Compound interpretation as a challenge for computational semantics

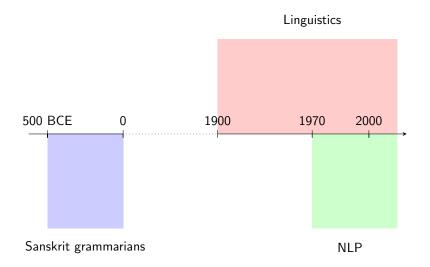
Diarmuid Ó Séaghdha

ComAComA, Dublin 24 August 2014

- Noun-noun compounding is very common in many languages
- We can make new words out of old
- ► Expanding vocabulary → lots of OOV problems!
- Compounding compresses information about semantic relations
- Decompressing this information ("interpretation") is a non-trivial task
- In this talk I focus on relational understanding

LOCATION MATERIAL LOCATION/PRODUCER

We slept in a mountain hut We slept in a timber hut We slept in a timber camp LOCATION MATERIAL LOCATION/PRODUCER

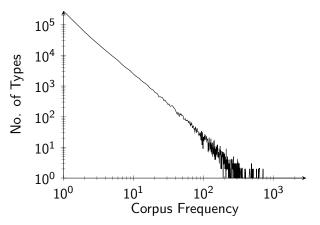

We slept in a mountain hut We slept in a timber hut We slept in a timber camp LOCATION MATERIAL LOCATION/PRODUCER

??

- Special but very frequent case of information extraction
- In order to interpret compounds, a system must be able to deal with:
 - Lexical semantics
 - Relational semantics
 - Implicit information
 - World knowledge
 - Handling sparsity
- Compound interpretation is an excellent testbed for computational semantics.

Thoughts and open questions

A brief history of compound semantics


... almost all questions are still open!

Some questions that I am interested in:

- What are useful representations for compound semantics?
- What are learnable representations for compound semantics?
- Should we use representations that are not specific to compounds?
- What are the applications of compound interpretation?
 - Paraphrasing/lexical expansion (for MT, search,...)
 - Machine reading/natural language understanding
- Many representation options, some more popular than others
- All have pros and cons

The lexical analysis

- Idea: Treat compounds as if they were words.
- Frequent/idiomatic compounds (e.g., in WordNet)
- Pro: Flexible
- Con: Productivity

- Idea: Underspecified single relation for all compounds
- Adequate when parsing to logical form or e.g. Minimal Recursion Semantics:

car tyre compound_nn_rel(car,tyre)
history book compound_nn_rel(history,book)

- ▶ Pro: Easy to integrate with parsing/structured prediction
- Con: Not very expressive!

The inventory analysis

► Idea: Select a relation label from a (small) set of candidates

car tyre	Part-Whole
mountain hut	LOCATION
cheese knife	Purpose
headache pill	Purpose

- Earliest, most common approach [Su, 1969; Russell, 1972; Nastase and Szpakowicz, 2003; Girju et al., 2005; Tratz and Hovy, 2010]
- Some relation extraction datasets span compounds and other constructions [Hendrickx et al., 2010]
- Pro: Learnable as multiclass classification; annotation is feasible
- Con: Conflates subtleties (sleeping pill vs headache pill); requires annotated training data

- Idea: Represent a compound by composing vectors for each constituent to produce a new vector
- Lots of work on vector composition; some work on noun-noun composition [Mitchell and Lapata, 2010; Reddy et al., 2011; Ó Séaghdha and Korhonen, 2014]
- Pro: Learnable from unlabelled data
- **Con:** Difficult to interpret

The paraphrase analysis

- Idea: Represent the implicit relation(s) with a distribution over explicit paraphrases.
- Allowable paraphrases can use prepositions [Lauer, 1995], verbs [Nakov, 2008; Butnariu et al., 2010], free paraphrases [Hendrickx et al., 2013]

```
virus that causes flu 38
virus that spreads flu 13
virus that creates flu 6
virus that gives flu 5
...
virus that is made up of flu 1
virus that is observed in flu 1
```

- Suitable for similarity, data expansion
- Pro: Learnable from unannotated text
- Con: Paraphrases can be ambiguous/synonymous

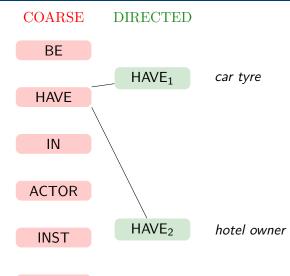
The frame analysis

We could recover implicit relational structure in terms of FrameNet-like frames:

cheese knife	Cutting(f) <pre> / Instrument(f,knife) /</pre>		
	Item(f,cheese)		
kitchen knife	Cutting(f) <pre> / Instrument(f,knife) /</pre>		
	Place(f,kitchen)		
student demonstration	Protest(f) \land Protestor(f,student)		
headache pill	Cure(f) \land Affliction(f,headache)		
	Medication(f,pill)		

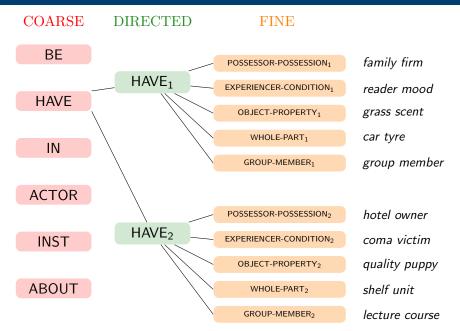
- Connection to cognitive/frame semantics [Ryder, 1994; Coulson, 2001]
- SRL usually assumes explicit verbal predicates or nominalisations
- Pro: More stuctured than paraphrases, more fine-grained than traditional relations
- **Con:** Annotation

The first part of this talk has no conclusion!


Experiments with a multi-granularity relation inventory

Relation Inventory

COARSE



Relation Inventory

Relation Inventory

- 2,000 candidate two-noun compounds sampled from the British National Corpus
- Filtered for extraction errors and idioms
- 1,443 unique compounds labelled with semantic relations at each level of granularity

Granularity	Labels	Agreement (κ)	Random Baseline
Coarse	6	0.62	16.3%
Directed	10	0.61	10.0%
Fine	27	0.56	3.7%

 Try it out yourself: http://www.cl.cam.ac.uk/~do242/ Resources/1443_Compounds.tar.gz Lexical information: Information about the individual constituent words of a compound.

Relational information: Information about how the entities denoted by a compounds constituents typically interact in the world.

Contextual information: Information derived from the context in which a compound occurs.

Lexical information: Information about the individual constituent words of a compound.

Relational information: Information about how the entities denoted by a compounds constituents typically interact in the world.

Contextual information: Information derived from the context in which a compound occurs.

[Nastase et al., 2013]

LEXICAL: modifier (coord) head (coord)	liver:460 heart:225 lung:186 brain:148 spleen:100 cancer:964 disorder:707 syndrome:483 condi- tion:440 injury:427
Relational:	Stagnant water breeds fatal diseases of liver and kidney such as hepatitis Chronic disease causes kidney function to worsen over time until dialysis is needed This disease attacks the kidneys, liver, and cardio- vascular system
Context:	These include the elderly, people with chronic respi- ratory disease, chronic heart disease, kidney disease and diabetes, and health service staff

Information sources for *holiday village*

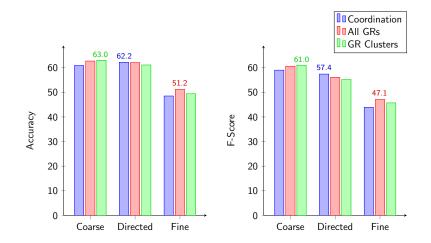
LEXICAL:	
modifier (coord)	weekend:507 sunday:198 holiday:180 day:159 event:115
head (coord)	municipality:9417 parish:4786 town:4526 ham- let:1634 city:1263
Relational:	He is spending the holiday at his grandmother's house in the village of Busang in the Vosges region The Prime Minister and his family will spend their holidays in Vernet, a village of 2,000 inhabitants located about 20 kilometers south of Toulouse Other holiday activities include a guided tour of Panama City, a visit to an Indian village and a heli- copter tour
Context:	For FFr100m (\$17.5m), American Express has bought a 2% stake in Club Méditerranée, a French group that ranks third among European tour oper- ators, and runs holiday villages in exotic places

Contextual information doesn't help

 Contextual information does not have discriminative power for compound interpretation [Ó Séaghdha and Copestake, 2007]

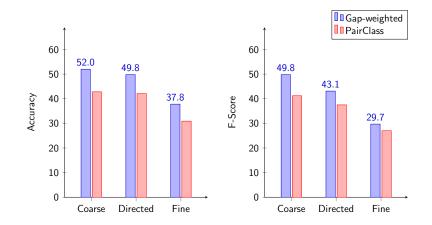
> We slept in a mountain hut We slept in a timber hut We slept in a timber camp

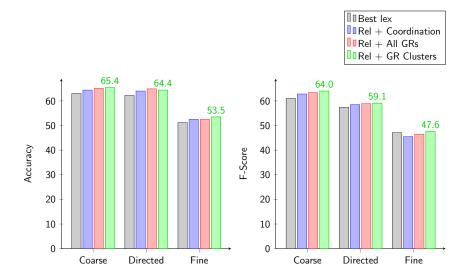
I cut it with the cheese knife I cut it with the kitchen knife I cut it with the steel knife

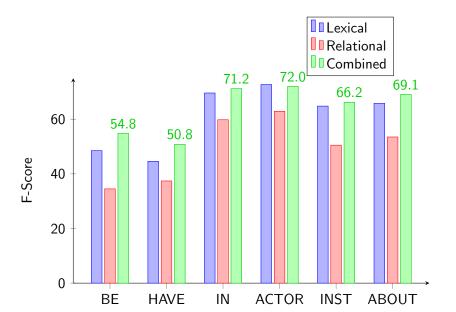

- Sparsity also an issue
- Not considered further here

- ► 5-fold cross-validation on 1443-COMPOUNDS
- All experiments use a Support Vector Machine classifier (LIBSVM)
- SVM cost parameter (c) set per fold by cross-validation on the training data
- Kernel derived from Jensen-Shannon divergence [Ó Séaghdha and Copestake, 2008; 2013]:

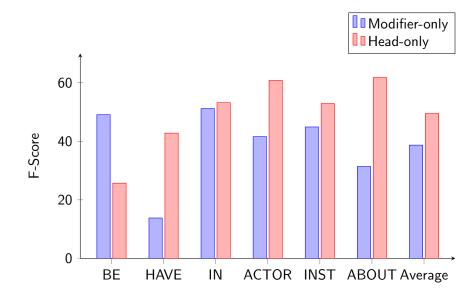
$$k_{JSD(linear)}(\mathbf{p},\mathbf{q}) = -\sum_{i} p_i \log_2\left(rac{p_i}{p_i+q_i}
ight) + q_i \log_2\left(rac{q_i}{p_i+q_i}
ight)$$

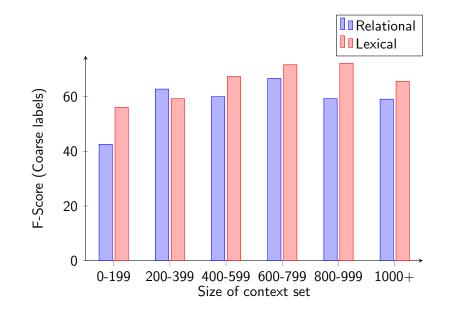

- Distributional features extracted from parsed BNC and Wikipedia corpora.
- One vector for each constituent:
 - Coordination Distribution over nouns co-occurring in a coordination relation
 - All GRs Distribution over all lexicalised grammatical relations involving a noun, verb, adjective or adverb
 - GR Clusters 1000-dimensional representation learned with Latent Dirichlet Allocation from **All GRs** data [Ó Séaghdha and Korhonen, 2011; 2014]


Results - lexical features


- ► Context set for a compound N₁N₂: the set of all contexts in a corpus where N₁ and N₂ co-occur
- Context sets for all compounds extracted from Gigaword and BNC corpora
- Embeddings for strings:
 - ► Gap-weighted: all discontinuous *n*-grams [Lodhi et al., 2002]
 - PairClass: fixed length (up to 7-word) patterns with wildcards [Turney, 2008]
- Context set representation is the average of its members' embeddings

Results - relational features




Performance on individual relations

Head-only vs modifier-only features

Effect of context set size

- Compound interpretation is fun!
- Combining lexical and relation information leads to state-of-the-art performance.
- Previous best performance on 1443-COMPOUNDS: 63.6% accuracy on coarse labels [Tratz and Hovy, 2010]
- Our best:

	Accuracy	F-Score
Coarse	65.4	64.0
Directed	64.4	59.1
Fine	53.5	47.6