bridging the modality gap with adapters & prompt-tuning

https://blog.research.google/2023/08/multimodal-medical-ai.html

Prompting with numbers in addition to text

From prompt engineering to few-shot learning to prompt-tuning

NOKIA BELL LABS

Liu et al., ArXiv 2023

Instead of prompt-tuning, first (auto)encode the numerical data

Belyaeva et al, Arxiv 2023

VOVIA

Everything-to-everything multimodal models

Pros

Computationally efficient

LLM is fixed/frozen

Allows connecting to other highperforming models (e.g. a *sota* ECG encoder)

Breaking down the system to encoder + adapter + LLM enables faster iteration and testing

Cons

Modularization introduces complexity, gradients don't propagate all the way

Adapter <-> LLM communication is no longer interpretable (compared to natural language prompts)

Where are we now and what is missing?

Read more on our papers

Latent Masking for Multimodal Self-supervised Learning in Health Timeseries

Shohreh Deldari¹² Dimitris Spathis³ Mohammad Malekzadeh³ Fahim Kawsar³ Flora Salim² Akhil Mathur³

Abstract

Limited availability of labeled data for machine learning on biomedical time-series hampers progress in the field. Self-supervised learning (SSL) is a promising approach to learning data representations without labels. However, current SSL methods require expensive computations for negative pairs and are designed for single modalities, limiting their versatility. To overcome these limitations, we introduce CroSSL (Cross-modal SSL). CroSSL introduces two novel concepts: masking intermediate embeddings from modalityspecific encoders and aggregating them into a global embedding using a cross-modal aggregator. This enables the handling of missing modaliapplications in healthcare, including human activity recognition (HAR) and sleep tracking through brain activity monitoring (Kemp et al., 2000; Tang et al., 2021). However, the reliance on labeled data for training deep neural networks (DNNs) has hindered their scalability (Yuan et al., 2022). Collecting, annotating, and maintaining large labeled datasets can be expensive, time-consuming, and impractical, leading to a growing interest in self-supervised learning (SSL) that learns from unlabeled data (Saeed et al., 2019).

SSL defines an artificial task, known as a pretext task, where the supervisory signal is automatically generated from unlabelled data, enabling the training of an encoder model to learn a latent representation of the input data (Yuan et al., 2022). SSL has shown promise in various applications, such as HAR (Tang et al., 2021), by leveraging large amounts of

Deldari et al, WSDM'24 & ML4MHD @ ICML'23 arxiv.org/abs/2307.16847

The first step is the hardest: Pitfalls of Representing and Tokenizing Temporal Data for Large Language Models

Dimitris Spathis * Nokia Bell Labs Cambridge, UK

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable generalization across diverse tasks, leading individuals to increasingly use them as personal assistants and universal computing engines. Nevertheless, a notable obstacle emerges when feeding numerical/temporal data into these models, such as data sourced from wearables or electronic health records. LLMs employ tokenizers in their input that break down text into smaller units. However, tokenizers are not designed to represent numerical values and might struggle to understand repetitive patterns and context, treating consecutive values as separate tokens and disregarding their temporal relationships. Here, we discuss recent works that employ LLMs for human-centric tasks such as in mobile health sensing and present a case study showing that popular LLMs tokenize temporal data incorrectly. To address that, we highlight potential solutions such as prompt tuning with lightweight embedding layers as well as multimodal adapters, that can help bridge this "modality gap". While the capability of language models to generalize to other modalities with minimal or no finetuning is exciting, this paper underscores

Fahim Kawsar Nokia Bell Labs Cambridge, UK

the unintentional fragmentation of continuous sequences into disjointed tokens. Consequently, the temporal relationships that underpin such data may be lost in translation, potentially undermining the very essence of the information being processed.

In this context, this paper delves into the nuances and obstacles that emerge when LLMs are confronted with the task of representing and tokenizing temporal data. We focus on the interplay between numerical and textual information, uncovering the potential pitfalls that can hamper the effective utilization of LLMs in scenarios where temporal context is important. Last, we discuss potential solutions from the rapidly growing area of parameterefficient transfer learning and multimodal adapters that could enable better integration of non-textual data into LLMs.

2 TOKENIZATION IN LANGUAGE MODELS

Tokenization is a fundamental process underpinning the operation of LLMs. It involves the division of input and output texts into smaller, manageable units known as tokens. These tokens serve

VO<I

Spathis & Kawsar, GenAl UbiComp'23 arxiv.org/abs/2309.06236

Dimitris Spathis

Sr Researcher Nokia Bell Labs Cambridge, UK

👆 dispathis.com

AAAI 2024 Health Intelligence workshop • February 2024