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Abstract

This paper presents a classification-based approach to noun-noun compound interpretation
within the statistical learning framework of kernel methods. In this framework, the primary
modelling task is to define measures of similarity between data items, formalised as kernel
functions. We consider the different sources of information that are useful for understanding
compounds and proceed to define kernels that compute similarity between compounds
in terms of these sources. In particular, these kernels implement intuitive notions of
lexical and relational similarity and can be computed using distributional information
extracted from text corpora. We report performance on classification experiments with
three semantic relation inventories at different levels of granularity, demonstrating in each
case that combining lexical and relational information sources is beneficial and gives better
performance than either source taken alone. The data used in our experiments are taken
from general English text, but our methods are also applicable to other domains and
potentially to other languages where noun-noun compounding is frequent and productive.

1 Introduction

Compounding is a general procedure used in a great variety of languages to create

new words out of old (Bauer 2001). In English it is very common to combine two or

more nouns to produce a noun-noun compound that functions as a single lexical

item. Many such compounds are familiar to all speakers and are assumed to be

lexicalised to some degree (e.g. taxi driver, trade union, coffee table), yet completely

novel compounds are frequently created and can often be interpreted by language

users without conscious deliberation or even awareness of the compound’s ambiguity

(what is a pineapple radio?). Empirical studies have suggested that 3-4% of all words

in English text are constituents of a noun-noun compound, while the vast majority

of compounds occur very rarely in accordance with a Zipfian distribution of types

(Baldwin and Tanaka 2004; Ó Séaghdha 2008).

The frequency of compounds in English means that a natural language processing

(NLP) system for high-recall semantic interpretation cannot avoid dealing with them.

At the same time, the productivity of compounding means that one cannot hope

to store meanings for all possible compounds in a dictionary or lexical database.

NLP research on compound interpretation has a long history, going back at least as
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far as Su (1969) and Russell (1972), and remains an active area of research. One

reason for its longevity as an open problem is that the semantic relation holding

between a compound’s constituents is not directly indicated by its surface form.

It is not possible to predict a compound’s meaning from its modifier and head

words:1 a cheese knife is a knife for cutting cheese but a kitchen knife is not a knife

for cutting kitchens and a cheese sandwich is not a sandwich for cutting cheese.

Rather, the relational meaning must be “decoded” by recruiting a combination of

lexical clues, analogical reasoning, knowledge about language use and knowledge

about the world. This makes compound understanding an archetypal challenge for

computational semantics: a wide-ranging semantic competence is necessary in order

for an automatic system to perform well.

Early research assumed the existence of a detailed, manually constructed semantic

lexicon, based on which logical interpretation rules could be defined. In common

with most other NLP problems, the past two decades have seen a shift towards

statistical methods for semantic analysis in order to attain broad coverage and

robust performance in the face of prevalent lexical and relational ambiguity. In

this paper we cast compound interpretation as a classification problem: the task

is to select the correct relation label from a fixed inventory. This is in line with

most recent NLP research on compounds (Lauer 1995; Nastase and Szpakowicz

2003; Girju et al.2005; Turney 2006). However, some researchers have proposed

an alternative paraphrase-based paradigm, in which compound interpretation is

seen as the problem of finding one or more paraphrases that make explicit the

relation expressed by a compound (Nakov 2008; Butnariu et al.2010). We believe

that the two approaches are complementary, in the sense that labels from a fixed

relation inventory generally correspond to coarse-grained groupings of paraphrases;

for example, the coarse label HAVE might subsume the paraphrases X belongs to

Y, Y owns X, Y has X, X is part of Y, etc.

The statistical learning approach we adopt is based on kernel methods, whereby the

fundamental modelling construct is a notion of similarity between items formalised as

a function with particular mathematical properties (the kernel function). Applying

this framework to the task at hand amounts to an analogical hypothesis of compound

interpretation: we assume the relational meaning of a given compound can be

predicted, at least in part, by knowledge about the meanings of similar compounds.

Some cognitive linguists and psycholinguists have argued that human compound

interpretation is an analogical or similarity-driven process (Ryder 1994; Gagné and

Shoben 2002; Devereux and Costello 2007), suggesting that an analogical conception

of the problem is justified. The kernel framework is well-suited to classification with

heterogeneous information sources; this property is fundamental to our approach as

we show that combining lexical and relational information about compounds can

1 Following standard assumptions about the syntax of English, we describe the first word
in a two-noun compound as the “modifier” and the second word as the “head”. We
also assume that for non-lexicalised compositional compounds, the semantic type of the
compound and that of the head agree.
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yield levels of performance that significantly exceed the performance attained by

either kind of information on its own.

The kernel methods applied here are based on those previously proposed by Ó

Séaghdha and Copestake (2008; 2009).2 As well as an integrated description of

these methods, this paper describes experiments with a wider collection of feature

sets and an expanded experimental design involving classification at multiple levels

of semantic granularity. In doing so, we report the best performance yet achieved

on the compound dataset of Ó Séaghdha (2008), surpassing the results previously

achieved by other researchers and by ourselves.

2 Information sources for compound interpretation

Understanding a noun-noun compound comes easily to human language users but it

involves applying a rich resource of heterogeneous information: the discourse context,

“world knowledge” about entities and how they interact, lexical knowledge about

familiar compounds. In order to exploit a similar range of knowledge sources for

automatic interpretation we might consider the following kinds of information and

related measures of similarity:

Lexical information: Information about the individual constituent words of a

compound.

Relational information: Information about how the entities denoted by a com-

pound’s constituents typically interact in the world.

Contextual information: Information derived from the context in which a com-

pound occurs.

Table 1 gives examples of each kind of information as extracted for two compounds

used in our experiments.

Adopting a similarity-based perspective on interpretation, the use of lexical

information assumes that compounds whose constituents are similar will tend to

have similar relational meanings. If we know that a history book is a book about

history, we might assume that a geography article is an article about geography given

the lexical similarity between history and geography and between book and article.

The task of computing lexical similarity is a much-studied one in NLP; among the

most successful data-driven techniques are distributional methods, which relate the

meaning of a word to its patterns of co-occurrence in text corpora. The fundamental

idea here is to associate each word with a numerical vector that measures the

strength of association between that word and each member of a set of co-occurrence

contexts, which may correspond to words or to basic syntactic structures. When the

co-occurrence vector of a word is a normalised vector of counts that sums to 1, this

is equivalent to estimating a probability distribution over co-occurrence contexts

for that word. The literature on distributional semantics is voluminous and cannot

be adequately summarised here, but many comprehensive overviews exist (Curran

2 Performance figures in this paper are not identical to comparable figures in our previous
papers due to minor differences in corpus processing.
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Table 1: Information sources for sample compounds; lexical information is represented

by syntactic coordination features, relational information by sets of context strings

and contextual information by the BNC sentence from which the compound was

originally extracted

kidney disease

Lexical:

mod liver :460 heart :225 lung :186 brain:148 spleen:100

head cancer :964 disorder :707 syndrome:483 condition:440 injury :427

Relational: Stagnant water breeds fatal diseases of liver and kidney such as

hepatitis

Chronic disease causes kidney function to worsen over time until

dialysis is needed

This disease attacks the kidneys, liver, and cardiovascular system

Context: These include the elderly, people with chronic respiratory disease,

chronic heart disease, kidney disease and diabetes, and health

service staff

holiday village

Lexical:

mod weekend :507 sunday :198 holiday :180 day :159 event :115

head municipality :9417 parish:4786 town:4526 hamlet :1634 city :1263

Relational: He is spending the holiday at his grandmother’s house in the

mountain of Busang in the Vosges region

The Prime Minister and his family will spend their holidays in

Vernet, a village of 2,000 inhabitants located about 20 kilometers

south of Toulouse

Other holiday activities include a guided tour of Panama City, a

visit to an Indian village and a helicopter tour

Context: For FFr100m ($17.5m), American Express has bought a 2% stake

in Club Méditerranée, a French group that ranks third among

European tour operators, and runs holiday villages in exotic places

2003; Padó and Lapata 2007; Turney and Pantel 2010). In this paper we implement

lexical similarity by estimating co-occurrence distributions for each constituent of a

compound and comparing the corresponding constituents of two compounds using a

kernel defined on probability distributions (Section 3.2).

Whereas measures of distributional lexical similarity consider the co-occurrences

of each constituent of a word pair separately, relational similarity is based on the

contexts in which both constituents appear together. Relational similarity has also

been called analogical similarity, e.g. by Turney (Turney 2006; Turney 2008). The

underlying intuition is that when nouns N1 and N2 are mentioned in the same
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context, that context is likely to yield information about the relations that hold

between those nouns’ referents in the world. For example, contexts mentioning brick

and wall might frequently describe a wall made of bricks or a wall constructed with

bricks, while contexts mentioning wood and floor might describe a floor made of

wood or a wall constructed with wood. A relational distributional hypothesis would

therefore state that two word pairs are semantically similar if their members appear

together in similar contexts. In order to compute relational similarity between

compounds in our kernel-based framework, we extract sets of contexts for each

modifier-head pair in our compound dataset and use a kernel on sets of strings to

compare compounds (Section 3.3).

As a general principle in NLP, the context in which a pair of word tokens occur is a

valuable source of information about the semantic relation that holds between them.

As one might expect, context features such as surrounding words play an important

role in tasks such as semantic role labelling or semantic relation classification in

the vein of ACE or SemEval-07 Task 4 (ACE 2008; Girju et al.2007). Compound

interpretation can indeed be seen as a special case of semantic relation identification;

however, context features are of little value for understanding compounds, as

demonstrated empirically by Ó Séaghdha and Copestake (2007). This should not

be surprising, as it is a defining characteristic of compounds that information

about the semantic relation between constituents is not made explicit in context

but rather left for the hearer to “unpack”. Treated as a single lexical item, the

distributional profile of a compound is primarily defined by its head noun rather

than by its relational semantics. As a result we do not use contextual similarity in

the experiments described here, even though the compound dataset we use has been

annotated in context.

Most statistical learning approaches to compound interpretation use lexical infor-

mation, relational information or both. Lexical information is usually extracted from

a lexical resource such as WordNet or Roget’s Thesaurus (Nastase and Szpakowicz

2003; Girju et al.2005; Kim and Baldwin 2005; Tratz and Hovy 2010); apart from

our own work, the only use of distributional features that we are aware of is by

Nastase et al. (Nastase et al.2006). Our eschewal of WordNet and other manually

constructed resources is motivated in part by a scientific interest in the potential for

learning semantics using purely distributional information and partly by a concern

for portability to domains and languages where broad-coverage lexical resources

do not exist. Relational information extracted from corpora (including the World

Wide Web) has been applied to the interpretation problem by Lauer (1995), Turney

(2006; 2008), Nakov and Hearst (2008) and Tratz and Hovy (2010). One further

source of similarity information that we do not consider (but could easily add) is

morphological information, including suffix and prefix features (Tratz and Hovy

2010).
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3 Kernel methods for classification

3.1 Overview

Having sketched our concepts of lexical and relational similarity, we proceed in

this section to provide technical details of the methods we use to implement them.

Kernel methods is the name given to a statistical modelling paradigm in which data

items are viewed by the learning algorithm in terms of their similarity to other

items (Shawe-Taylor and Cristianini 2004). This similarity is captured through a

function known as the kernel function (or simply kernel). Kernel-based learning has

a number of advantages, including the facilitation of efficient methods for non-linear

classification and classification with complex feature spaces, and has become very

popular in NLP and many other disciplines. Furthermore, kernel algorithms are

modular in the sense that switching to a new kernel does not require a new learning

algorithm. While traditional feature-based learning can also exploit rich feature

mappings, one cannot simply “slot in” a new inner product geometry as we do here

without altering the learning algorithm.

A kernel is a function k : X × X 7→ R+ which is equivalent to an inner product

〈·, ·〉F in some inner product space F (the feature space):

k(xi,xj) = 〈φ(xi), φ(xj)〉F (1)

where φ is a mapping from X to F . For example, the polynomial kernel of degree l = 3,

kP3(xi,xj) = (〈xi,xj〉+R)3 defined on input vectors of dimension d = 2 corresponds

to an inner product in the space whose
(
d+l
l

)
= 10 dimensions are the monomials of

degree i, 1 ≤ i ≤ 3, hence φ(x) = φ(x1, x2) = [x3
1, x

3
2, x

2
1x2, x1x

2
2, x

2
1, x

2
2, x1x2, x1, x2].

Note that we do not need to represent the 10-dimensional vectors φ(xi) and φ(xj) as

the kernel can be computed directly in 2-d space. Given a set X = {x1,x2, . . . ,xn ∈
X} and a kernel k, the n × n matrix K with entries Kij = k(xi,xj) is called the

kernel matrix or Gram matrix. It follows from Mercer’s Theorem (Mercer 1909) that

a valid kernel on a set X is defined by any symmetric finitely positive semi-definite

function, i.e. a function for which the Gram matrix of function values calculated on

any finite set X ⊆ X satisfies

v′Kv ≥ 0,∀v ∈ Rn (2)

The space of functions satisfying the positive semi-definite (psd) property (2) is

large. The Euclidean dot product 〈·, ·〉Rd , also known as the linear kernel in the

context of classification, is a kernel for which the input and spaces are the same

and φ is the identity mapping. Other kernels, such as the Gaussian kernel k =

exp(−β
∑

d(xid − xjd)2), correspond to an inner product in an infinite-dimensional

space. Furthermore, the elements of the input set X need not be vectors. In Sections

3.2 and 3.3 below, we consider classes of kernels on probability distributions, strings

and sets of strings that will prove useful for compound classification. For other

aspects of kernel methods, the book by Shawe-Taylor and Cristianini (2004) is

recommended as a comprehensive guide.

Given training data X = {x1, . . . ,xn} drawn identically and independently from

some set X , with corresponding labels Y = {y1, . . . , yn} belonging to a set Y, the
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supervised classification task is to learn a function f : X 7→ Y that best predicts the

unknown label yj for a data point xj ∈ X that was not seen in training. In order

to render learning feasible, f is usually restricted to a particular functional class;

for binary classification (i.e. Y = {−1, 1}) we might define f(x) = sign g(x) where

g : X 7→ R belongs to the class of linear functions:

g(x) = 〈w, φ(x)〉Rd + b (3)

=
∑
i

wiφ(x)i + b (4)

Here we have introduced a function φ : X 7→ Rd that maps data points to a d-

dimensional feature vector of real numbers and a vector w of feature weights that

capture the predictive power attributed to each feature. 〈·, ·〉Rd is the inner product

in Rd, i.e. the dot product. The vector w defines a hyperplane 〈w, φ(x)〉Rd = 0 in

Rd; the sign of g(x) indicates the side of this hyperplane on which the point x lies,

while the absolute value of g(x) indicates the distance from x to the hyperplane.

A dataset is linearly separable if a hyperplane exists such that all instances with

label -1 are on one side and all instances with label 1 are on the other. Linear

separability is usually an unrealistic condition for complex problems. The support

vector machine (SVM) is a classifier that aims to find the “best” decision boundary

in that violations of the boundary are minimised and the separation between classes

(the “margin”) is maximised (Cortes and Vapnik 1995). The (dual) SVM optimisation

problem is:

α∗ = argmaxαW (α) = −
n∑

i=1

n∑
j=1

αiαjyiyjφ(xi)φ(xj) (5)

subject to

n∑
i=1

yiαi = 0,

n∑
i=1

αi = 1,

0 ≤ αi ≤ C, for all i = 1, . . . , l

where the parameter C controls the tradeoff between maximising the margin and

tolerating misclassifications. The dual objective function W (α) in (5) depends on

the training examples xi only through their inner products φ(xi)φ(xj) = 〈xi,xj〉F .

This suggests that we can use support vector machines to do classification in a

kernel feature space by rewriting the objective as

W (α) = −
n∑

i=1

n∑
j=1

αiαjyiyjk(xi,xj) (6)

where k is a valid kernel on X . The SVM classifier optimising this objective will

learn a decision function f(x) = sign(〈w, φ(x)〉F + b) that is linear in the codomain

F of φ but nonlinear in the input space X .

Support vector machines have been shown to achieve state-of-the-art performance

on a great number of classification problems in NLP and other fields. Good perfor-

mance with SVMs is contingent on the choice of an appropriate kernel function. The

kernel chosen determines both the feature mapping φ and the inner product used
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to compare data points in feature space. If a kernel function induces a mapping

into a space where the data classes are well separated, then learning a decision

boundary in that space will be easy. Conversely, if the feature space mapping of the

data does not contain discriminative information, SVM classification will perform

poorly. Hence if we can use a kernel function tailored to the prior knowledge we

have about our classification problem, we expect to do better than we would with

a less appropriate kernel. In the following sections we discuss how our intuitions

about lexical and relational similarity can be applied to improve performance on

the compound classification task.

3.2 Kernels on probability distributions

The most commonly used kernels on vectors of real numbers (including co-occurrence

vectors) are the linear and Gaussian kernels. It can be shown that these kernels

are related to the Euclidean L2 distance by two transformations that relate psd

kernels k to squared metrics k̃, also known as negative semi-definite kernels (Berg

et al.1984):

k(xi,xj) = k̃(xi,x0) + k̃(xj ,x0)− k̃(xi,xj)− k̃(x0,x0), x0 ∈ X (linear) (7a)

k(xi,xj) = exp(−β · k̃(xi,xj)), β > 0 (RBF) (7b)

Taking k̃ to be the square of the L2 distance, i.e. k̃L2 =
∑

d(xid−xjd)2 and setting

x0 to be the zero vector, the linear transformation (7a) yields a function that is

twice the linear kernel and the RBF transformation (7b) yields the Gaussian kernel:

kL2(linear)(xi,xj) =
∑
i

xiixji (8)

kL2(RBF )(xi,xj) = exp
(
−β · k̃L2

(p,q)
)

(9)

Research on distributional lexical semantics has shown that the L2 distance

performs relatively poorly compared to other distance and similarity measures (Lee

1999). Hein and Bousquet (2005) describe a family of kernels that relate to well-

known distance measures on probability distributions, including the Jensen-Shannon

Divergence (JSD), L1 distance and Hellinger Divergence, using the transformations

(7a) and (7b). Ó Séaghdha and Copestake (2008) observe that these kernels include

a number of well-established distributional similarity measures and demonstrate

empirically that performance on classification tasks involving lexical similarity can

be improved by using such distributional kernels. A representative example is the

Jensen-Shannon Divergence

k̃JSD(p,q) =
∑
i

pi log2

(
2pi

pi + qi

)
+ qi log2

(
2qi

pi + qi

)
(10)
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from which linear and RBF kernels can be derived using (7a) and (7b), respectively:

kJSD(linear)(p,q) = −
∑
i

pi log2

(
pi

pi + qi

)
+ qi log2

(
qi

pi + qi

)
(11a)

kJSD(RBF )(p,q) = exp
(
−β · k̃JSD(p,q

)
(11b)

The function (11a) had previously been suggested as a distributional similarity

measure by Lin (1999) (though not in the context of classification). Note that not

all popular distributional similarity measures can be used as kernels, as some do not

fulfill the psd condition (2); for example, an asymmetric similarity measure such as

Kullback-Leibler Divergence cannot be psd.

To compare two words w,w′ with a distributional kernel, we compare their

estimated co-occurrence distributions. As our goal is to apply distributional kernels

to compound interpretation, we must proceed from comparing individual words to

comparing pairs of words. A lexical kernel on compounds can be defined as the

normalised sum of a kernel function on heads and a kernel function on modifiers:

klex((wm, wh), (w′m, w
′
h)) =

1

2
k(wm, w

′
m) +

1

2
k(wh, w

′
h) (12)

In practice, (12) is equivalent to a kernel between vectors produced by concatenating

a normalised head vector and a normalised modifier vector for each compound and

computing a distributional kernel on pairs of concatenated vectors.

The development of new kernels on distributions is an area of active research in

the machine learning community. In addition to the family of kernels described by

Hein and Bousquet, further distributional kernels have been proposed by Lafferty

and Lebanon (2005), Martins et al. (2009) and Agarwal and Daumé III (2011).

The experiments described in Ó Séaghdha (2008) and preliminary experiments on

some of these more recent proposals suggest that while most of these distributional

kernels consistently outperform Euclidean linear and RBF kernels, their performance

on semantic classification tasks is often similar. As the focus of this paper is on

integrating semantic information sources rather than a comprehensive investigation

of alternative kernels on distributions, we use only the L2 and JSD linear kernels

(8) and (11a) in our experiments below.

3.3 Kernels on strings and sets

The necessary starting point for our implementation of relational similarity is a

means of comparing contexts. Contexts can be represented in a variety of ways, from

unordered bags of words to rich syntactic structures. The context representation

adopted here is based on strings, which preserve useful information about the order

of words in the context yet can be processed and compared quite efficiently. String

kernels are a family of kernels that compare strings s, t by mapping them into

feature vectors φString(s), φString(t) whose non-zero elements index the subsequences

contained in each string. Once an embedding is defined, any inner product can be

used to compare items.

A string is defined as a finite sequence s = (s1, . . . , sl) of symbols belonging to an
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alphabet Σ. Σl is the set of all strings of length l, and Σ∗ is set of all strings or the

language. A subsequence u of s is defined by a sequence of indices i = (i1, . . . , i|u|)

such that 1 ≤ i1 < · · · < i|u| ≤ |s|, where |s| is the length of s. len(i) = i|u| − i1 + 1

is the length of the subsequence in s. An embedding φString : Σ∗ → R|Σ|l is a

function that maps a string s onto a vector of positive “counts” that correspond to

subsequences of exactly l symbols contained in s.

One example of an embedding function is a gap-weighted embedding, which

incorporates information about non-contiguous as well as contiguous subsequences.

This is an intuitively useful property for semantic classification, as words in a sentence

need not be adjacent to be semantically related. The gap-weighted embedding is

defined as

φgapl
(s) = [

∑
i:s[i]=u

λlen(i)]u∈Σl (13)

λ is a decay parameter between 0 and 1; the smaller its value, the more the influence

of a discontinuous subsequence is reduced. The length parameter l controls the length

of the subsequences that defined the embedding. When l = 1, (13) corresponds to

a “bag-of-words” embedding; when l = 2, the embedding extracts all discontinuous

bigrams. Gap-weighted string kernels implicitly compute the similarity between two

strings s, t as an inner product 〈φ(s), φ(t)〉. Lodhi et al. (2002) present an efficient

dynamic programming algorithm that evaluates this kernel in O(l|s||t|) time without

the need to represent the feature vectors φ(s), φ(t); their kernel implicitly uses the

L2 linear kernel for comparing strings, but a distributional linear kernel such as

(11a) can also be used at the cost of some efficiency as Lodhi et al.’s algorithm

cannot generally be used.

An alternative embedding is that used by Turney (2008) in his PairClass system

for analogical classification. For the PairClass embedding φPC , an n-word context

[0− 1 words] N1|2 [0− 3 words] N1|2 [0− 1 words]

containing target words N1, N2 is mapped onto the 2n−2 patterns produced by

substituting zero or more of the context words with a wildcard ∗. Unlike the patterns

used by the gap-weighted embedding these are not truly discontinuous, as each

wildcard must match exactly one word. This restriction does mean that PairClass

embeddings are more efficient to compute than gap-weighted embeddings, but as

we show in Section 3.3 below comes at a significant cost in terms of discriminative

capacity.

Relational similarity relies on comparing sets of contexts, i.e. sets of strings. In

order to derive useful kernels on such sets, we use an embedding function for sets

that uses an embedding of set members as a building block. A natural approach is

to map a set to the normalised aggregate of the embeddings of its members:

φSet(A) =
1

Z

∑
s∈A

φString(s) (14)

If the normalising term Z is such that the embeddings φSet(A) have unit Euclidean

norm and we compare embeddings with the Euclidean dot product, then we retrieve

the averaged kernel of Gärtner et al. (2002) with the string kernel of Lodhi et
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al. (2002) as base kernel. Alternatively we can normalise the embedding so that it

sums to 1, defining a multinomial probability distribution over subsequences. Under

this perspective, context sets are viewed as samples from underlying probability

distributions and it is natural to use distributional kernels to compare sets. In this

paper we implement relational similarity as the JSD linear kernel computed between

embeddings of context sets produced with set embedding (14) and string embedding

φgapl
(13) or the PairClass embedding φPC :

krel((wm, wh), (w′m, w
′
h)) = kJSD(linear) (φSet(S(wm, wh)), φSet(S(w′m, w

′
h))) (15)

where S(wm, wh) is the set of context strings associated with the word pair (wm, wh).

3.4 Kernel combination

The set of kernels is closed under addition and multiplication by a positive scalar

(Shawe-Taylor and Cristianini 2004). It follows that a linear combination of l kernels

with positive weights µ is also a valid kernel:

kcomb(xi,xj) =
∑
l

µlkl(xi,xj),µ ∈ Rl
+ (16)

This method of kernel combination gives us a way to integrate heterogeneous

sources of information inside a kernel-based classifier. As regards the choice of

combination weights µ, Joachims et al. (2001) state that these parameters are

relatively unimportant so long as the elementary kernels being combined each have

comparable performance. Good results can often be achieved with uniform weights.

Multiple kernel learning (MKL) is the name usually given to the task of optimising

the combination weights in (16). Finding the best µ is a non-trivial optimisation

problem for more than a small number of kernels, as it is not practical to perform an

exhaustive search. As far as we are aware, MKL methods have not previously been

applied in NLP research; we performed experiments using a multiclass adaptation

of the two-stage algorithm proposed by Cortes et al. (2010), but our findings were

inconclusive. MKL can give a small boost in performance but it is not always reliable,

especially for larger label sets, and our best results were achieved through uniform

weighting.

4 Experimental design

4.1 Compound dataset

Our experiments use the dataset of 1,443 unique two-noun English compounds

described at length in (Ó Séaghdha 2008). These compounds were randomly sampled

from a collection of 430,555 types (covering over 1.5 million tokens) harvested from

the written component of the British National Corpus (Burnard 1995) and annotated

in context for their semantic relations. The inventory of semantic relations consists

of six coarse-grained relations: BE, HAVE, IN, ACTOR, INST(RUMENT) and

ABOUT. Each is a binary relation; a compound expressing a particular relation is

assumed to fill one argument slot with its head and the other with its modifier. With
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the exception of BE, the argument slots for each relation are semantically distinct

and it is useful to note which constituent fills which slot. Thus pig pen would be

labelled IN(M,H) as the head denotes the location and the modifier denotes the

located entity; pen pig would be labelled IN(H,M) as the head and modifier roles

are reversed.

Furthermore, each compound in the dataset is annotated with the annotation

rule that licenses the assignment of its coarse-grained label. For example, the rules

licensing IN distinguish between spatially located objects (pig pen), spatially located

events (air disaster), temporally located objects (evening edition) and temporally

located events (dawn attack). The table in Appendix A summarises the various

annotation rules and their distribution over the dataset. The design of the inventory

was motivated by a desire to avoid inconsistent or overlapping relations and by a

concern for general linguistic and psycholinguistic principles. The dataset is freely

available online, as are the detailed guidelines used by the annotators.3

Ó Séaghdha (2008) reports an inter-annotator agreement analysis performed on a

more complex task which contained as a part the semantic annotation used here but

also involved the detection of extraction errors and non-compositional or lexicalised

compounds. Overall agreement was 66.2% (Cohen’s κ = 0.62) for coarse-grained

annotation, 64.0% (κ = 0.61) for coarse-grained labels and role order) and 58.8%

(κ = 0.56). Further analysis by Ó Séaghdha suggests that agreement on the semantic

relation annotation is probably a few points higher (estimated κ = 0.68) as a

significant amount of disagreement relates to decisions about lexicalisation. These

agreement figures are not as high as those reported for some other tasks but are

comparable to those reported in the literature on semantic annotation of compounds

(Tratz and Hovy 2010).

Prior work on this dataset has restricted itself to the coarse-grained annotation

with six semantic relation labels (Ó Séaghdha and Copestake 2008; Ó Séaghdha

and Copestake 2009; Tratz and Hovy 2010). In this paper we consider the tasks of

classification at three levels of granularity:

Coarse: predict coarse-grained relations (6 labels).

Directed: predict coarse-grained relations and which constituents fill which relation

slots (11 labels).

Fine: predict fine-grained labels corresponding to annotation rules and which

constituents fill which relation slots (37 labels).

Not all potential labels are well-represented in the dataset; for example, there

are only five examples of ABOUT(H,M) (e.g. sitcom family). In our classification

experiments all labels occurring 10 times or fewer in the dataset were excluded, with

the result that in practice the Directed and Fine inventories contain 10 and 27

labels respectively.

3 The data can be downloaded from http://www.cl.cam.ac.uk/~do242/Resources/
1443_Compounds.tar.gz; the guidelines are available at http://www.cl.cam.ac.uk/

~do242/Publications/guidelines.pdf
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Coordination:

Cats and

c:conj:n

OO

c:conj:n

OOdogs run

v:ncsubj:n

��
⇒ Cats and dogsOO

n:and:n

OO run
��

v:ncsubj:n

��

Predication:

The cat is

v:ncsubj:n

OO

v:xcomp:j

��
fierce ⇒ The cat

n:ncmod:j

��
is fierce

Prepositions:

The cat

n:ncmod:i

��
in

i:dobj:n

OOthe hat ⇒ The cat

n:prep in:n

��
in the hat

Fig. 1: Dependency graph preprocessing

4.2 Corpora

In order to extract data for the lexical and relational kernels we used three source

corpora:

• The written component of the British National Corpus (BNC), consisting of

90 million words (Burnard 1995), lemmatised, POS-tagged and parsed with

the RASP toolkit (Briscoe et al.2006).

• A Wikipedia dump (WIKI), consisting of almost 1 billion words, collected

by Clark et al. (2009), lemmatised, POS-tagged and parsed with the fast

Combinatory Categorial Grammar (CCG) pipeline described by Clark et al.

• The English Gigaword Corpus, 2nd Edition (GW), consisting of 2.3 billion

words (Graff et al.2005), lemmatised and tagged with RASP but not parsed.

These corpora are also used to produce two larger corpora by concatenation:

BNC+WIKI and BNC+GW.

The BNC and BNC+WIKI corpora were used to extract distributional lexical

information based on grammatical relations (GRs) in the parser output. Although

the BNC and WIKI corpora were processed with different parsers, both the

RASP and CCG parsers can produce grammatical relations in the same format

and therefore their outputs are interoperable. In order to maximise the yield of

semantically salient information, the GR graph for each sentence was preprocessed

with the transformations specified in Figure 1. All parts of speech other than nouns,

verbs, adjectives, prepositions and adverbs were ignored, as were stopwords, tokens

of fewer than three characters and the semantically weak lemmas be and have. The

following feature sets were extracted for each noun w that appears as a constituent

in the compound dataset:
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Coordination: All nouns w′ appearing linked to w in a coordinative structure

(labelled n:and:n in Figure 1). This is the same feature specification as in Ó

Séaghdha and Copestake (2008); it is very sparse but rich in semantic class

information. For example, if a noun is frequently coordinated with cat, dog

and goldfish, then it is most likely a household animal.

All GRs: All tuples (w′, r) where w′ is a word appearing as the dependent of w

in the GR graph and r is the GR label on the edge connecting w and w′, and

all tuples (w′, r−1) where w′ appears as the head of w. For example, given the

GR graph fragment

The:d executive:j body:n

n:ncmod:j

OO decided:v

v:ncsubj:n

��
. . .

the set of context features for the noun body is

{(executive,j:ncmod−1:n),(decide,v:ncsubj:n)} , where ncmod−1 denotes that

body stands in an inverse non-clausal modifier relation to executive (we assume

that nouns are the heads of their adjectival modifiers).

GR clusters: Rather than using the very sparse All GRs feature space, we can

use clusters of GRs induced by applying the “topic modelling” approach

of Ó Séaghdha and Korhonen (2011). This method, based on the Latent

Dirichlet Allocation model proposed for document analysis by Blei et al. (2003),

associates each word with a multinomial distribution over latent variables and

associates each latent variable with a multinomial distribution over GR tuples.

Given that the number of latent variables |Z| is generally much lower than

the number of GR tuples, the parameters of a word’s distribution over latent

variables can be interpreted as defining a low-dimensional distribution over

clusters of GR tuples. In order to estimate the parameters of this model, we

use the efficient Gibbs sampling algorithm of Yao et al. (2009) and estimate

the probability P (z|w) that a GR involving word w is associated with latent

variable z as the proportion of GR instances involving w in the training corpus

to which z is assigned in the final sampling state. We run the Gibbs sampler

for 1,000 iterations and set |Z| = 1, 000. We have not investigated the effect

of modifying |Z|, though it would be feasible to combine feature sets with

different parameterisations to exploit multiple granularities or to combine

feature sets derived from multiple sampling runs to reduce variance.

The BNC+GW corpus was used to extract sets of string contexts for each pair of

compound constituents. For each compound in the dataset, the set of sentences in the

combined corpus containing both constituents of the compound was identified. As

the Gigaword Corpus contains many duplicate and near-duplicate articles, duplicate

sentences were discarded so that repeated strings would not dominate the similarity

estimates. Sentences in which the head and modifier words were more than 10 words

apart were also discarded, as it is plausible that there is no direct relation between

the words in such sentences. The modifier and head were replaced with placeholder

tokens M:n and H:n in each sentence to ensure that the classifier would learn from



Interpreting compound nouns with kernel methods 15

relational information only and not from lexical information about the constituents.

Punctuation and tokens containing non-alphanumeric characters were removed.

Finally, all tokens more than five words to the left of the leftmost constituent or

more than five words to the right of the rightmost constituent were discarded; this

has the effect of speeding up the set kernel computations and should also focus the

classifier on the most informative parts of the context sentences. Examples of the

context strings extracted for the modifier-head pair (history,book) are

the:a 1957:m pulitzer:n prize-winning:j H:n describe:v event:n

in:i american:j M:n when:c elect:v official:n take:v principle:v

this:d H:n will:v appeal:v to:i lover:n of:i military:j M:n

but:c its:a characterisation:n often:r seem:v

you:p will:v enter:v the:a H:n of:i M:n as:c patriot:n

museveni:n say:v

in:i the:a past:n many:d H:n have:v be:v publish:v on:i the:a

M:n of:i mongolia:n but:c the:a new:j

subject:n no:a surprise:n be:v a:a M:n of:i the:a american:j

comic:j H:n something:p about:i which:d he:p be:v

he:p read:v constantly:r usually:r H:n about:i american:j M:n

or:c biography:n

This extraction procedure resulted in a corpus of 1,472,798 strings. There was

significant variation in the number of context strings extracted for each compound:

288 compounds were associated with 1,000 or more sentences, while 191 were

associated with 10 or fewer and no sentences were found for 45 constituent pairs.

The largest context sets were predominantly associated with political or economic

topics (e.g. government official, oil price), reflecting the journalistic sources of the

Gigaword sentences.

4.3 Classification setup

All experiments were performed using the SVM training algorithm implemented in

LIBSVM.4 We decompose the multiclass classification problem into a set of binary

classification problems through the one-against-all method: a single classifier is

trained for each class label, treating data instances with that class as positive exam-

ples and all other instances as negative, and the final prediction for a test instance is

the label for which that instance has the greatest positive (or least negative) distance

from the corresponding decision boundary. In each cross-validation fold, the SVM

cost parameter C is optimised through a grid search over the set {2−4, 20, . . . , 212},

4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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selecting the value that gives the best 10-fold cross-validation performance on that

fold’s training set. For each feature set and each set embedding vector, L1 normali-

sation (normalisation to unit sum) was performed before computing the JSD kernel;

for the experiments with the L2 linear kernels, L2 normalisation (normalisation to

unit Euclidean norm) was performed.

We compute evaluation results for five-fold cross-validation on the 1,443-compound

dataset. As well as prediction accuracy (the proportion of compounds that were

correctly labelled) we also report macro-averaged F-Score, the average of the standard

F-Score measure calculated individually for each label. Accuracy rewards good

performance on the most frequent labels, while macro-averaged F-Score rewards

performance on all labels equally. The best previously reported results for this

dataset are 63.1% accuracy, 61.6 F-Score (Ó Séaghdha and Copestake 2009) and

63.6% accuracy (Tratz and Hovy 2010). The random-guess baseline is 16.3% accuracy

for the Coarse label set, 10.0% accuracy for the Directed label set and 3.7% accuracy

for the Fine label set. Where we wish to measure the statistical significance of a

difference between two methods we use paired t-tests (two-tailed, df = 4) on the

cross-validation folds, following the recommendation of Dietterich (1998).

5 Results

5.1 Results for lexical feature kernels

Table 2 presents results for the three lexical feature sets Coordination, All

GRs and GR Clusters, using distributional information from the BNC and

BNC+WIKI corpora and the JSD and L2 linear kernels. Performance is notably

lower for the fine-grained label set than on the coarse-grained set; this is not un-

expected, as there are four times as many labels and consequentially less positive

training data for each label. However, performance on the Directed label set is in

some cases quite close to that on Coarse.

For almost all combinations of feature set and label set, features extracted from

the larger BNC+WIKI corpus give better performance than BNC (the only

exceptions occur with the L2 kernel and fine-grained label set). This is as we would

expect, given that a larger corpus contains more information and will be less affected

by sparsity of co-occurrences. No one feature set outperforms the others throughout,

though the richer All GRs and GR Clusters sets tend to score better than

Coordination features alone.

Comparing performance with the JSD and L2 linear kernels, the distributional

kernel is the clear winner, outperforming the standard linear kernel on every combina-

tion of feature and label sets. The majority (19/36) of improvements are statistically

significant, with many more coming very close to significance. This corroborates the

finding of Ó Séaghdha and Copestake (2008) that the JSD kernel is usually a better

choice than the standard linear kernel for semantic classification tasks.
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Table 2: Comparison of JSD and L2 linear kernels across feature sets. */** denote

significant difference at the 0.05/0.01 level

Coarse Directed Fine

Acc F Acc F Acc F

BNC/Coordination

JSD 59.4 57.4 57.9 52.7 45.2 41.6

L2 58.0 55.7 55.4 49.9 42.2 39.5

Significance ** *

BNC/All GRs

JSD 61.3 59.3 59.0 53.1 46.8 42.4

L2 56.9 54.4 55.1 49.5 42.6 38.6

Significance * * * ** **

BNC/GR Clusters

JSD 62.2 60.0 62.1 57.1 48.0 44.8

L2 60.4 58.4 58.6 53.7 42.0 38.8

Significance * * ** **

BNC+WIKI/Coord

JSD 60.9 59.0 62.2 57.4 48.5 43.9

L2 59.7 57.5 58.7 53.2 45.9 41.7

Significance

BNC+WIKI/All GRs

JSD 62.7 60.6 62.1 56.1 51.2 47.1

L2 59.3 57.1 58.3 52.7 45.4 41.6

Significance ** ** **

BNC+WIKI/GR Clusters

JSD 63.0 61.0 61.1 55.2 49.4 45.7

L2 59.0 56.9 56.3 49.7 44.6 40.8

Significance ** ** ** ** *

5.2 Results for relational kernels

Table 3 presents results for classification with relational kernels. Results are reported

for settings of the subsequence length parameter l in the range {1, 2, 3} as well as

additive combinations (denoted Σ) of gap-weighted embeddings corresponding to

different subsequence lengths and the PairClass embedding adopted from Turney
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Table 3: Results for relational string-set kernels

Coarse Directed Fine

Embedding Accuracy F-Score Accuracy F-Score Accuracy F-Score

1 48.6 45.7 40.5 35.2 28.6 25.6

2 52.7 50.7 50.2 44.3 37.8 29.2

3 50.8 48.5 48.1 40.0 34.8 24.2

Σ12 52.3 50.0 49.2 43.3 36.8 30.5

Σ23 52.2 49.9 49.8 42.8 37.5 28.5

Σ123 52.0 49.8 49.8 43.1 37.8 29.7

PairClass 42.8 41.2 42.1 37.5 30.9 27.0

(2008). In all cases performance is worse than that achieved by the lexical kernels,

indicating that relational information (at least as implemented here) is not sufficient

for state-of-the-art compound classification. Kernels with l = 2 and the combined

kernels generally perform best, across all label sets; the difference between these

kernels and the PairClass kernel is consistently significant at the p < 0.01 level.

One obvious explanation for the relatively poor performance with relational infor-

mation alone is data sparsity. As previously noted, 191 compounds are associated

with 10 or fewer context strings; in these cases there is very little relational informa-

tion on which to base a prediction. Figure 2 illustrates the effect of context set size

on performance for representative relational and lexical kernels. For the former, we

use the
∑

123 combination, but similar effects are observed for the other subsequence

length settings. Across all label sets, classification accuracy with relational kernels

drops by about 20% in absolute terms for compounds with fewer than 200 associated

context strings. For compounds with more than 200 context strings performance

is more or less stable, at a level that is comparable to that achieved by the lexical

kernels.

5.3 Results for combined kernels

Table 4 presents results achieved by combining lexical and relational kernels, taking

the best-performing lexical feature specifications All GRs and GR clusters.5 The

benefits of combination are clear: in the vast majority of cases, performance with

a combined kernel is better than performance with the relevant lexical kernel on

its own. The results are particularly good for combinations involving the summed

5 We omit results for the Coordination feature sets for reasons of space; these follow
the same pattern as the results shown.
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Fig. 2: The effect of context set size on classification accuracy using the
∑

123

relational kernel (left, black) and the lexical JSD kernel with BNC+WIKI/Coord

features (right, white)
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relational kernels Σ23 and Σ123; across 24 combinations of lexical feature set and

label set, only four fail to contribute a statistically significant improvement on at

least one evaluation measure. The best results on the Coarse label set – 65.4%

Accuracy, 64.0 F-Score, achieved by combining the BNC+WIKI/GR Clusters

lexical kernel with the summed Σ123 relational kernel – are higher than all previously

reported performances on this dataset.

Table 5 analyses performance for each individual relation in the Coarse label

set, taking competitive representatives from the lexical, relational and combination

kernel categories. The most difficult relations to classify are BE and HAVE ; these

are also the least frequent relations in the dataset. IN and ACTOR seem to be

the easiest. The lexical kernel results are better than the relational kernel results

for every relation, and the combined kernel results are better than either for every

relation except ACTOR, where the lexical kernel does very slightly better.



20 Ó Séaghdha and Copestake

Table 4: Results for combined lexical and relational kernels: */** denote significant

improvement over the corresponding lexical-only result at the 0.05/0.01 level

BNC BNC+WIKI

All GRs GR Clusters All GRs GR Clusters

Acc F Acc F Acc F Acc F

Coarse labels

Σ1 60.9 58.6 62.6 60.4 62.8 61.2 63.1 61.5

Σ2 62.0 60.2 64.0 ** 62.2 ** 64.2 62.8 64.0 62.6

Σ3 62.6 60.7 63.1 * 61.4 63.9 62.1 63.8 62.4

Σ12 63.0 61.2 63.4 61.9 64.7 * 63.0 64.4 * 63.0

Σ23 64.0 62.1 64.5 * 62.9 * 64.8 * 63.2* 64.8 * 63.4

Σ123 62.9 61.2 64.4 ** 62.7 * 65.1 * 63.4* 65.4** 64.0*

Lex only 61.3 59.3 62.2 60.0 62.7 60.6 63.0 61.0

Directed labels

Σ1 59.3 54.0 62.4 58.4 62.4 56.7 61.2 56.3

Σ2 60.8 55.3 63.4 58.7 64.0 58.3* 62.7 57.4

Σ3 60.6 55.1* 63.5 58.9 63.8 * 57.9* 63.3 * 58.4

Σ12 60.5 55.1* 64.0 * 59.4 63.8 * 58.2** 62.9 57.9 *

Σ23 61.4 55.3* 65.0 ** 59.8 64.4 58.4** 64.0 * 58.4

Σ123 61.1 55.1* 65.1* 60.3 64.9 * 58.9** 64.4 59.1 *

Lex only 59.0 53.1 62.1 57.1 62.1 56.1 61.1 55.2

Fine labels

Σ1 47.8* 43.3 49.7 * 45.5 51.7 * 47.5 51.0 46.9

Σ2 48.7** 43.2 51.4 * 46.4 53.3 47.3 52.0 * 46.9 *

Σ3 48.3** 42.6 51.5 * 46.2 53.2 47.0 52.2 ** 46.8

Σ12 49.5* 43.9 51.8 * 46.8 52.5 * 46.5 52.7 * 46.8 *

Σ23 49.3* 42.7 52.5 ** 46.4 53.9* 47.3* 52.7 46.4

Σ123 49.5* 42.9 52.7 ** 46.9 52.5 46.5 53.5 * 47.6*

Lex only 46.8 42.4 48.0 44.8 51.2 47.1 49.4 45.7
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Table 5: Macro-averaged Precision, Recall and F-Score by coarse label for lexical

kernel (BNC+WIKI/GR Clusters), relational kernel (Σ123) and their combina-

tion

Lexical Relational Combined

Pre Rec F Pre Rec F Pre Rec F

BE 55.0 43.5 48.5 38.2 31.4 34.5 59.5 50.8 54.8

HAVE 51.0 39.7 44.6 49.2 30.2 37.4 55.7 46.7 50.8

IN 67.9 71.4 69.6 53.0 68.5 59.8 70.3 72.1 71.2

ACTOR 68.7 77.1 72.7 59.4 66.9 62.9 68.2 76.3 72.0

INST 64.6 65.0 64.8 51.4 49.6 50.5 64.7 67.7 66.2

ABOUT 61.4 70.8 65.8 53.5 53.5 53.5 67.5 70.8 69.1

Overall 61.4 61.3 61.0 50.8 50.0 49.8 64.3 64.1 64.0

5.4 Head-only and modifier-only prediction

Table 6 reports results using lexical information about compound heads only or

compound modifiers only. These results were attained with the GR clusters features

and BNC+WIKI corpus, though results with other feature sets and corpora follow

the same pattern.

The relative importance of modifier and head words for compound comprehension

has been the subject of some debate in psycholinguistics. For example, Gagné and

Shoben’s (1997) CARIN (Competition Among Relations In Nominals) model affords

a privileged role to modifiers in determining the range of possible interpretations, and

Gagné (2002) finds that meanings can be primed by compounds with semantically

similar modifiers but not by similar heads. However, other authors have challenged

these findings, including Devereux and Costello (2005), Estes and Jones (2006) and

Raffray et al. (2007). While not proposing that human methods of interpretation are

directly comparable to machine methods, we suggest that classification performance

with head- and modifier-only features can give valuable insight into the discriminative

potential of each constituent.

Table 6 shows that overall F-Score and accuracy attained with head features exceed

those attained with modifier features by about 10 points for all label granularities.

However, head performance is in turn 10-15 points worse than performance with

both sets of features, indicating that both do contain valuable information. Of the

coarse-grained relations, BE is the only relation better predicted with modifier

features than with head features. A partial explanation for this last result is that

compounds where the modifier is a substance or material frequently express BE

(annotation rule 2.1.1.2 in Appendix A), for example corduroy trousers, ice crystal,

copper wire. On the other hand, modifier information is very weak at recognising



22 Ó Séaghdha and Copestake

Table 6: Classification results using modifier-only and head-only lexical information

(BNC+WIKI/GR Clusters)

Modifier Only Head Only

Acc Pre Rec F Acc Pre Rec F

BE 46.7 51.8 49.1 38.1 19.4 25.7

HAVE 18.5 11.1 13.8 48.7 38.2 42.8

IN 46.7 56.8 51.2 52.2 54.2 53.2

ACTOR 40.6 42.8 41.6 53.7 69.9 60.8

INST 44.3 45.5 44.9 51.4 54.5 52.9

ABOUT 33.5 29.6 31.4 57.7 66.7 61.8

Overall (coarse) 40.9 38.4 39.6 38.7 52.1 50.3 50.4 49.5

Overall (directed) 34.9 29.4 31.1 29.9 47.9 39.8 42.6 40.2

Overall (fine) 22.0 19.5 20.0 19.7 33.4 28.3 29.4 28.5

instances of HAVE, ACTOR and ABOUT, which seem to be predominantly signalled

by the head constituent – for example, compounds headed by book, story and film

are very likely to encode a topic relation, while compounds headed by driver or

salesman are likely to encode an agentive relation.

6 Conclusion

In this paper we have described a classification-based approach to compound inter-

pretation that integrates lexical and relational information in a kernel combination

framework. We have experimented with three different granularities of semantic

relation labels, demonstrating in every case that performance with a combination of

information sources is superior to that achieved with individual sources.

Potential future work includes the investigation of new kernels and feature sets

for lexical and relational similarity. We also intend to evaluate our methods on other

datasets and potentially on other domains and languages; as we do not require

specific lexical resources other than a suitable corpus, the methods should be easily

portable. Even where high-quality parsing is unavailable or impractical, we hope that

reasonable lexical and relational information can still be acquired. More generally,

we hope to demonstrate the applicability of our methods to other tasks involving

semantic analogies and reasoning about semantic relations.
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Christina L. Gagné and Edward J. Shoben. 2002. Priming relations in ambiguous noun-noun
compounds. Memory and Cognition, 30(4):637–646.
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A Semantic relations used in the dataset

Rule Definition Order Example Count Total

BE N1/N2 is N2/N1 191

2.1.1.1 Identity guide dog 110

2.1.1.2 Substance-Form rubber wheel 50

2.1.1.3 Similarity cat burglar 31

HAVE N1/N2 has N2/N1 199

2.1.2.1 Possessor-Possession
(M,H) family firm 27

31
(H,M) hotel owner 4

2.1.2.2 Experiencer-Condition
(M,H) member expectation 10

11
(H,M) coma victim 1

2.1.2.3 Object-Property
(M,H) grass scent 54

57
(H,M) colour illustration 3

2.1.2.4 Whole-Part
(M,H) car tyre 51

74
(H,M) shelf unit 23

2.1.2.5 Group-Member
(M,H) union member 11

26
(H,M) lecture course 15

IN N1/N2 is located in N2/N1 308

2.1.3.1 Object-Spatial Location
(M,H) fruit dish 84

188
(H,M) street gang 104

2.1.3.2 Event-Spatial Location
(M,H) building site 32

58
(H,M) air disaster 26

2.1.3.3 Object-Temporal Location
(M,H) policy period 2

26
(H,M) winter plumage 24

2.1.3.4 Event-Temporal Location
(M,H) birth date 17

36
(H,M) weekend trip 19
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Rule Definition Order Example Count Total

ACTOR N1/N2 is a sentient participant in an event N2/N1 236

or an event involving N2/N1

2.1.4.1 Participant-Event
(M,H) committee discussion 31

68
(H,M) writing team 37

2.1.4.2 Participant1-Participant2
(M,H) rate payer 42

168
(H,M) cowboy hat 126

INST N1/N2 is a non-sentient participant in an event N2/N1 266

or an event involving N2/N1

2.1.5.1 Participant-Event
(M,H) ozone depletion 100

164
(H,M) operating system 64

2.1.5.2 Participant1-Participant2
(M,H) computer model 71

102
(H,M) air filter 31

ABOUT N1/N2 is about N2/N1 243

2.1.6.1 Object-Topic
(M,H) sitcom family 3

119
(H,M) history book 116

2.1.6.2 Collection-Topic
(M,H) – 0

7
(H,M) waterway museum 7

2.1.6.3 Mental Activity-Focus
(M,H) mystery man 2

93
(H,M) liberation struggle 91

2.1.6.4 Charge-Commodity
(M,H) – 0

24
(H,M) property tax 24


