
David Cottingham
Churchill College

Collaborative Power Management in
Wireless Mesh Networks

Dissertation Submission
Computer Science Tripos Part II, 2004

March 2004

2

David Cottingham
Churchill College

Collaborative Power Management in
Wireless Mesh Networks

Dissertation Submission
Computer Science Tripos Part II, 2004

Approximate Word Count: 11,670

Project Originator: D. N. Cottingham
Project Supervisor: Dr. J. K. Fawcett

Proforma

Original Aims

Mobile nodes in mesh networks draw on limited energy resources. In most mesh routing protocols
the metric used is latency. Hence, some nodes’ energy resources become more rapidly exhausted
than others’, due to their location on low latency (and therefore high traffic) routes. This project
aims to create an energy-aware routing protocol, supporting reliable communication, that increases
average node lifetime, and lowers the standard deviation in energy reserves throughout the network.
These are crucial in applications where the failure of any one node is unacceptable: instead all fail
at approximately simultaneously, which then defines the length of a maintenance cycle.

Work Completed

A distance-vector mesh routing protocol was implemented, using ideas from various existing al-
gorithms. The protocol supports reliable transmission using bitmapped ARQ, and supports connec-
tion multiplexing. The routing algorithm is able to perform metric calculations using link latency or
with two different algorithms depending on energy level. An energy quota system protects against
certain DoS attacks. Hashing of routing information is performed to prevent malicious spoofing of
identity or incorrect topological information. All core components of the project have been com-
pleted and tested, and the more efficient of the two energy-aware algorithms has been found. Three
extensions have also been completed.

Special Difficulties Encountered

No special difficulties were encountered.

ii

David Cottingham

Declaration of Originality

I David Cottingham of Churchill College, being a candidate for Part II of the Computer Science
Tripos, hereby declare that this dissertation and the work described in it are my own work, unaided
except as may be specified below, and that the dissertation does not contain material that has
already been used to any susbstantial extent for a comparable purpose.

Signed:

Date:

iii

Collaborative Power Management in Wireless Mesh Networks

Contents

Proforma i

Original Aims . i

Work Completed . i

Special Difficulties Encountered . i

Declaration of Originality . iii

Table of Contents v

List of Figures vi

1 Introduction 1

1.1 Mesh Networks . 1

1.2 Background . 1

1.3 The Case for Energy
Aware Routing . 2

1.4 Related Work . 3

2 Preparation 5

2.1 Design Goals . 5

2.2 Assumptions . 5

2.3 Requirements . 6

2.4 Component Outline . 6

2.5 Evaluation Methods
& Milestones . 7

3 Implementation 9

3.1 Transport Protocol . 9

3.1.1 Packet Format . 9

3.1.2 Connection Tracking . 9

3.1.3 Reliable Delivery . 12

3.2 The Energy Aware Routing Algorithm . 13

3.2.1 Route Discovery . 13

3.2.2 Route Propagation . 14

3.2.3 Route Maintenance . 16

3.2.4 Neighbours Table . 17

3.2.5 Blackmarking . 19

3.2.6 Last-Choice Point Notification Optimisation 19

3.2.7 Energy-Awareness . 21

3.2.8 Quota-Based Routing . 21

3.2.9 Node Mobility . 22

3.3 Security . 22

iv

David Cottingham

3.3.1 Encryption . 22

3.3.2 Trusted Routing Information . 22

3.3.3 Selfishness in Open Networks . 23

4 Evaluation 25

4.1 Data Link Layer . 25

4.2 Transmission Control Layer . 25

4.3 Mesh Routing Layer . 26

4.4 Energy Aware Routing
& Quotas . 27

4.4.1 Simulation Environment . 27

4.4.2 Stationary Topology . 28

4.4.3 Mobile Topology . 29

4.4.4 Discussion of Algorithms . 30

4.4.5 Reliability of Simulation . 30

4.4.6 Goals Achieved . 30

5 Conclusions 31

5.1 Outcome . 31

5.2 Further Work . 31

6 Appendix A: Survey of Ad Hoc Routing Protocols 33

7 Appendix B: Additional Implementation Details 35

7.1 Detailed Packet Format . 35

7.2 Selfishness in Open Networks . 36

7.3 Event List & Time-outs . 36

8 Appendix C: Values of Simulation Constants 37

9 Appendix D: Simulator Finite State Machine 39

10 Appendix E: Sample Code 41

Bibliography 49

Original Project Proposal 51

Introduction . 52

Work to be Undertaken . 53

Resources Required . 54

Starting Point . 54

Measures of Success . 54

Project Plan . 55

Contingency Plan . 57

v

Collaborative Power Management in Wireless Mesh Networks

List of Figures

1 Multiple Routes in a Mesh Network . 1

2 Key Node Exhaustion Effect . 3

3 Overview of Protocol Layers . 6

4 Protocol Packet Format . 9

5 Connection Establishment by the Transport Protocol 11

6 Decision Flowchart for Route Propagation . 14

8 Maintaining a Loop Free Routing Table . 15

7 Decision Flowchart for Prevention of Routing Loops 16

10 Sharing Neighbours with Mobile Nodes . 17

9 Structure of a Node’s Routing Table . 18

11 Illustration of Destination Unreachable Messages . 19

12 Illustration of a Possible Problem with Blackmarking 20

13 Last Choice Point Notification Optimisation . 20

14 Console Output for Connection Tracking . 25

15 Graph of Packets Sent by ARQ . 26

16 Console Output for Routing Table Contents . 26

17 Number of Distinct Destinations in RTs Over Time 27

18 Topology Used for Simulations of Energy-Aware Routing 28

19 Average Exhaustion Time for Stationary Nodes . 28

20 Average Energy Level after 300 s for Stationary Nodes 28

21 S.D. of Energy Levels after 300 s for Stationary Nodes 29

22 Average Exhaustion Time for Mobile Nodes . 29

23 Average Energy Level after 300 s for Mobile Nodes 29

24 S.D. of Energy Levels after 300 s for Mobile Nodes 30

25 Protocol Packet Format . 35

26 Simulator Finite State Machine Diagram . 39

vi

David Cottingham

1 Introduction

In the last two years the prevalence of wireless
networking technologies has increased dramat-
ically. Previously infrared was the mainstream
technology used to interconnect portable devices,
with low bandwidth, and over a limited range. It
is now commonplace to find an 802.11b “WiFi”
transceiver in laptops and mobile telephones. Such
explosive growth in wireless communication has
found many applications where nodes are required
to be mobile, or where fixed cabling is undesir-
able.

1.1 Mesh Networks

Traditional wireless deployments are based on a
paradigm best illustrated by mobile telephone
networks. Client nodes, probably with limited
resources, communicate with a fixed access point
or base station, which has (comparably) limitless
resources. Data flow is asymmetric in that it is
generally assumed that content will flow towards
the client, with only control data flowing in the
reverse direction, and the access point, connected
to a wired network in a static topology, performs
any routing of packets.

With wireless mesh (also known as ad hoc) net-
works1 the paradigm is very different: the major-
ity of the nodes making up the network are not in
close proximity to wired infrastructure. Informa-
tion flow may be symmetric or asymmetric, and
is likely to be between nodes as well as to/from
fixed networks. Perhaps the most important dis-
tinction is that the passage of data from one
node to another is via other wireless nodes – each
device performs routing for its peers. This is es-
pecially significant in mobile networks where the
topology varies frequently, and where multiple
routes to a destination are common. Transmis-
sion range and power consumption are lessened
as data flows through multiple short hops rather
than over a single long distance link to an access
point, as can be seen in Figure 1. This also means
that the network is more robust as it has no single
point of failure (assuming a great enough node
density to enable multiple routes from each node
to all others), and that rollout is both rapid and
cost-effective.

1Comprehensive explanations of mesh networks can be
found in [7] and [10]

Figure 1: Multiple routes in a mesh network: two
routes are illustrated from a source, S, to a des-
tination D.

1.2 Background

Mesh networks are an active field of research:
some implementations exist, but there are com-
paratively few large-scale initiatives. One of the
main issues is the design of efficient routing al-
gorithms that can allow for:

• Dynamic topologies: traditional routing
protocols such as the Routing Information
Protocol[11] are not designed for the very
high rates of topology change present in
mobile mesh networks.

• Lossy radio links: on wired networks packet
loss is uncommon except that due to con-
gestion. When using a radio link the qual-
ity of the channel is highly variable due to

1

Collaborative Power Management in Wireless Mesh Networks

atmospheric effects, multipath fading due
to terrestrial obstructions, and interference
from other signals. This necessitates any
protocol to have a method of ensuring reli-
able transmission, similar to the Transmis-
sion Control Protocol’s (TCP) Automatic
Repeat Request (ARQ) system. Most wire-
less technologies such as 802.11b have link-
layer automatic retransmission (a Radio Link
Protocol, RLP), but running TCP over these
can be subject to performance issues due
to varying delay caused by a non-uniform
distribution of errors, (causing the TCP al-
gorithm to infer congestion), as described
in [35].

• Energy conservation: a major target in
many mobile ad hoc networks (MANETs),
is the maintenance of the liveness of the
entire network – i.e. to avoid partitioning
due to the loss of one or more key nodes
caused by power exhaustion. This is traded
off with network latency and/or processing
power. The protocol implemented in this
project deliberately reduces the number of
control data packets to conserve energy by
piggybacking as much of the control inform-
ation on normal data packets.

• Security: it is the nature of mesh networks
that control is decentralized. This means
that restricting access is a difficult prob-
lem, as is ensuring that routing tables are
not maliciously corrupted by bogus inform-
ation. There is also the issue of privacy that
is inherent of using a wireless medium, as
well as the possibilities of denial of service
(DoS) attacks, and spoofing. Finally, en-
cryption strength is restricted by the pro-
cessing power it requires on nodes.

Applications of mesh networks are many and var-
ied. Examples include:

• Mobile networks: in battlefield or search
and rescue operations personnel need to com-
municate without fixed infrastructure. Such
technology must be rapidly and easily de-
ployable. Mesh networks do not require
lengthy configuration, and allow the mobil-
ity of the network as a whole, compared to
only node mobility when using a fixed ac-
cess point. Moss outlines these uses further
in [17].

• Sensor networks: most manufacturing fa-
cilities require a high degree of instrument-
ation, much of which must be connected
to one central processing point. Mesh net-
works can be deployed to avoid the cost
of wiring by sensors relaying data for each
other.

• Wireless MANs: the provision of broad-
band Internet access over wireless mesh has
been studied as an alternative to using the
last mile of the telephone network. The
trial described in [27] is one such example.
Such networks take a fraction of the de-
ployment time and cost required for a wired
solution.

1.3 The Case for Energy

Aware Routing

With any mobile node, energy is stored in bat-
teries, as connections to the main grid are not
feasible. This results in mobile nodes requiring
both hardware and software which consume as
little energy as possible. In a mesh network the
communication paths between nodes depend on
there being intermediate nodes with sufficient en-
ergy remaining to relay data; if these intermedi-
ate nodes are overused, they quickly become ex-
hausted, causing the network to partition. Clearly
this is unsatisfactory in many situations, such
as in search and rescue operations, where the
greatest benefit is obtained when the node graph
is fully connected.

For example, Figure 2 shows a simple network
with six nodes, with arcs representing connec-
tions all of equal latencies. A packet travelling
from node 6 to node 3 will be routed via node 7,
if the metric is based on latency or distance alone.
This route choice will be true for any node wish-
ing to communicate with another more than two
hops away from it, therefore node 7 will quickly
have its energy resources exhausted.

To avoid this key node exhaustion effect, routing
protocols need to take into account the power re-
maining in each node in the network, rather than
simply the latency, bandwidth, or geographical
length of routes. By increasing the metric of a
route as its component relay nodes’ energy levels
decrease, data can be routed in a balanced man-
ner throughout the network. The end result will
be that the standard deviation from the mean of

2

David Cottingham

Figure 2: The effect of using “pure” latency rout-
ing – the central node in this diagram will route
the most traffic, resulting in its energy resources
being exhausted rapidly.

energy levels in the network will be lower than
with purely latency routing.

Such balanced routing will inevitably mean that
routes contain a greater number of hops than
they would with optimal latency routing, which
will in turn increase the average energy used per
packet. There is therefore a trade-off between the
aim of keeping the entire network alive and un-
partitioned, and that of using as little energy as
possible, but risking partition due to key node ex-
haustion. With the latter the result will be that
a subset of nodes will be alive for longer, but
will be unable to communicate with each other –
in some situations this may be preferable to all
nodes failing simultaneously (although it should
be noted that this makes for easy maintenance
cycles). Hence the usage of an energy aware rout-
ing algorithm is very much dependant on applic-
ation.

1.4 Related Work

A great variety of routing protocols have been
proposed for ad hoc networks. These can be di-
vided into two main groups; those that track the
state of the entire network and thereby employ
“pro-active” routing (table-driven), and those that
construct routes on demand by flooding query
packets to the network (source-driven). Notable
examples include:

Table-Driven:

• DSDV: Destination-Sequenced Distance Vec-
tor [22]

• CGSR: Cluster-head Gateway Switch Rout-
ing [4]

• WRP: Wireless Routing Protocol [18]

Source-Driven:

• AODV: Ad-hoc On-demand Distance Vec-
tor [23]

• DSR: Dynamic Source Routing [13]

• TORA: Temporally Ordered Routing Al-
gorithm [21]

Each of these protocols is summarised in Ap-
pendix A. The design of the protocol implemen-
ted in this project combines several of the ideas
from the above, therefore the summaries are provided
for reference.

Work has also been carried out on specifically
conserving energy in mesh networks. The Pi-
conet (later PEN) project [1] is perhaps the most
relevant example, which concentrated on building
devices that consumed very little power and em-
ployed energy saving features at the MAC level.
Later work by Stefanova et al. on the PEN pro-
tocol included a proactive routing scheme described
in [33], but which did not specifically make route
choices on the basis of energy.

Younis et al. have created a system [36] that at-
tempts to take energy management into consid-
eration when routing, but this scheme appears
to be based on CGSR [4], where the network
is not truly ad hoc, and instead requires access
points that are powered and connected to wired
networks. The protocol is link state and does
not appear to scale well given the need for fixed
gateway nodes. It does however achieve (perhaps
predictably, given fixed base stations), an order
of magnitude improvement in time to network
partition.

Maleki, Dantu, and Pedram propose a Power-
aware Source Routing (PSR) algorithm in [15].
This is based on DSR, and therefore suffers from
the same problems of scalability due to large rout-
ing protocol data units. Additionally, it causes
even greater latency in route discovery due to
waiting for multiple possible routes to be repor-
ted to the destination, to enable it to forward

3

Collaborative Power Management in Wireless Mesh Networks

the lowest energy-cost route back to the source.
Finally, although each individual node continu-
ally recalculates the path costs to its neighbours
based on its remaining energy, this metric is not
used to update existing routes until the energy
has dropped below a certain level. This has the
potential to cause sudden losses of routes, rather
than increasingly discourage the sender from us-
ing the route as the energy level decreases. This
is important if any kind of quality of service is to
be achieved – such “on or off” behaviour results
in significant delays whilst a new route is found
to replace the one lost.

Singh et al. list several different ways of calcu-
lating metrics based on energy remaining in in-
dividual nodes in [30]. Whilst they also list the
potential benefits of using each algorithm, sev-
eral of the algorithms are at best very difficult
to implement successfully, and one is impossible.
Toh proposes many similar algorithms in [34], but
also gives an excellent summary of the features
required of a protocol that would make use of
such battery powered metrics.

4

David Cottingham

2 Preparation

The initial proposal outlined the goals of the pro-
ject, i.e.

To design and implement (possibly en-
tirely within a simulator) a protocol
for mobile ad hoc networks that will
conserve node resources by making rout-
ing choices that are dependent on the
remaining energy of the nodes mak-
ing up the alternative routes. This
will provide resilience and high avail-
ability for communication between all
nodes in the network.

It is crucial to realise that the project’s aim is
to spread energy usage throughout the network
such that the variation in energy reserves is signi-
ficantly lower than with conventional protocols.
This may well mean that data does not travel
by the lowest latency route (although the met-
ric does factor in latency), but instead the time
to network partition should be significantly in-
creased.

2.1 Design Goals

The following were identified as the goals that
would be needed to be achieved to satisfy the
above aim:

• Reliable transport protocol: given TCP’s
performance over wireless links, (see [35]),
a form of ARQ is required for guaranteed
delivery of packets to their destinations.

• Mesh routing algorithm: a mechanism
for acquiring, maintaining, propagating, and
invalidating routes is required, that can al-
low for potentially high rates of topology
change.

• Minimal control packets: this will con-
serve bandwidth, and will reduce the num-
ber of transmissions (although it may lengthen
a few by a small amount).

• Energy management: the protocol must
ensure that key nodes in the network are
not quickly exhausted despite being on shortest
path routes, and it must aid in the preven-
tion of DoS attacks without preventing nor-
mal communication. The routing metric

should take into account both the latency
of the route, and the energy remaining on
the intermediate nodes along that route. It
should also allow for other parameters to
be introduced should the need arise.

2.2 Assumptions

The project has been conducted on the basis of
the following assumptions, to ensure that it is
a manageable workload, and that the main fo-
cus remains on energy-aware routing, rather than
other energy saving concepts:

• Node radio receiver circuits remain continu-
ously powered up. Whilst this is likely to
be the main energy consumer in a node, it
is assumed that the application cannot tol-
erate the latencies that would be inherent
in using MAC-level co-ordinated hiberna-
tion periods. For this reason the protocol
aims to reduce the number of packets that
are transmitted (and therefore received) to
reduce energy consumption.

• Hardware energy saving concepts have not
been investigated – see [1] for details on
these.

• Nodes have omnidirectional antennae, and
use a non-adaptive transmission power, re-
gardless of target. This is a reasonable as-
sumption given that:

– Nodes have low powers of transmission
in any case

– In a mobile mesh network antennae
are necessarily omnidirectional unless
they are movable

– To ensure good route convergence times
and a reasonable degree of resilience in
the network, routing information needs
to be broadcast as widely as possible.

• Only rudimentary collision avoidance mech-
anisms are implemented for the wireless chan-
nel (i.e. there are no specific Ready To
Send [RTS] or Clear To Send [CTS] pack-
ets), although if the project were running
over standard WLAN equipment, these
would be sent by the hardware itself.

• Traffic flow is expected to be approxim-
ately balanced between nodes: this is not

5

Collaborative Power Management in Wireless Mesh Networks

the case in some applications such as sensor
networks where data flows towards a com-
mon sink.

2.3 Requirements

The implementation of a network protocol that
required more than two or three nodes to ad-
equately test as standalone code was deemed to
be impractical, given that testing of such code
would have necessarily involved either a large num-
ber of physical devices with potentially tens of
mobile users, or a large quantity of extra interface
code with a simulation package. The decision was
therefore taken to implement the entire project
inside the OPNET simulation package. This de-
cision was not taken lightly, given that OPNET
is the industry standard simulation package, and
therefore has a very steep learning curve. A sig-
nificant quantity of time was spent reading doc-
umentation on the package, and experimenting
with it.

Deciding to use OPNET dictated that I learn the
C programming language, which I had not had
any development experience with. A significant
amount of time was therefore also spent becom-
ing proficient in it, both for simple standalone
network programming, and more complex work
within the OPNET simulator.

The scope of the project was further clarified, as
outlined in the previous section.

Related work in the field was examined. The
topic of mesh networking is not specifically taught
in the Tripos, and therefore, in order to gain suffi-
cient grounding in the subject, various references
in addition to those listed in the Introduction
above were consulted.

It was decided that the protocol would be a form
of distributed Bellman-Ford algorithm (i.e.
distance-vector), but that ensured loops were pre-
vented. The mechanisms for preventing routing
loops and distributing routing information with
as little overhead as possible were considered.
Pathological test cases were analysed by hand,
resulting in various refinements to the protocol.

The project was divided up into specific “mod-
ules” in the original proposal. This transpired
to be more of a beneficial theoretical separation
than physical modules, due to the form in which
the simulator accepts code. However, the pro-
tocol is implemented in the form of a (very high-

level) state machine, where each state has a sig-
nificant body of code executed on entry to it; Ap-
pendix D contains a diagram of the finite state
machine as used in the simulator. The project
was therefore further subdivided from the initial
modules into more granular states that in turn
made work packets of shorter lengths – increas-
ing ease of planning and management. A layering
approach was used, as some states span multiple
layers. The protocol’s structure is therefore such
that it can be overlaid on any physical interface,
without adjustment.

2.4 Component Outline

The final core components of the project, and
possible extensions, are outlined below. Figure 3
provides an overview diagram of how the different
layers fit together.

Application

Security

Physical − Wireless

Quota
Management

Energy−Aware

Data Link (MAC / CSMA)

Mesh Routing

Transmission Control

Figure 3: An overview of the different layers of
the protocol.

Core

• Data Link layer: an interface between the
physical layer provided by the simulator,
and the overall protocol. Provides address-
ing (akin to a MAC identifier), and trans-
mit/receive queue management.

• Transmission Control layer: incorporates
connection tracking, multiplexing, and auto-
matic retransmission.

• Mesh Routing layer: discovers routes by
passive listening and active querying, main-
tains them using timeouts and passive listen-
ing, and propagates them by piggy-backing

6

David Cottingham

the data on normal packets. Quickly ad-
justs to topology changes by direct propaga-
tion of changes in routes to key choice points.

• Energy Aware Routing layer: transcends
layers one, two and three by tracking en-
ergy levels in network nodes. This is used in
calculating route metrics. The module also
maintains a quota system to guard against
Denial of Service (DoS) attacks, and en-
sure that bandwidth is shared out equally.
Nodes are able to predict their quotas on
others, lessening the need for frequent up-
dates.

• Application layer: provides console output
from the simulation software, multiple de-
bug levels, utility functions, and processes
global interrupts.

Extensions

• Bitmapped ARQ: to reduce the quantity of
control data, several packets would be ac-
knowledged with one ACK, using an array
of bits, each of which would be set if the rel-
evant packet had been correctly received.

• Trusted Routing Information: by using a
shared secret key, the routing information
contained in the packets could be securely
hashed, and the result appended to the
packet. This would prevent external attack
on the mesh routing protocol.

• Link Contention Detection (CSMA): by de-
tecting whether the radio channel was in
use, nodes would be able to wait to trans-
mit. If a collision occurred then nodes would
retransmit.

• Encryption: data carried in the packets is
likely to require encryption, given that it is
broadcast over a wireless link.

• Multicast transmission: a multicast protocol
would allow group communication.

By carefully planning the implementation phase,
it was possible to leave “hooks” for extensions to
be easily integrated into the protocol as they were
implemented, whilst existing code did not rely
on them being in place. This added flexibility to
the project whilst avoiding possible confusion as
features were added.

2.5 Evaluation Methods

& Milestones

To ensure that the protocol functioned correctly,
various methods of evaluation were considered for
the different stages of the project. In this way
the necessary statistic collection routines and re-
lated code could be incorporated whilst imple-
mentation was taking place, and the code could
be tested at each stage. The individual compon-
ent testing methods are outlined in the Evalu-
ation chapter, but the following are high level
tests and comparisons that were part of the aims
of the project:

• Compare the average time to node exhaus-
tion using energy aware routing with that
using purely latency routing.

• Evaluate the spread of energy levels in the
network after a fixed period of time in the
same situations.

• Compare different algorithms for energy aware
routing.

• Compare the performance of these algorithms
for stationary and mobile nodes.

As specified in the original proposal, the project
would be deemed a success if all core compon-
ents functioned as specified. The success of the
project is not dependent on the algorithms be-
ing used yielding significant energy savings (al-
though it is expected that they will), given that
the project is an investigation rather than an im-
plementation of a well known result.

Each two week packet in the project had an as-
sociated milestone. The implementation of each
layer was to be tested in isolation prior to the
implementation of the layer above. This incre-
mental model [31] style of software engineering
meant that system integration testing was sim-
plified. Such testing was aided by the use of the
OPNET debugger, which allows packet tracing
and and debugging of radio channel characterist-
ics.

7

Collaborative Power Management in Wireless Mesh Networks

8

David Cottingham

3 Implementation

3.1 Transport Protocol

Unlike some wired networks, wireless networks
are inherently lossy due to interference and mul-
tipath effects. This results in the need for trans-
port protocols that adapt to loss, i.e. do not
exhibit the poor performance of TCP when it
encounters temporary packet loss, (as detailed
in [35]). Such a protocol should be focussed on
ensuring reliable transmission of data, whilst at-
tempting to ensure as little bandwidth as possible
is used for control information.

The protocol supports multiple reliable connec-
tions to each host, similar to using different TCP
port numbers. Connection tracking code multi-
plexes the various connections a node has onto
the wireless link, whilst at a higher level on the
protocol stack packets are tracked to ensure that
each has been received at the destination. These
aspects are described in more detail below.

3.1.1 Packet Format

The protocol packet format is shown in Figure 4.
There is only one type of packet, the object-
ive being to include as much control information
in each data packet as possible, rather than ex-
pend the extra overhead of sending distinct con-
trol data packets.

Note: A detailed specification of the packet format
and the function of each field is given in Appendix
B.

Error checking is assumed to take place at hard-
ware level, i.e. CRCs are performed at the wire-
less interface. Hence no checksumming fields (other
than the Routes Message Authentication Code,
for security) are included in the packet format.

3.1.2 Connection Tracking

Communication is supported in a similar man-
ner to the Transmission Control Protocol’s abil-
ity to multiplex several concurrent connections
from a particular node to other destinations, and
allow multiple connections to each of those des-
tinations using port numbers, here termed con-
nection identifiers.

The protocol is based upon the idea of connec-
tionless communication, similar to the Universal

Datagram Protocol (UDP), which does not re-
quire explicit connection set up and tear down
packets, reducing overhead. Connections are ini-
tialised when the first data packet arrives at the
destination, and are torn down if no data is re-
ceived for a particular period of time: unlike TCP
there are no explicit SYN or FIN packets. How-
ever, unlike UDP, the protocol guarantees deliv-
ery if a route is available: Automatic Repeat Re-
quest (ARQ) detects packet loss and resends the
lost data.

Source
Destination
Last Hop
Next Hop
Last Choice

Sequence Number IDSource Conn.
Num

Routes Quota FlagsBitmap

Timestamp

Origin 1
Source 1

Route 1

Route 6
Origin 6

DeltaTime

Metric 1 Metric 2

Source 6

Dest. Conn. ID

Metric 3 Metric 4

Metric 5 Metric 6

32 Bits

Data

Routing MAC

Figure 4: The format of the packets used in the
protocol. each row represents 32 bits. There are
6 sets of three routing data fields, only numbers
1 and 6 are shown. The data field is of variable
length.

9

Collaborative Power Management in Wireless Mesh Networks

Connection Establishment

Note: the complete process described below is il-
lustrated in Figure 5, which the reader may find
helpful to refer to.

If a node x wishes to communicate with a node y,
which is more than a single hop away, x must first
examine its Routing Table (RT) to ascertain the
next hop for the route to y. Assuming a route
is known, x creates a packet with the destina-
tion field set to y, and with the appropriate next
hop address. This is known as the initialisation
packet.

A connection identifier must then be assigned:
these range from 1 to 28 −1, and are allocated in
a sequential order (there is currently no provision
for “well known” port numbers such as those used
in TCP). Two buffer queues are also allocated
to the connection, for storage of packets already
transmitted (in case retransmission is required),
and to buffer incoming data on that connection.
The packet’s source connection identifier is set
to the ID allocated to it. Node x adds the con-
nection to its established connections table, with
the established flag unset, indicating that the
destination node has not yet replied to the ini-
tialisation packet. Note that, currently, without
the implementation of a scheme similar to SYN
cookies [29] or a SYN gateway, the protocol is
susceptible to a “SYN flood” style attack, as re-
sources are allocated on receiving the initialisa-
tion packet.

The packet is then transmitted containing a des-
tination connection ID of zero. This is a reserved
identifier, indicating a new connection is being
requested. It is assumed that nodes will only
require a single new connection with each other
node to be initialised at any one instant (but are
able to request another once the connection is
established).

On receiving the initialisation packet, y ascer-
tains whether it has the resources to support a
new connection (e.g. possesses sufficient buffer
space), and inserts the entry into its connection
table. Initially, it adds the connection with an
identifier (of its own) of zero, given that this is
the “port” on which it is receiving packets from
the source.

Once the first five packets, (the first chunk), have
been received, y is required to acknowledge their
reception (see section 3.1.3 for details). At this
point x is not permitted to send any further data
until it has received the acknowledgement, and

therefore y may update its identifier for the con-
nection to a number other than zero, and correct
its Connections Table accordingly. The acknow-
ledgment it transmits contains as the source con-
nection ID this new identifier, but maintains the
destination connection identifier as x began to
use on initialising the connection (as would be
expected). In the case where there is not enough
data to make up a final chunk, x will transmit
the remainder as empty packets.

On receiving the acknowledgement, x updates its
connection table accordingly, modifies the destin-
ation connection identifiers of any packets queued
for transmission on the connection, sets the
established flag in the connection entry, and
continues transmission.

For simplicity, reliable delivery has not been im-
plemented using a sliding window scheme. It
would be possible to construct such a mechan-
ism round the protocol, by allowing transmission
of a chunk, whilst waiting for the previous one to
be acknowledged. This would increase the speed
at which communication could be carried out.

Sending & Receiving

Once a connection has been established between
two nodes, they may communicate with each other
by simply transmitting packets to the correct des-
tination address and connection identifier. New
connections may be initialised as needed.

The Connections Table keeps a record of the iden-
tifier of the route that is in use for the connec-
tion. In the event that significant packet loss is
encountered, this identifier is used for blackmark-
ing the route in the RT (see section 3.2.5).

Broadcast communication, i.e. the sending of da-
tagrams addressed to all local neighbours, is to
the reserved destination address 0.

Connection Termination

There is no formal connection termination se-
quence in the protocol, unlike the FIN packet in
TCP. It is instead expected that the data stream
at application level will signal termination.

An entry is removed from the Connections Table
when no further traffic is received on that connec-
tion for the period MAX IDLE TIME. In addition,
after initialisation, until there has been any com-
munication from the remote node, the established
flag in the Connections Table remains unset: if
this is the case after a certain period of time, the
connection entry is removed. Such removal of

10

David Cottingham

Source: X
Intermediate Node: G

Destination: Y
Source: X

Destination: Y

Next Hop: Y

Last Hop: G

Source Conn. ID: 4

Dest. Conn. ID: 0

Seq. Num.: 1

Bitmap: 00000

Routes/Data/etc.

Source: X

Destination: Y

Next Hop: G

Last Hop: X

Source Conn. ID: 4

Dest. Conn. ID: 0

Seq. Num.: 1

Bitmap: 00000

Routes/Data/etc.

Source: X
Intermediate Node: G

Destination: Y
Source: Y

Destination: X

Next Hop: G

Last Hop: Y

Source Conn. ID: 16

Dest. Conn. ID: 4

Seq. Num.: 27

Bitmap: 11101

Routes/Data/etc.

Source: Y

Destination: X

Next Hop: X

Last Hop: G

Source Conn. ID: 16

Dest. Conn. ID: 4

Seq. Num.: 27

Bitmap: 11101

Routes/Data/etc.

x 5 The first chunk (5 packets) is sent from

X, without any response from Y. Each
packet has a sequence number one
greater than the last.

Source: X
Intermediate Node: G

Destination: YSource: X

Destination: Y

Next Hop: Y

Last Hop: G

Source Conn. ID: 4

Dest. Conn. ID: 16

Seq. Num.: 4

Bitmap: 00000

Routes/Data/etc.

Source: X

Destination: Y

Next Hop: G

Last Hop: X

Source Conn. ID: 4

Dest. Conn. ID: 16

Seq. Num.: 4

Bitmap: 00000

Routes/Data/etc.

2. Acknowledgement

1. Connection Establishment

3. Retransmission

Y has not received
packet number 4.

The connection in
the reverse direction
uses an entirely

different sequence
number series.

Figure 5: Connection Establishment by the Transport Protocol: a source x initiates a connection
to a destination y, via a next hop g. After receiving the first chunk, y responds with an ACK,
indicating that the fourth packet has been lost. x therefore resends the required packet.

11

Collaborative Power Management in Wireless Mesh Networks

connections is necessary to free connection iden-
tifiers and queue space.

3.1.3 Reliable Delivery

To ensure reliable transmission of data, the pro-
tocol implements an Automatic Repeat Request
(ARQ)[9] feature. These schemes allow a receiver
node to notify the transmitter that packets have
been lost en route, and request their re-transmission.

Acknowledging each packet sent (as in TCP) is
costly in terms of the number of control data
packets that must be sent from the receiver. There-
fore, two enhancements are made:

1. Piggybacked acknowledgements: instead of
transmitting dedicated acknowledgement
packets, ACKs are included in any data-
grams travelling in the opposite direction
to the flow being listened to.

2. Bitmapped acknowledgements: the ACK
field consists of a series of five bits, each of
which is set to indicate a particular packet
has arrived, or unset if it has not. An ACK
is therefore only sent per chunk.

Sequence Numbers

Each packet carries a 16 bit sequence number, be-
ginning at 1, that is unique to that packet for the
connection it belongs to. Packets on a connection
from x to y have sequence numbers that are unre-
lated to those from y to x on the same connection.
Sequence numbers are sufficiently large to ensure
that if and when they overflow to zero there is
no confusion possible between packets prior and
subsequent to, the overflow.

Bitmapped ARQ

The protocol employs a Stop-and-Wait strategy.
Although this causes transmission to be inter-
rupted whilst the sender waits for an acknow-
ledgement once each chunk has been sent, there
are benefits to such a scheme. A Stop-and-Wait
protocol provides selective retransmission, rather
than the Go-Back-n solution used by TCP, redu-
cing the number of retransmissions.

In this scheme, a source node x initialises a con-
nection to a destination y, and proceeds to send
the first chunk of data. It then ceases transmis-
sion, queueing any packets from the application
level for the connection, until it receives an ACK

from y, indicating that all packets in the trans-
mitted chunk have been received. If this is not
the case, x retransmits only those that y indic-
ates did not arrive.

For its part, y receives the initial packet, p0 from
x, and notes its sequence number, s0. For sub-
sequent packets, pi, it compares their sequence
numbers si to s0. If no re-ordering occurs, the si

will simply be the series obtained by increment-
ing s0 once each time a packet is received. Node
y sets bit si − s0 in its bitmap for the connec-
tion when packet pi is received. A complete (i.e.
with all bits set) bitmap indicates all the si in
the chunk have been received at y.

Once the bitmap is complete, or
TIMEOUT RTT MULTIPLE round trip times (RTTs)
have elapsed since the initial packet was received,
y sends an ACK to x. This is a normal data
packet, but with the ack flag set, and the bitmap
included in the bitmap field. In the case where
not all packets have been received, the bitmap
will have unset bits, e.g. 11101 would indicate
that the fourth packet in the chunk had not been
received by y. The reason that no sequence num-
ber related to the connection being acknowledged
is needed in the ACK is due to the stop-and-wait
scheme: the bitmap must refer to the last five
packets transmitted.

Those packets indicated by the bitmap are re-
sent, and x again waits until it receives an ac-
knowledgement from y that the full chunk has
been received. It may be that some of the miss-
ing packets have then been received, whilst oth-
ers have been lost a second time, therefore the
bitmap returned will indicate whether further re-
transmission is required.

In the event that flow is highly asymmetric between
y and x, there may not be enough data packets
to piggyback ACKs on. In this case, dedicated
ACKs are transmitted, that do not contain data,
but do have the ack bit set. To avoid confu-
sion with data packets, dedicated ACKs have a
sequence number of zero. In order to maxim-
ise piggybacking, acknowledgements are queued
for a maximum of TIME TO WAIT FOR CARRIER, in
case a “host” packet is sent in that time. Only
if this is unsuccessful is a dedicated ACK packet
sent.

If an entire chunk is lost, no acknowledgement
will be received by node x, as node y will be
waiting for the start of that chunk. In this case,
a timeout occurs on x after

12

David Cottingham

TIMEOUT RESEND RTT MULTIPLERTTs, causing it
to retransmit the entire chunk.

Packet Re-ordering

Another aspect that must be handled is the pos-
sible re-ordering of packets during their traversal
of the wireless link, due to some packets will in-
curring more delay than others.

With bitmapped ARQ this is not a problem, given
that the relevant bit is set for each packet that
arrives. Provided that all the packets in a chunk
arrive within the relevant time-out period, buf-
fering at the receiver ensures that packets can be
sorted into transmission order once more.

Re-ordering of packets becomes a significant issue
when the initialisation packet for a connection
is not the first packet to arrive. In this case,
any packets that subsequently arrive are deleted,
as the node does not have a connection entry to
which those packets match. Whilst this could be
prevented, it is considered that the effort required
to do so significantly outweighs the small cost of
the transmitting node resending the entire chunk
once more.

Round Trip Time Measurement

When a connection is initialised, nodes record a
fixed RTT value RTT ESTIMATE for the connec-
tion. On receiving a packet, the timestamp field
is subtracted from the time the packet was re-
ceived, to obtain a value for the actual RTT. Sub-
sequent values provide an average RTT which is
then used to set the time-outs mentioned above.

3.2 The Energy Aware Routing Al-

gorithm

The basic premise on which the routing protocol
functions is that of pro-active route discovery and
maintenance, and draws on ideas from the
DSDV [22] and WRP [18] protocols. to this al-
gorithm ensures that routes are available as soon
as they are needed. Routing is distance vector
based, i.e. nodes are only aware of which the
next hop node is for any destination they wish to
communicate with.

3.2.1 Route Discovery

Beacons

On start-up, a node transmits three identical
beacon packets, advertising the node’s availabil-
ity. Nodes within the broadcast range, termed

neighbours, receive the beacon packets and add
the new node to their Neighbours Table (NT).
The new node remains in a listen state for
T BEACON seconds, and processes any packets it
overhears from any neighbour nodes, to populate
its own NT.

Data Packets

When a packet is received, a node will exam-
ine the routing information contained in it. The
num routes field in the packet indicates the quant-
ity of routing information that the packet con-
tains. Each route carried by the packet is made
up of a triple of the form

< destination addr, source addr,
origin addr, metric>

The destination addr field is the target des-
tination of the route, and origin addr is the
node that is a neighbour of the target destin-
ation, which propagated this route. The node
that this packet was received from is known by
the last hop field of the packet. This last hop
node in turn obtained the route from a partic-
ular source node, the address of which it then
includes in the source addr field of any routes it
propagates. This enables routing loop prevention
(see later).

Pleas

If a node wishes to communicate with a destin-
ation it does not have in its RT, it broadcasts a
routing plea packet. This has its destination

field set to the address of the node to which a
route is required, but also has its route query

bit set.

Any node hearing a plea packet searches through
its RT for a route to the destination requested.
If it has a route, it places it on an urgent queue
of routes to be propagated on the next routing
data transmission (see section 3.2.3).

In the event that the node that emitted the plea
packet does not receive any routes from its neigh-
bours for the destination within the timeout period
T ROUTE PLEA WAIT, the packet is dropped. Prior
to this timeout, any packets for the destination
that is the subject of the plea are re-queued in
the transmission FIFO queue.

Plea records are held in a dedicated hash table,
which enables the routing algorithm to determ-
ine whether a plea has recently been transmitted
for a particular destination. Each plea has an

13

Collaborative Power Management in Wireless Mesh Networks

additional hold time-out, T HOLD PLEA FAILURE,
until which the plea’s “result” remains in force;
i.e. if no routes were received from any neigh-
bours after T ROUTE PLEA WAIT, a new plea is not
sent until the hold timeout has expired – during
this time packets are dropped. In this way plea
transmissions of are not wasted. Note that were
a new route to be received by the node whilst a
plea were in force the route would be used for the
next transmission: the pleas table is only queried
when a route cannot be found in the RT.

3.2.2 Route Propagation

Nodes transmit routes by writing the data for
each entry in the route i , origin i , source i ,
and metric i fields of packets, where i ranges
from 1 to 6. A node routing a packet on behalf
of another rewrites the last hop, next hop, and
all of the routing data fields with its own inform-
ation. A node’s RT contents is transmitted on
a rolling basis, by maintaining a record of which
destination in the RT had its routes transmitted
last. Only the lowest latency route for each des-
tination in a node’s RT is propagated.

On receiving a packet containing routing inform-
ation, a node processes all the triples in the packet,
and compares the entries to its current RT. The
decision process is illustrated in Figure 6

To prevent routing loops, the source addr and
origin addr are used. Figure 7 shows the pro-
cess governing whether a route is passed to the
processing routine above, or is discarded.

If all of the above are false, the route is added
to the RT, with a next hop address of the neigh-
bour node from which the routing information
came. Note that this is made possible by the
fact that each packet has, a last hop field, that
is updated by each intermediate node that the
packet is routed through.

A short example now follows. In Figure 8 the
transmission ranges of the different nodes are in-
dicated by the dashed circles: this implies that
nodes may only communicate with others that
are adjacent to them, as shown by the solid lines.

• All nodes begin by transmitting beacon pack-
ets. It is assumed for ease of illustration
that they do so almost simultaneously, al-
though in practice this is not true. After
having heard each other’s beacons, node

Figure 6: Decision flowchart for route propaga-
tion.

routing tables are as shown in Table 1 at
time 0.

• Each node propagates the lowest metric entries
for each destination in its routing table.
Adjacent nodes receive these routes, and
process them according to the rules above.
For example, node C receives the following
updates from nodes A and D (notation as
defined in section 3.2.1, metrics not shown):

1. < B, –, A > (from A)

2. < C, –, A >

3. < B, –, D > (from D)

4. < C, –, D >

5. < E, –, D >

Node C adds route 1 to its table, as
< B, A, A > (as the next hop is now node

14

David Cottingham

Figure 8: Maintaining a loop free routing table in a topology containing loops.

Node
Time A B C D E

0 < B, –, A > < A, –, B > < A, –, C > < B, –, D > < D, –, E >

< C, –, A > < D, –, B > < D, –, C > < C, –, D >

< E, –, D >

1 < D, B, B >† < C, A, A > < B, A, A > < A, B, B > < B, D, D >

< D, C, C > < C, D, D > < B, D, D > < A, C, C > < C, D, D >

< E, D, D > < E, D, D >

2 < C, B, D > < D, A, C > < D, A, B > < C, B, A > < A, D, B >

< E, B, D > < A, D, C > < A, D, B > < B, C, A > < A, D, C >

< B, C, D >

< E, C, D >

3 – < E, A, D > < E, A, D > – –‡

Table 1: Route propagation in a cyclic topology (Figure 8): Each node’s routing table is shown as it
grows over time (only those new entries gained at each iteration are shown, previous entries persist).
The – at time 0 indicates that the node received a beacon packet and added the target destination as
a neighbour. The origin addr field is set to current addr as this node will initiate and propagate
the route. The – at time 3 indicates that no new routes are learnt, and that the routing tables have
now converged.
† In normal use, the protocol only propagates the lowest metric route it is aware of. In this case as metrics are not known,

all routes a node is aware of propagate, to show that loops will not occur in either case.

‡ Node E discards < C, D, A > and < B, D, A > as it already has routes to these destinations via D, and these routes are

guaranteed to have a greater metric than those already gained in its routing table at time = 1.

15

Collaborative Power Management in Wireless Mesh Networks

Figure 7: Decision flowchart for preventing rout-
ing loops. The final rule is the equivalent of
the split horizon algorithm [19], as used in main-
stream wired protocols such as RIP [11]

A), and does the same with route 2. Route
3 is an analogous case, except that the next
hop is now node D. Route 4 is discarded
due to having a destination addr equal
to node C’s own address. Route 5 is added.

• Propagation happens a second time (time
= 2). Taking the example of node D, it
receives all new routes that were learnt by
nodes B, C and E in the last iteration, i.e.:

1. < C, A, A > (from B)

2. < C, D, D >

3. < E, D, D >

4. < B, A, A > (from C)

5. < B, D, D >

6. < E, D, D >

7. < B, D, D > (from E)

8. < C, D, D >

Routes 1 and 4 are added as they have
not been seen before. Routes 2 – 8 are
discarded due to having their source addr

equal to node D’s address.

• On the 3rd iteration only nodes B and C
add any new routes to their tables – all
other nodes’ tables have converged. Any
subsequent iterations will result in no new
routes being learnt, and only metrics will
be updated.

3.2.3 Route Maintenance

Ensuring Route Freshness

All nodes maintain a timer of when a packet with
routing information was last transmitted. Under
normal operation, this is reset each time a data
packet is transmitted, but with low data traffic,
regular, routing updates are transmitted. This
ensures that routes are maintained whilst the to-
pology changes, remaining prepared for a burst
of traffic.

Urgent Propagation List

In addition to propagating their RT on a rolling
basis, nodes maintain a linked list of routes that
should be urgently propagated. The contents of
this list is used to fill the routing information
fields of packets in preference to the contents of
RT. In this way routes that have been requested
by pleas are transmitted speedily, as well as those
for which there have been significant changes in
metric, or which have been recently added to the
RT.

Metric Propagation

For a node x to a destination y, a route passing
through a graph (which may be cyclic) whose
edges represent wireless links having weights wi,j

(where wi,j is the non-energy aware metric for the
link from node i to node j), has a route metric
m of

m =

y−1∑

i=x

wi,i+1 (1)

(Where the intermediate nodes are assumed to be numbered

consecutively x + 1 . . . y − 1).

A node n calculates a route metric for any route
it receives from a neighbour m by adding wn,m to

16

David Cottingham

the metric propagated to it. The measurement of
wn,m is described in section 3.2.4.

When a route is updated, if the proportion its
metric changes by is greater than
THRESHOLD FRACTION METRIC UPDATE, the route
is added to the urgent propagation list.

Routing Table Structure

The RT is stored as an open hash table, as shown
in Figure 9, being indexed by a hash of the destin-
ation address for the route. The entry in the hash
table corresponding to this destination points to
an ordered (by metric) linked list of pointers to
route entries, each of which makes use of a dif-
ferent next hop node.

Regular pruning of the table is performed to de-
lete routes that are no longer valid.

3.2.4 Neighbours Table

If an edge exists between two nodes in the rout-
ing graph, they are termed neighbours. Nodes’
Neighbour Tables (NT) maintain quota2 inform-
ation about each of their neighbours, which is
used in metric calculations.

Each packet carries a timestamp field, which is
set at the moment when the transmission code
at the original sender (not the last hop), outputs
the packet to the wireless interface.

The delta time field is updated by each hop
along the route the packet passes through. Whilst
the timestamp remains at the value the original
sender set it to, the delta time value gives an
indication of the latency of the link up to the
last hop. Taking equation 1, and using w∆ to
represent the value of delta time:

w∆ =

y−2∑

i=x

wi,i+1 (2)

m = w∆ + wy−1,y (3)

Hence by subtracting the time the packet is re-
ceived from the timestamp we obtain m, and
therefore can calculate wy−1,y, the latency of the
link to the neighbour, as required.

Nodes are added to the NT if a packet is re-
ceived with a last hop address of a node which
is not present in the table. Explicit “join” or
“leave” messages are not employed, as node mo-
bility would cause the overhead of such a scheme

2For an explanation of quotas please see section 3.2.8

Figure 10: Sharing Neighbours with Mobile
Nodes: As the mobile node moves from the start
position to the target position (marked by ©s), it
maintains contact with a subset of its old neigh-
bours. This ensures that its new neighbours
“overhear” its approach and add its address to
their RTs.

to be severe. Instead, in a relatively dense mesh,
nodes are likely to still be making use of a sub-
set of the neighbours from one area as they move
into another, as shown in Figure 10, and therefore
they will emit packets that a subset of potential
neighbours in the new area will overhear.

Entries in the NT are removed as described in
section 3.2.5.

17

Collaborative Power Management in Wireless Mesh Networks

Hash(4)

Hash(17)

Hash(5)

Hash(16)

Hash(3)

Hash(35)

Hash(21)
ID: 16026

Destination: 16

Next Hop: 26

Origin: 4

Metric: 65

Upd. Time: 5

Routing Table

Route List

Route Entries for Destination 16

Figure 9: Structure of a Node’s Routing Table: routes are stored in an open hash table, indexed
by the hash of the destination address. The entry in the table contains a pointer to a linked list
(ordered from least to greatest metric), each element of which has a pointer to a route structure,
containing the route entry. This figure shows the entry for destination node 16.

18

David Cottingham

3.2.5 Blackmarking

If a link in the network fails, the change in to-
pology must be propagated as soon as possible
to avoid nodes attempting to use routes that in-
clude the failed link. Node failure is detected by
two methods:

• Nodes are required to send at least one
packet every interval of length T BEACON. If
no packets are received from a particular
neighbour node in twice this interval, the
link to that neighbour is assumed to have
failed.

• When packet loss occurs on a connection
to a particular destination, if more than
MAX RETRIES PER CHUNK, packets are lost for
a chunk of five, (e.g. all the packets require
one re-transmission, and more than one re-
quires a second re-transmission), the route
is assumed to have failed.

When a link failure is detected, an infinite metric
is assigned to it; this process is known as black-
marking the route. For the first case above it
results in all routes associated with the neigh-
bour concerned being blackmarked, whereas for
the second case only the route that was in use
by the connection, (known from the entry in the
connections table), is blackmarked. Figure 11 il-
lustrates how destination unreachable messages
cause blackmarking.

When a route’s metric is updated from any value
to infinity, or vice versa, any routing information
arriving from other nodes about the entry con-
cerned is ignored for a time T HOLD TIME. This
allows the blackmarking information to propag-
ate throughout the network.

Figure 12 illustrates one issue with this scheme:
blackmarking on packet loss may result in a node
temporarily being unaware of any route to a des-
tination, despite there being a viable route via
one of its neighbours. This problem is partially
solved by the LCPN optimisation.

3.2.6 Last-Choice Point Notification Op-
timisation

As described in the previous section, ensuring
that link failures are propagated throughout the
network rapidly is a key factor in ensuring packet
delivery with minimal retransmissions. To this

end, an optimisation I term last-choice point no-
tification (LCPN) has been implemented in the
protocol. It is based on the fact that when a
packet with destination y passes through a choice
point for y (i.e. a node having at least two differ-
ent routes to y), the choice point node inserts its
own address into the packet’s last choice field,
and then routes it in the usual fashion.

The LCPN optimisation is best explained by con-
sidering its effect on the blackmarking problem
outlined in the previous section. Figure 13 de-
picts the alternative outcome.

Figure 11: Destination Unreachable Messages:
when a route to a destination cannot be found
for a packet to be routed, nodes send a destina-
tion unreachable message to the original sender.

19

Collaborative Power Management in Wireless Mesh Networks

Figure 12: Illustration of a Possible Problem
with Blackmarking: if two separate routes exist
from x to y, with a common “gateway” g, there
exists the possibility that if route r1 fails, x will
not be aware of r2. This situation is made less
probable by the LCPN optimisation.

Figure 13: The effect of the LCPN optimisa-
tion. The diagram shows an alternative stage
2 from Figure 12. With LCPN the source node
x has a viable route propagated to it rapidly,
instead of waiting for the beacon time-out for
z on g to expire.

20

David Cottingham

3.2.7 Energy-Awareness

The principle goal of the project is to implement
the protocol such that it is sensitive to the energy
remaining in each of the nodes in the network
when making its routing decisions. The metric
of each link should therefore be influenced by the
energy levels of the nodes that are at either end
of that link.

The protocol initially made use of a metric ad-
justed as follows:

wi,j = li,j ∗ (1 +
1

ei

) (4)

Where li,j is the latency of the link from i to j,
and ei is the energy level of node i. Note that
this metric, wi,j , is only applicable for data flow
from i to j, as the reverse (wj,i), is proportional
to ej (as node j would be the transmitter). This
metric assumes that the cost that should be ac-
counted for by the metric is the transmission,
rather than the reception, energy usage, given
that nodes are assumed to receive all packets that
they can “hear”.

Equation 4 has the disadvantage that a metric
will not be substantially changed until ei decreases
to a relatively low number. This results in energy
awareness only being evident at the point where
a node has a very low energy level. Other met-
rics were therefore developed to attempt to cause
the effect to be seen earlier in the lifetime of the
network.

A variation on Equation 4 is to cause the metric
to be dependent on the proportion used of the
original quota assigned to the destination, i.e.:

wi,j = li,j ∗ (1 +
p

n

ei

) (5)

Where p is the total energy level a node is ini-
tialised with, and n is an approximation to the
number of neighbours a node is likely to have on
average, (experiment indicates that n = 2 func-
tions well). In this way as the energy level de-
creases, wi,j increases at a greater rate than in
Equation 4.

Subsequently, a third metric was also examined.
This places the bound of the maximum metric at
twice the latency of the link:

wi,j = li,j ∗ (2 −
ei

p
) (6)

Such a bound produces a more realistic metric for
certain applications, given that its relationsip to
ei is linear, rather than inverse as in Equation 5.

Another feature of energy aware routing is that
nodes themselves can refuse to route packets once
their energy level drops below a certain threshold,
RESIDUAL ENERGY LEVEL. This enables nodes that
are near exhaustion to be kept alive for reception
and transmission of data associated with them,
rather than expending resources routing data for
others.

3.2.8 Quota-Based Routing

To ensure fair sharing of energy reserves and at-
tempt to prevent DoS attacks that seek to ex-
haust nodes, the protocol implements a quota
system. Each of a node’s neighbours are alloc-
ated a share of the remaining energy resources
on the node for forwarding their packets. This
quota is decreased each time the node routes a
packet for the relevant neighbour.

Quotas are allocated by dividing the total energy
reserves of a node equally between its neighbours.
The metrics to the neighbours are then calculated
on the basis of those quotas, using the same for-
mulae as given in the previous section. Every
interval of length T QUOTA RESET INTERVAL the
quotas are recalculated to ensure that the distri-
bution of energy is not skewed (e.g. one neigh-
bour may have a significant amount of traffic to
send, whilst others use very little of their quota).
Quota-based routing therefore causes nodes with
high request frequencies for their traffic to be
routed to be served less and less, a concept sim-
ilar to that used in the Secure Routing Protocol
(SRP) [20].

Nodes are able to keep track of their actual quotas
on their neighbours by reading the quota field of
any packets that have them as the next hop. Ad-
ditionally, nodes estimate their quotas on their
neighbours by decrementing their current estim-
ates of their quotas each time they route a packet
through the relevant neighbours. In this way they
are able to maintain their routing tables closer to
reality, without large numbers of dedicated up-
dates.

On each quota reset, the node performing the re-
set calculates the fractional change in the quota
that is assigned to each neighbour. If the differ-
ence from the previous quota and the quota to
be assigned is greater than a factor of

21

Collaborative Power Management in Wireless Mesh Networks

QUOTA DELTA FRACTION FOR UPDATE, the node
sends a dedicated quota update packet to the
neighbour concerned.

When a node’s quota reaches zero on a neigh-
bour, that neighbour will silently drop any pack-
ets sent to it for routing by the node concerned.
This will continue until the next quota reset,
whereupon it will begin to route packets for that
node once more.

3.2.9 Node Mobility

To simulate node mobility, the simulation makes
use of a “billiard ball” model, obtained from the
US NIST [16], where nodes move randomly within
a defined bounding box. On reaching an edge of
the area, the node’s trajectory is reflected in a
specular fashion. The model allows for the speed
of movement and the step length to be varied as
desired, enabling the simulation of different types
of mobility (e.g. pedestrian and vehicular).

3.3 Security

Wireless mesh networks present various key se-
curity issues3:

• The need for data encryption due to the
broadcast nature of wireless propagation.

• Introducing the concept of trust into the
network to ensure that deliberately incor-
rect routing information is not propagated.

• Preventing DoS attacks on nodes that may
cause their energy reserves to be exhausted
quickly (the sleep depravation problem [32]).
This has been covered in section 3.2.8.

• The problem of selfishness in so called “open”
ad hoc networks, where membership is not
restricted.

3.3.1 Encryption

The first of the above issues has not been con-
sidered in the design of the protocol, as it is as-
sumed that encryption will be performed at the
application layer.

3An excellent overview of the security issues (among
many other architectural points discussed) can be found
in the MobileMAN project’s deliverable 5 report [6].

3.3.2 Trusted Routing Information

In a MANET, the distribution of correct routing
data is of great significance in ensuring commu-
nication, due to the constantly changing char-
acteristics of links and overall structure of the
network.

In solving this problem the protocol assumes that
it is to be used for a closed ad hoc network, i.e.
where the membership is restricted. This is true
in many scenarios, e.g. military applications or
rescue teams, but in others such as peer to peer
file sharing in a traffic network it does not apply.

All nodes in the network share a single secret
key. This is assumed to stored in a physically
tamper-proof form4. A Message Authentication
Code (MAC) of the routing information that is to
be transmitted can then be produced using a one
way hash function. Such a scheme is implmented
in the SEAD protocol [12], which uses one way
hash chains.

By including a MAC in each packet, nodes are
able to verify that routing informaiton received
has been transmitted by a trusted node by re-
calculating the MAC of the data concerned.
Provided the hash function has the weak collision
resistance property, it is deemed computationally
infeasible (for a suitable key length; according to
[26] the length of the output must now be at least
80 bits) for an attacker to generate an alternative
set of data that will give an identical MAC. By
the pre-image resistance property it is equally un-
likely that the secret key could be obtained from
a MAC and its corresponding input text.

In this way nodes are able to discard any routing
data that they do not regard as trusted, and con-
sequently prevent incorrect data being propag-
ated by an attacker. It does not, however, guard
against a trusted node becoming in some way
compromised and performing an attack “from the
inside”.

The algorithm implemented makes use of a 128
bit shared secret key, supplied to any library en-
cryption algorithm, with a 128 bit block of plain
text. The resulting ciphertext is then used as the
key for the next block of plaintext (Cipher Block
Chaining). Once all the blocks (i.e. the last hop,
timestamp, delta time, num routes, and all rout-
ing information) have been enciphered, the most

4Although note that Anderson and Kuhn [14] caution
against using this where possible.

22

David Cottingham

significant 96 bits of the resulting 128 are taken
and included in the MAC field of the packet.

3.3.3 Selfishness in Open Networks

This issue is not directly relevant to the project,
(given that a closed network is assumed), but is
considered in the additional implementation de-
tails in Appendix B.

23

Collaborative Power Management in Wireless Mesh Networks

24

David Cottingham

4 Evaluation

To aid evaluation, testing was performed at each
stage of the project, ensuring that individual com-
ponents functioned correctly prior to the imple-
mentation of further layers based upon them. All
evaluation was conducted inside the OPNET sim-
ulator.

4.1 Data Link Layer

A simple network consisting of two nodes, each
composed of a packet source and a radio trans-
ceiver. The radio channel characteristics were
initially configured to be lossless to confirm that
nodes were able to send and receive. Interference
was then introduced into the channel to cause
a proportion of packets to be lost. Testing was
achieved by outputting messages to the console
when a packet was received. The implementation
of CSMA was tested by detecting when a node
entered its waiting to transmit state for a partic-
ular packet, simultaneously with another node in
the process of broadcasting on the wireless chan-
nel. This was repeated with larger networks.

4.2 Transmission Control Layer

This was divided into two sub-goals:

• Connection tracking

• Automatic repeat request

A network of 3 nodes was used to test connection
tracking, with each node generating and receiv-
ing traffic, and direct connections from each node
to all others. Packet destinations were assigned
according to a Uniform(1,3) distribution, which
resulted in each node on average having three
simultaneous connections in progress. Packets
could be tracked through the network using se-
quence numbers. As shown in Figure 14, mes-
sages were output to the console when a packet
was received or transmitted, indicating the con-
nection identifier it was associated with. This
provided confirmation that packets were reaching
their correct destinations. In addition, graphs of
numbers of packets transmitted and received over
time provided confirmation that an appropriate
number of packets were being received at each
destination (and that therefore connections were
being correctly identified).

For testing ARQ, the bit error rate of the wireless
channel was increased to make the proportion of
packet loss significant. For each packet retrans-
mitted, a console message was output detailing
the packet sequence number, and the connection
identifier. Retransmissions were observed for a

Module (146), (top.Office Network.mobile_node_1.node_proc)
From procedure: AA_wbatt_procBattRouting [tx_pkt enter execs]
Packet transmitted to:
31
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Sent to router for (proc_source_pkts):
3
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Connection already in table (proc_source_pkts):
31
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Incrementing seq. number as we are sending
31
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [tx_pkt enter execs]
Packet transmitted to:
31
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Sent to router for (proc_source_pkts):
3
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Connection already in table (proc_source_pkts):
31
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Incrementing seq. number as we are sending
31
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [tx_pkt enter execs]
Packet transmitted to:
31
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Sent to router for (proc_source_pkts):
1
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Connection already in table (proc_source_pkts):
11
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Incrementing seq. number as we are sending
11
−−−−−
Module (266), (top.Office Network.mobile_node_2.node_proc)
From procedure: AA_wbatt_procBattRouting [tx_pkt enter execs]
Packet transmitted to:
11
−−−−−
Module (386), (top.Office Network.mobile_node_3.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Sent to router for (proc_source_pkts):
1
−−−−−
Module (386), (top.Office Network.mobile_node_3.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Connection already in table (proc_source_pkts):
11
−−−−−
Module (386), (top.Office Network.mobile_node_3.node_proc)
From procedure: AA_wbatt_procBattRouting [proc_source_pkts enter execs]
Incrementing seq. number as we are sending
11
−−−−−
Module (386), (top.Office Network.mobile_node_3.node_proc)
From procedure: AA_wbatt_procBattRouting [tx_pkt enter execs]
Packet transmitted to:
11
−−−−−
Module (146), (top.Office Network.mobile_node_1.node_proc)
From procedure: AA_wbatt_procBattRouting [process enter execs]
Packet Received from:
2
−−−−−

Figure 14: Console Output for Connection Track-
ing: Node IDs are at the end of the first line of
each message. The identifiers on the last line of
each message indicate the connection identifier,
where the first digit is the destination address,
and the second the identifier for that address.

25

Collaborative Power Management in Wireless Mesh Networks

random selection of packets, as would be expec-
ted. In addition, graphs were obtained of the
number of packets retransmitted by ARQ over
time. Figure 15 shows such a plot. Varying error
rates resulted in a greater number of retransmis-
sions. By combining this information with the
knowledge of which packets were dropped (given
by the simulator), it could be seen that the cor-
rect packets were being retransmitted.

4.3 Mesh Routing Layer

The requirements for this layer were:

• Discover and maintain routes

• Ensure that routes remain loop free

Route discovery was tested by examining the rout-
ing tables of (stationary) nodes in the network
periodically throughout the simulation. Figure 16
shows a sample routing table outputted to the

Figure 15: The number of packets retransmitted
by the Automatic Repeat Request component of
the Transport Layer by each node in the network
over time.

Routing Table for node 4
Dest. Via Originator Metric
12 9 9 100
12 5 9 133
12 8 9 151
12 1 9 174
13 5 8 105
13 9 8 128
13 8 8 135
13 1 2 156
1 1 4 35
1 5 5 68
1 8 8 96
2 5 8 100
2 8 8 101
2 9 8 127
2 1 8 155
3 5 5 92
3 8 5 121
3 1 2 150
3 9 5 153
3 3 4 9999
5 5 4 27
5 9 9 77
5 8 8 99
5 1 1 155
7 5 5 99
7 8 8 103
7 9 9 125
7 1 5 161
8 8 4 16
8 5 5 55
8 1 2 73
8 9 9 77
9 9 4 30
9 5 5 73
9 8 8 141
9 1 5 145

Figure 16: the contents of node 4’s routing table
at an arbitrary instant.

console during a simulation with 20 nodes in the
network. By comparing the topology of the net-
work to the routing tables, the routes and metrics
learnt were ascertained to be correct. To examine
the convergence time of the network, (under the
traffic patterns being used), a count of distinct
destinations known to each node was obtained –
an example is shown in Figure 17. This shows all
nodes becoming aware of all other destinations
shortly after the network was initialised, as re-
quired.

Routing was confirmed loop free by carefully ex-
amining pathological cases by hand, and by ana-
lysing node routing tables as simulations pro-
gressed. Were routing loops to have been present
metrics for particular routes would have rapidly
become infinite. This was not observed, and in-
stead the expected sums of latencies making up

26

David Cottingham

the routes were obtained as the metrics.

4.4 Energy Aware Routing

& Quotas

The main goal of this project was to create a
mesh networking protocol that conserved energy
throughout the network, and moreover reduced
the standard deviation of node energy levels.

The two energy aware algorithms (below referred
to as Energy 1 and Energy 2), detailed in Sec-
tion 3.2.7 are compared to Latency based routing
(referred to as Normal).

4.4.1 Simulation Environment

The simulations carried out made use of a net-
work of 20 nodes, distributed uniformly over a
space of 250 by 625 metres. The topology can
be seen in Figure 18. Packet generation followed
an exponential(1.0) distribution, (i.e. one packet
generated per second), with a destination given
by a Uniform(1,20) distribution.

Figure 17: Number of distinct destinations in
node routing tables over time. Convergence time
in the simulation topology of 20 nodes is approx-
imately 300 s for the majority of nodes.

The radio channel used was at a data rate of 1,024
bps, the background noise expected due to tem-
perature fluctuations at 290 K, and an acceptable
bit error rate of 0.01 (below which it is assumed
the CRC used by the physical interface is of high
enough degree to correct the error).

Simulations were performed using both station-
ary and mobile nodes, each combination (of the
three algorithms and stationary or mobile) being
simulated 5 times with differing seeds supplied
to the random number generator, to obtain av-
erages. Each simulation was conducted with an
initial energy level of 1000 (packets-worth) per
node. A total of 2,000 data points were collec-
ted, therefore only summary graphs are provided
below.

To provide a representative estimate of the stand-
ard deviation (S.D.) of node energy levels after a
certain period, an arbitrary time of 300 s was
chosen. At this point, in all simulation runs, no
nodes had yet been exhausted, and therefore a
fair estimate of the S.D. could be obtained. The
S.D. provides an indication to the degree to which
nodes are being equally used for routing – greater
spreads in values imply key nodes will be ex-
hausted earlier.

27

Collaborative Power Management in Wireless Mesh Networks

Figure 18: Topology used for simulations testing energy-aware routing: 20 nodes are distributed
uniformly over an area of 250 m by 625 m.

4.4.2 Stationary Topology

Exhaustion Time

Figure 19: Average exhaustion time for station-
ary nodes: the Energy 2 algorithm yields a 3.1%
average improvement.

The average node exhaustion times are shown in
Figure 19 for five runs. From this it can clearly be
seen that the Energy 2 algorithm increases or has
no adverse effect on node lifetime. On average
it yields a 3.1% improvement (maximum 6.0%)

over Normal routing. The Energy 1 algorithm
consistently underperforms in this case.

Level at 300s

Figure 20: Average energy level after 300 s for
stationary nodes: on average the Energy 2 al-
gorithm marginally outperforms the Normal al-
gorithm.

After 300 s, the average energy level in the net-
work was found to be very marginally greater
when using the Energy 1 algorithm, as shown

28

David Cottingham

in Figure 20. On average, the improvement is so
small (0.02%) as to be attributable to the natural
variation in the results. The Energy 2 algorithm
again underperformed compared to Normal rout-
ing.

Figure 21: S.D. of energy levels after 300 s for
stationary nodes: the Energy 1 algorithm gives
(on average) a 10% lower S.D. than Normal rout-
ing.

The S.D. of node energies after the same time
period is shown in Figure 21. The Energy 1 al-
gorithm exhibits an average 10% lower S.D. as
compared with Normal routing, with a maximum
decrease of 20%. The Energy 2 algorithm gives
only an average 4.1% improvement.

4.4.3 Mobile Topology

Mobility was simulated by moving nodes at a rate
of 1 m per second, typical of a person’s walking
speed. The angle of direction of movement was
random, according to a Uniform(−1.0, 1.0)∗π dis-
tribution. On reaching the boundary of the area,
a node’s direction of movement would be reflec-
ted.

Exhaustion Time

With mobile nodes, topology changes are frequent
and affect average node lifetime considerably.
There is no algorithm that in all runs gave an
improvement over Normal routing, however, the
Energy 1 algorithm yields a 3.3% improvement
on average. The Energy 2 algorithm does not
improve node lifetime in this case.

Figure 22: Average exhaustion time for mobile
nodes: the Energy 1 algorithm yields a 3.3% av-
erage improvement.

Level at 300s

Figure 23: Average energy level after 300 s for
mobile nodes: on average no benefit is gained
from either of the Energy algorithms.

The average energy level after 300 s (Figure 23)
is not on average changed by either of the Energy
algorithms from the values obtained using Nor-
mal routing. This is not of particular concern,
given that with all nodes being mobile, the key
node exhaustion effect is not as prevalent com-

29

Collaborative Power Management in Wireless Mesh Networks

pared to a static topology, resulting in less gain
being obtained by using energy routing.

Figure 24: S.D. of energy levels after 300 s for
mobile nodes: the Energy 1 algorithm gives (on
average) a 5.5% lower S.D. than Normal routing.

In terms of the S.D. in energy levels after 300
s (Figure 24), the Energy 1 algorithm is again
superior, decreasing the S.D. by an average of
5.5%, up to a maximum of 8.1%.

4.4.4 Discussion of Algorithms

The results above indicate, as expected, that in
all respects an energy-aware routing protocol out-
performs a purely latency-based scheme. For node
exhaustion time, it is of note that the better al-
gorithm is dependent on whether nodes are sta-
tionary or mobile. In the former case the Energy
2 algorithm outperforms the Energy 1 algorithm,
whilst in the latter it is the opposite.

For all other tests the Energy 1 algorithm outper-
forms the Energy 2 scheme. The data show that
energy-aware routing does provide real improve-
ments in the standard deviation of node power
levels at an arbitrary point during the network’s
lifetime, as was hoped for in the original proposal,
in addition to the increase in average node ex-
haustion time described above.

4.4.5 Reliability of Simulation

It should be noted that the comparison of differ-
ent ad hoc network routing algorithms has been
questioned (see [3]), due to their significantly dif-
ferent methods of operation (and the implement-
ation of these). The comparisons presented here
are for one (custom) protocol, with an energy-
aware layer constructed above it, using a common
simulator. This therefore allows a fair analysis to
be performed as to whether energy-aware routing
is worthwhile.

4.4.6 Goals Achieved

The aims of the project have been achieved:

• All core components have been completed.

• Several extensions, namely, bitmapped ARQ,
one way hashes of routing data, and rudi-
mentary collision avoidance, have been im-
plemented.

• Two different algorithms for energy-aware
routing have been compared with purely
latency based routing, using the same un-
derlying protocol.

The only work that was not completed was the re-
mainder of the extensions, as was expected (these
were proposed for implementation if time allowed).

30

David Cottingham

5 Conclusions

5.1 Outcome

The project has been a success: all acceptance
criteria given in the proposal have been achieved,
and several extensions implemented.

As evidenced by the evaluation, using an energy-
aware routing protocol can result in worthwhile
improvements in mesh network lifetime, up to
6% in certain cases. Depending on whether the
mesh network is composed of mobile or station-
ary nodes, a different energy-aware algorithm should
be used: the Energy 1 algorithm performs better
with mobile nodes.

It is highly likely that the energy-aware metric
calculation algorithms presented could be refined
to have a much greater impact: with greater amounts
of time and better automated results collection it
would be interesting to investigate this.

5.2 Further Work

Mobile ad hoc networks are still very much an
active research area, with security, energy man-
agement, and scalability work ongoing. For the
protocol implemented in this project, the follow-
ing are possible extensions:

• Investigating trust systems for open
MANETs: various protocols have been
suggested using hash chains (e.g. TESLA [24])
to prove the authenticity of a datagram’s
source in an open network. Adding support
for such networks would mean the protocol
was suitable for ad hoc peer to peer (P2P)
systems.

• Co-ordinate systems for mesh: tradi-
tional peer to peer systems on wired net-
works are subject to a high degree of churn,
similar to the constantly changing topology
of a MANET. Research has been conduc-
ted on co-ordinate systems for P2P [25],
with a view to enabling nodes to access con-
tent on the nearest host to them. Apply-
ing such co-ordinate systems to mesh net-
works could assist in decreasing the energy
resources used, by relating the distances in
the co-ordinate space to the energy quotas
system.

• Hardware level power saving: the PEN
system [33] made use of layer 2 techniques
to reduce the power consumption of nodes
by having defined hibernation periods. This
does, however, increase the latency of the
links in the network. Implementing such
power saving features in the protocol from
this project would certainly be worthwhile,
although their use would depend on the
latency that could be tolerated.

• Zone routing and wired networks: modi-
fying the routing protocol to have a hier-
archical address space, to allow routing to
different zones [36], is possible, but would
tend to imply the existence of gateways to
each zone. In the same way some sort of
gateway paradigm is needed for interfacing
with wired networks. Reliability and en-
ergy management at the gateway would make
worthwhile research.

31

Collaborative Power Management in Wireless Mesh Networks

32

David Cottingham

6 Appendix A: Survey of Ad

Hoc Routing Protocols

A more in depth analysis can be found in the
survey by Royer and Toh [28], but specific details
are given in the references for each protocol:

Table-Driven:

• DSDV: Destination-Sequenced Distance Vec-
tor [22]. Each node maintains a table of
hop counts to all other destinations in the
network. Routing information is broadcast
periodically in dedicated packets. This treats
all nodes equally, but has a relatively high
routing data overhead.

• CGSR: Cluster-Head Gateway Switch Rout-
ing [4]. Based on DSDV, but groups of
nodes (clusters) elect a control node that al-
locates channel access and bandwidth. Rout-
ing is via inter-cluster gateway nodes. This
scheme has a very high overhead in cal-
culating gateway/head nodes if the topo-
logy is changing very frequently. It also
places more of a processing workload on the
cluster-heads and gateways, and has them
as key single points of failure.

• WRP: Wireless Routing Protocol [18]. Sim-
ilar again to DSDV, but to avoid the “count
to infinity” problem, uses the second-to-last
hop for a destination as the attribute of a
route rather than a sequence number, to
avoid loops. This provides faster route con-
vergence on network partition.

Source-Driven:

• AODV: Ad-hoc On-demand Distance Vec-
tor [23]. Nodes only store routes that are
currently in use. When a node wishes to
communicate with another, if it does not
have a valid route in its table it broadcasts
a route request (RREQ) packet, which is
then propagated throughout the network.
When the destination receives the RREQ,
it unicasts a route reply (RREP) packet
back towards the source. Intermediate nodes
maintain state as to which neighbour they
received the corresponding RREQ from first,
and unicast the RREP back to that neigh-
bour. The source therefore obtains a route
that is set up with the destination as the

root. This method has the problem of high
route-setup latency.

• DSR: Dynamic Source Routing [13]. When
a route is required, the source node broad-
casts a request, containing its own address,
and that of the destination. This is re-
broadcast by all its neighbours, each adding
their own address to the list of hops com-
posing the route in the request packet. When
the packet reaches the destination, it will
contain the full route as a list of hops; the
destination simply unicasts this data back
to the source. This implies that for a large
number of hops routing packet sizes will be
significant. On network partition a large
number of request messages are also likely,
as new routes will need to be set up, rather
than neighbours having multiple entries for
a destination in their tables as in table-
driven algorithms. Given that for each new
destination, regardless of similarity to a pre-
viously learnt route, a node will cause network-
wide broadcasts of requests, power usage
will be inefficient. In a network where the
topology rarely changes, the routing over-
head for DSR can be as low as zero, once
the network has stabilised. However, the
same could be said for source-routed wired
network protocols.

• TORA: Temporally Ordered Routing Al-
gorithm [21]. A distributed link-reversal al-
gorithm that relies on a synchronised clock
(such as that provided by the Global Po-
sitioning System), to order the protocol’s
reaction to topology changes. During route
creation or maintenance phases, each node
is assigned a height metric which determ-
ines the direction of flow in a directed acyc-
lic graph (DAG) rooted at the destination
of the route. The algorithm’s strength is
that in very large networks topology changes
are communicated only to a small set of
nodes local to the change. However, this
requires the mesh to be dense. An addi-
tional problem is that the protocol has the
potential for “link flapping” as nodes erase
routes and discover new ones based on each
other’s tables, but convergence will eventu-
ally be achieved.

33

Collaborative Power Management in Wireless Mesh Networks

34

David Cottingham

7 Appendix B: Additional Im-

plementation Details

7.1 Detailed Packet Format

Source
Destination
Last Hop
Next Hop
Last Choice

Sequence Number IDSource Conn.
Num

Routes Quota FlagsBitmap

Timestamp

Origin 1
Source 1

Route 1

Route 6
Origin 6

DeltaTime

Metric 1 Metric 2

Source 6

Dest. Conn. ID

Metric 3 Metric 4

Metric 5 Metric 6

32 Bits

Data

Routing MAC

Figure 25: The format of the packets used in the
protocol. each row represents 32 bits. There are
6 sets of three routing data fields, only numbers
1 and 6 are shown. The data field is of variable
length.

Source, Destination, Last Hop, Next Hop,
Last Choice: contain the 32 bit addresses
of the appropriate nodes.

Sequence Number: a 16 bit number identify-
ing the position of the packet in the overall
stream being transmitted.

Destination Connection ID: an 8 bit identi-
fier, equivalent to a TCP destination port
number.

Source Connection ID: the source “port” num-
ber.

Number of Routes: the number of routing
entries carried in the packet (ranging from
0 to 6).

Quota: 8 bits specifying the transmission quota
the next hop node has on the last hop node.

Bitmap: 5 bits, set to indicate which packets
in the last chunk (series of five) have been
received, and which have not (used for bit-
mapped ARQ).

Flags: 9 bits. Please see below for a complete
listing.

Delta Time: 6 bits storing the time elapsed
from the packet’s timestamp and it being
re-transmitted by the last hop node.

Timestamp: 32 bits, set by the original sender
and unchanged by
subsequent hops.

Route x, Origin x, Source x: three 32 bit
fields, holding the addresses needed for a
routing entry. There are 6 sets of these
fields, although not all are required to be
filled. See section 3.2.2 for details.

Metric x: six 16 bit fields, each specifying the
metric from the last hop node to the tar-
get destination in the corresponding Route
field (e.g. the route entry to destination
Route 1 has a metric of Metric 1).

Routes MAC: a 96 bit Message Authentica-
tion Code hash of the routing data in the
packet, calculated using a shared secret key,
(see section 3.3.2).

Data: a variable length field, used to carry ap-
plication level data.

Flags

The following 1 bit fields are located in the area
marked Flags in Figure 25:

Priority: set if the packet should be given pri-
ority in the transmission or routing queues
(provides a crude method of rating the im-
portance of traffic).

35

Collaborative Power Management in Wireless Mesh Networks

Ack: set if the packet contains an acknowledge-
ment, i.e. if the bitmap field should be read
by the destination.

Multicast: set if the packet is for multicast (un-
implemented – for future use).

Encrypted: set if the packet data is encryped
(unimplemented – encryption is currently
assumed to take place at application level,
but could easily be implemented in the pro-
tocol).

Routing Data: set if the packet contains any
type of routing data (route entries, or des-
tination unreachable messages), or if the
packet is a plea.

Route Query: set if the packet is a plea for a
route to be supplied.

Destination Unreachable: set if the source field
of the packet is not reachable from the last
hop node (see section 3.2.5).

Enough Resources: if unset in a destination
unreachable message, indicates that there
was an insufficient quota on one of the nodes
on the route to forward the packet.

First Packet: set if this is the first packet to be
sent on this connection (see section 3.1.2).

7.2 Selfishness in Open Networks

Open networks, i.e. those with unrestricted mem-
bership, differ from closed networks in that there
is no a priori trust available. Nodes may be
trusted, or they may mount active or passive at-
tacks on the mesh. The protocol designed in this
project has not attempted to solve the security
problems of open networks, but this section is
included to justify this simplification.

Passive attacks are those in which a node does
not act as a router in the network. This can
result in “black holes” in the network, causing
network partition. Such attacks can be serious if
there are collaborating nodes that carry out this
attack.

Active attacks include spoofing, and reporting
incorrect information, such as energy levels or
quotas, to avoid the perpetrator being called upon
to route data.

Attempting to ensure that routing is somehow
“secure” in such an open network is complex, and

an active area of research. Credit based systems
[8] appear to be a possible solution, providing in-
centives for principles to be honest, but others in-
volving decentralised public key management [2]
have been proposed.

7.3 Event List & Time-outs

A significant part of any network protocol is its
usage of time-outs, and therefore its concept of
events. In simulating the protocol under OPNET,
the discrete event list management was handled
by the simulation software itself. However, were
the protocol to be implemented outside the sim-
ulator, event/timeout management could be per-
formed using a delta list data structure as de-
scribed by Comer and Stevens in [5]. Briefly sum-
marised, this system maintains a linked list of
events that are scheduled to take place, ordered
by their relative due times. This is efficient as
the periodic timer need only decrement the time
of the event at the head of the list. When the
time in the first item reaches zero, the event is
executed, and the next event moves to the head
of the list.

36

David Cottingham

8 Appendix C: Values of Simulation Constants

The following details the values of the constants used in the simulation that have been mentioned
throughout the text. The below is taken directly from the C source file – any constants that relate
to time are in units of milliseconds.

/* Estimate of average RTT to initially give a connection */
#define RTT ESTIMATE 40

/* Number of RTTs the node waits for a packet from the destination
before a time out occurs. */
#define TIMEOUT RTT MULTIPLE 2

/* Number of RTTs the node should wait for an ACK before starting resend.*/
#define TIMEOUT RESEND RTT MULTIPLE 2 10

/* Maximum amount of simulation time that a connection can go without
receiving a packet before it is deemed unused and can be freed by the
queue allocator. */
#define MAX IDLE TIME 80

/* Maximum amount of time before ACK gets sent: it may be that before
this expires the ACK can be piggybacked on a data bearing packet, but in
the case it cannot, this time-out will expire and a non-data bearing ACK
will be sent. */ 20

#define TIME TO WAIT FOR CARRIER 10

/* The maximum number of repeat transmissions allowed for one chunk
before the route the connection has been using is blackmarked. Value is
one more than one entire chunk. */
#define MAX RETRIES PER CHUNK 6

/* The maximum time period between forced “beacon” signals from nodes,
if they have not sent any other packets in the meantime (the timeout
should execute and test a flag to see if a packet has been sent. If so 30

then no action need be taken. If not, a beacon packet is transmitted. */
#define T BEACON 50

/* The time for which a node should not allow a blackmarked route to be
updated by routes propagated for others. This is twice T BEACON, to
allow network convergence. */
#define T HOLD TIME 70

/* Above what fractional threshold of change in a route’s metric should
a routing update be transmitted urgently. */ 40

#define THRESHOLD FRACTION METRIC UPDATE 0.5

/* The amount of time a route that has its metric set to 999 can be kept
in a routing table entry list, before it is deleted. This time is
dependent on how long it will take to update all the neighbours that
this route is no longer valid. */
#define T KEEP DEFUNCT ROUTES 45

37

Collaborative Power Management in Wireless Mesh Networks

/* Total number of pleas likely to be needing to be kept track of at one
time in the pleas hash table. */ 50

#define PLEAS TABLE SIZE 20

/* The maximum time for which a packet for a destination should be
continuously re-queued into the routing queue whilst we wait for our
neighbours to respond to our plea. */
#define T ROUTE PLEA WAIT 80

/* The maximum amount of time for which, after a plea has expired (i.e.
no route could be found), packets to the same destination will simply be
dropped, without a new plea being sent. This is dependent on rate of 60

topology change. */
#define T HOLD PLEA FAILURE 100

/* The fractional change in estimated node quota above which route
metrics are recalculated. */
#define QUOTA METRIC UPDATE THRESHOLD FRACTION 0.1

/* The fraction by which a quota may change on quota reset below which
no quota update packet is sent. */
#define QUOTA DELTA FRACTION FOR UPDATE 0.1 70

/* The interval between quota resets. Should be the same as T BEACON. */
#define T QUOTA RESET INTERVAL 80

/* The initial estimate of this node’s quota on another node. Should be
QUOTA ZERO THRESHOLD * 4 */
#define START QUOTA ESTIMATE 20

38

David Cottingham

9 Appendix D: Simulator Finite State Machine

Figure 26: The finite state machine representing the protocol implemented in the OPNET simulator.
Each state’s name is indicative of its function, with the conditions causing the transition above their
arcs.

39

Collaborative Power Management in Wireless Mesh Networks

40

David Cottingham

10 Appendix E: Sample Code

The below is the code used for quota management and metric calculation based on quotas on each
node. Each function should be self explanatory.

void update quota estimate(Packet* packet to processx) {
/* Updates our estimate of our quota on the last hop node of the packet. */

int srcQuotaAddress;
int quotaq;
struct neighbour* neighbourQuotaToUpdatey;
char hashStringQuotay[4];

op pk nfd get(packet to processx, "last_hop", &srcQuotaAddress);
op pk nfd get(packet to processx, "quota", "aq); 10

//itoa(srcQuotaAddress, hashStringQuotay, 3);
sprintf(hashStringQuotay, "%d", srcQuotaAddress);

neighbourQuotaToUpdatey = prg string hash table item get(neighbours table,
hashStringQuotay);

if (neighbourQuotaToUpdatey != PRGC NIL) {
neighbourQuotaToUpdatey−>ourQuotaEstimate = quotaq;

}
else { 20

printf("srcQuotaAddress = %d", srcQuotaAddress);
op sim end("SIMULATION TERMINATED:", "Entry not found in neighbours

table", "in update_quota_estimate()", "(PROBABLY called from

route state).");
}
if (debug level >= 4) printf("\nAbout to call reCalcMetricsBasedOnQuota() in

update_quota_estimate().\n");
reCalcMetricsBasedOnQuota(hashStringQuotay);

}
30

void decrease quota estimate(Packet* packet to process) {
/* Decreases our esimate of our quota on a neighbour node as we are
sending a packet. */
int destQuotaAddress;
int nxHopQuotaAddress;
struct neighbour* neighbourQuotaToUpdatex;
char hashStringQuotax[4];

op pk nfd get(packet to process, "next_hop", &nxHopQuotaAddress);
op pk nfd get(packet to process, "destination", &destQuotaAddress); 40

sprintf(hashStringQuotax, "%d", nxHopQuotaAddress);
/* Only decrease the quota if this node is expected to transmit the
packet on - if not they will incurr no transmission energy usage. */
if (nxHopQuotaAddress != destQuotaAddress) {

if ((neighbourQuotaToUpdatex = prg string hash table item get(neighbours table,
hashStringQuotax)) != PRGC NIL) {

if (neighbourQuotaToUpdatex−>ourQuotaEstimate > 0) neighbourQuotaToUpdatex−>

ourQuotaEstimate = neighbourQuotaToUpdatex−>ourQuotaEstimate

41

Collaborative Power Management in Wireless Mesh Networks

− QUOTA PER PACKET COST; 50

reCalcMetricsBasedOnQuota(hashStringQuotax);
}

}
}

void update quota on this node(Packet* packet to process upd) {
/* Decreases the quota of the last hop node of the packet on us (this node). */

int lastHopQuotaAddress;
struct neighbour* neighbourQuotaToUpdate upd; 60

char hashStringQuota upd[4];

op pk nfd get(packet to process upd, "last_hop", &lastHopQuotaAddress);
sprintf(hashStringQuota upd, "%d", lastHopQuotaAddress);

neighbourQuotaToUpdate upd = prg string hash table item get(neighbours table,
hashStringQuota upd);

neighbourQuotaToUpdate upd−>theirQuota = neighbourQuotaToUpdate upd−>

theirQuota − QUOTA PER PACKET COST;
} 70

int insert quota for next hop(Packet* pk to insert quota) {
/* Inserts the next hop node’s quota on this node into the packet. */

int nxHopAddr;
char hashString[4];
struct neighbour* nxHopQuota;
int quota to ins;

op pk nfd get(pk to insert quota, "next_hop", &nxHopAddr); 80

sprintf(hashString, "%d", nxHopAddr);

nxHopQuota = prg string hash table item get(neighbours table, hashString);
quota to ins = nxHopQuota−>theirQuota;

return quota to ins;
}

void reCalcMetricsBasedOnQuota(char* hashStringQuotaUpdatedz) {
/* Decides whether the updated quota has undergone a significant 90

enough change to warrant updating all the route metrics associated
with the node the quota is concerned with. */

struct neighbour* neighbourQuotaUpdatedz;
int delta quota;
int boolUpdateMetrics = 0;
PrgT List* keysList;
int i = 0, j = 0;
char* keyRemoved;
List* routeList; 100

int lengthList;
struct route* route examining;
int neighbourAddress;

42

David Cottingham

neighbourQuotaUpdatedz = prg string hash table item get(neighbours table,
hashStringQuotaUpdatedz);

/* Ensures that the difference in quota is positive for the
fractional test below. */
delta quota = neighbourQuotaUpdatedz−>ourQuotaEstimate

− neighbourQuotaUpdatedz−>ourQuotaLastMetricUpdate; 110

if (delta quota < 0) delta quota = 1 − delta quota;

if ((neighbourQuotaUpdatedz−>ourQuotaLastMetricUpdate > 0) &&
((delta quota/neighbourQuotaUpdatedz−>ourQuotaLastMetricUpdate) >

QUOTA METRIC UPDATE THRESHOLD FRACTION)) {
/* Update all routes associated with this neighbour,
as the quota has changed substantially since the last
metrics update. */
boolUpdateMetrics = 1;

} 120

if ((neighbourQuotaUpdatedz−>ourQuotaLastMetricUpdate == 0) &&
(neighbourQuotaUpdatedz−>ourQuotaEstimate > QUOTA ZERO THRESHOLD)) {
/* The quota for this neighbour was previously 0, but has now been updated
above a threshold value, so update routes. If it were 0 and the update is
below the threshold it is not worth updating the routes to make them valid
again. */
boolUpdateMetrics = 1;

}
130

if (boolUpdateMetrics == 1 && use battery routing == 1) {

neighbourAddress = neighbourQuotaUpdatedz−>address;

/* Update all routes associated with this neighbour. */
keysList = prg string hash table keys get(routing table);

while (i < op prg list size(keysList)) {
if (debug level == −1) printf("\nrecalcMetricsBasedonQuota().");
keyRemoved = (char*)op prg list remove(keysList,i); 140

routeList = (List*)prg string hash table item get(routing table, keyRemoved);
lengthList = op prg list size(routeList);
for (j=0; j<lengthList; j++) {

route examining = op prg list access(routeList, j);
if (route examining−>nextHop == neighbourAddress) {

/* This route uses the neighbour that has had its
quota updated, so update the entry and resort the list. */
route examining−>metric = metric calculator(route examining−>

metric, neighbourQuotaUpdatedz−>ourQuotaLastMetricUpdate,
neighbourQuotaUpdatedz−>ourQuotaEstimate); 150

if (route examining−>metric == 0) {
printf("\nneighbourQuotaUpdatedz->ourQuotaLastMetricUpdate = %d,

neighbourQuotaUpdatedz->ourQuotaEstimate = %d",
neighbourQuotaUpdatedz−>ourQuotaLastMetricUpdate,
neighbourQuotaUpdatedz−>ourQuotaEstimate);

op sim end("SIMULATION TERMINATED", "Metric is

0.", "See console", "x");

43

Collaborative Power Management in Wireless Mesh Networks

}
route examining−>updateTime = (int)op sim time();
route examining−>listInserter = 1818; 160

op prg list insert(urgent route list, route examining,
OPC LISTPOS TAIL);

}
}
op prg list sort(routeList, compRouteMetrics);

}

/* Deallocate the elements on the list */
op prg list free (keysList);
/* Deallocate the list itself */ 170

op prg mem free (keysList);
/* The quota used for the last metrics update for this neighbour must be
changed to the current quota. */
neighbourQuotaUpdatedz−>ourQuotaLastMetricUpdate =

neighbourQuotaUpdatedz−>ourQuotaEstimate;
}

}

int quota remaining(Packet* packet to test rem) {
/* Tests to see whether the last hop of the packet has sufficient quota on this node to 180

have the packet relayed. Returns 1 if so, otherwise returns 0. */

int last hop v;
char hashStringq[4];
struct neighbour* neighbour to test rem;

/* If not using battery routing quota values do not matter. */
if (use battery routing == 0) return 1;

neighbour to test rem = prg string hash table item get(neighbours table, hashStringq); 190

if (neighbour to test rem−>theirQuota < QUOTA PER PACKET COST) return 0;
else return 1;

}

int metric calculator(int old metric, int old quota, int new quota) {
/* Calculates a new route metric based on the old metric and the change in neighbour
quota. Old Metric, m. New metric, n. Latency, l. Old quota, q. New quota, r.
m = l * (1/q + 1)
n = l * (1/r + 1)
l = m/(1 + 1/q) 200

n = (m/(1 + 1/q))(1/r + 1)
*/
int new metric = old metric;
int latency;
double quotaFrac = old quota/INITIAL POWER LEVEL;

/* Without battery routing we only distribute latencies, therefore the old metric will
be a time, not a composite that must be re-calculated, as with battery routing enabled. */
if ((use battery routing == 1) && (old quota != 0) && (old metric !=

INFINITE METRIC) && (battCalcMethod == 1)) latency = (int) 210

(old metric / (1.0 + (INITIAL POWER LEVEL / 2.0)/old quota));

44

David Cottingham

if ((use battery routing == 1) && (old quota != 0) && (old metric !=
INFINITE METRIC) && (battCalcMethod == 2)) latency = (int)
(old metric / (2.0 − quotaFrac));

if ((use battery routing == 1) && (old quota <= QUOTA ZERO THRESHOLD)
&& (old metric == INFINITE METRIC)) {

/* Cannot calculate the latency from the old metric if this was set to
INFINITE METRIC, so use initial estimate. This would be due to a quota
below the threshold. */
latency = RTT ESTIMATE; 220

}
if ((use battery routing == 1) && (old quota > QUOTA ZERO THRESHOLD)

&& (old metric == INFINITE METRIC)) {
/* Cannot calculate the latency from the old metric if this was set to
INFINITE METRIC, so use initial estimate. This would be due to a latency
that was infinite. */
latency = INFINITE METRIC; /* This is for clarity - it will have no effect. */
/* This causes metric from latency and quota() to return a metric
of INFINITE METRIC, as desired, as this route is still infinite latency. */
new quota = 0; 230

}
if ((use battery routing == 1) && (old quota == 0) && (old metric !=

INFINITE METRIC)) {
/* Should not get here: any neighbour with zero quota should have a metric of
INFINITE METRIC already. */
if (debug level > 0) op sim message("WARNING: In metric_calculator(),

old_quota == 0 with old_metric != INFINITE_METRIC", "Strange effects

may result! (setting latency = old_metric)");
latency = old metric;

} 240

if (use battery routing == 0) { latency = old metric; }

new metric = metric from latency and quota(latency, new quota);

return new metric;
}

int metric from latency and quota(int latency, int quota to use) {
/* Calculates the metric to use from the latency and the quota to use. (Simple, but
provides one function to update). */ 250

int metric to return;
if ((use battery routing == 1) && (quota to use != 0) && (battCalcMethod == 1))

metric to return = latency * (int)(1.0 + (INITIAL POWER LEVEL/2.0)/quota to use);
if ((use battery routing == 1) && (quota to use != 0) && (battCalcMethod == 2))

metric to return = latency * (int)(2.0 − quota to use/INITIAL POWER LEVEL);
if ((use battery routing == 1) && (quota to use == 0)) {

/* If the quota to use is 0 then the metric must be INFINITE METRIC. */
metric to return = INFINITE METRIC;

} 260

if (use battery routing == 0) metric to return = latency;
if (metric to return > INFINITE METRIC) {

metric to return = INFINITE METRIC;
}

45

Collaborative Power Management in Wireless Mesh Networks

return metric to return;
}

void quotas reset() { 270

/* Executed on a self interrupt (code 4). Resets the quotas for all neigbours of this
node to a proportional share of the total power remaining on this node. */

int neighbours table size = 0;
int quota to assign = 0;
List* neighbours table list;
struct neighbour* neighbour updating;
int i = 0;
int delta quota = 0;

280

neighbours table list = prg string hash table values get(neighbours table);
neighbours table size = op prg list size(neighbours table list);

/* Prevent division by 0 when no neighbours are present, or have yet been found. */
if (neighbours table size <= 0) neighbours table size = 1;
quota to assign = (power level − RESIDUAL POWER LEVEL) /

neighbours table size;
op stat write(quotaResetValue stathandle, quota to assign);
neighbours table size = op prg list size(neighbours table list);

290

/* Assign this to all neighbours. */
for (i=0; i < neighbours table size; i++) {

neighbour updating = op prg list access(neighbours table list, i);
delta quota = neighbour updating−>theirQuota − quota to assign;
if (delta quota < 0) delta quota = −delta quota;
if (((neighbour updating−>theirQuota == 0) && (delta quota >

QUOTA ZERO THRESHOLD)) | | ((neighbour updating−>

theirQuota != 0) && ((delta quota/neighbour updating−>

theirQuota) > QUOTA DELTA FRACTION FOR UPDATE))) { 300

sendQuotaUpdate(neighbour updating−>address, quota to assign);
}
neighbour updating−>theirQuota = quota to assign;
if (debug level >= 4) printf("Quota assigned to %d was %d",

neighbour updating−>address, neighbour updating−>theirQuota);
}

/* Destroy the old quota reset timeout, if it exists, and create a new one. The
interrupt code understood by process interrupts() is 4. */
if ((op ev pending(quota reset timeout)) && (op ev time(quota reset timeout) <= 310

op sim time())) op ev cancel(quota reset timeout);
quota reset timeout = op intrpt schedule self((op sim time() +

T QUOTA RESET INTERVAL), 4);
}

void sendQuotaUpdate(int neighbourAddress, int new quota) {
/* Transmits a routing update packet to a specific node to cause its estimate of its
quota on this node to be updated. These packets are sent due to greater than
QUOTA DELTA FRACTION FOR UPDATE fractional changes in quotas controlled

46

David Cottingham

by this node. */ 320

Packet* pk to send;

pk to send = op pk create fmt("AA-wbatt_pkt_format");
op pk nfd set(pk to send, "source", thisNodeAddress);
op pk nfd set(pk to send, "destination", neighbourAddress);
op pk nfd set(pk to send, "last_hop", thisNodeAddress);
op pk nfd set(pk to send, "last_choice", thisNodeAddress);
op pk nfd set(pk to send, "seq_number", 0);
op pk nfd set(pk to send, "ack", 0); 330

op pk nfd set(pk to send, "bitmap_ack", 0);
op pk nfd set(pk to send, "dest_unreach", 0);
op pk nfd set(pk to send, "route_query", 0);
op pk nfd set(pk to send, "routing_data", 1);
op pk nfd set(pk to send, "dest_unreach", 0);
op pk nfd set(pk to send, "num_routes", 0);
/* Note that this is for clarity only: in the routing algorithm the next hop is assigned
then the quota for that hop is inserted. Therefore this relies on the lowest metric
and route to the neighbour being transmitting directly to it, which may not always be the
case. . . but for simplicity I assume that it is. The pathological case is when this 340

node has 0 quota on the neighbour node, causing the packet to take a different route.
This is, however, unlikely. */
op pk nfd set(pk to send, "quota", new quota);

op subq pk insert(ROUTING QUEUE, pk to send, OPC QPOS TAIL);
}

47

Collaborative Power Management in Wireless Mesh Networks

48

David Cottingham

Bibliography

[1] F. Bennett, D. Clarke, J. Evans, A. Hopper,
A. Jones, and D. Leask. Piconet – embedded
mobile networking. IEEE Personal Commu-
nications, 4(5):8–15, October 1997.

[2] S. Capkun, L. Buttyan, and J. Hubaux. Self-
organized public-key management for mo-
bile ad hoc networks. In Proc. ACM Interna-
tional Workshop on Wireless Security, WiSe
2002., 2002.

[3] D. Cavin, Y. Sasson, and A. Schiper. On
the accuracy of manet simulators. In Pro-
ceedings of the second ACM international
workshop on Principles of mobile computing,
pages 38–43. ACM Press, 2002.

[4] C. Chiang, H. Wu, W. Liu, and M. Gerla.
Routing in clustered multihop, mobile wire-
less networks. In Proc. IEEE SICON’97,
pages 197–211, April 1997.

[5] D. Comer and D. Stevens. Internetworking
with TCP/IP Volume 2. Addison-Wesley,
1995.

[6] M. Conti, G. Turi, G. Maselli, J. Crow-
croft, P. Michiardi S. Ostring, R. Molva,
J. Costa Requena, I. Defilippis, S. Giordan,
and A. Puiatti. Mobileman: Archi-
tecture, protocols and services, deliver-
able d5. IST 2001-38113, CNR, Cam-
bridge University, Eurecom, HUT, SUPSI,
September 2003. http://cnd.iit.cnr.it/
mobileMAN/pub-deliv.html.

[7] S. Corson and J. Macker. Mobile ad hoc
networking (manet): Routing protocol per-
formance issues and evauluation considera-
tions. RFC 2501, IETF, January 1999.

[8] J. Crowcroft, R. Gibbens, F. Kelly, and
S. Ostring. Modelling incentives for collab-
oration in mobile ad hoc networks. In Proc.
of WiOpt’03, 2003.

[9] G. Fairhurst and L. Wood. Advice to link
designers on link automatic repeat request
(ARQ). RFC 3366, IETF, August 2002.

[10] Laura Marie Feeney. Ad hoc network-
ing & IEEE 802.11. http://www.sics.se/

~lmfeeney/snus_802.11.pdf.

[11] Hedrick. Routing information protocol.
RFC 1058, IETF, January 2001.

[12] Y. Hu, D. Johnson, and A. Perrig. Sead:
Secure efficient distance vector routing in
mobile wireless ad hoc networks. In Fourth
IEEE Workshop on Mobile Computing Sys-
tems and Applications (WMCSA ’02), pages
3–13, June 2002.

[13] D. Johnson, D. Maltz, and J. Broch.
DSR The Dynamic Source Routing Protocol
for Multihop Wireless Ad Hoc Networks,
chapter 5, pages 139–172. Addison-Wesley,
2001.

[14] M. Kuhn and R. Anderson. Tamper resist-
ance – a cautionary note. In Proceedings of
the Second Usenix Workshop on Electronic
Commerce, pages 1–11, Nov 1996.

[15] K. Dantu M. Maleki and M. Pedram. Power-
aware source routing protocol for mobile ad
hoc networks. In Proceedings of the 2002
international symposium on Low power elec-
tronics and design, pages 72–75. ACM Press,
2002.

[16] L. Miller. Simulation model for the
AODV MANET routing protocol.
http://w3.antd.nist.gov/wctg/manet/

prd_aodvfiles.html.

[17] C. Moss. The nodes revolution. IEE Com-
munications Engineer, 2(1):18–21, 2004.

[18] S. Murthy and J. J. Garcia-Luna-Aceves. An
efficient routing protocol for wireless net-
works. Mobile Networks and Applications,
1(2):183–197, 1996.

[19] W. Odom. Cisco CCNA, Exam #640-507
Certification Guide. Cisco Press, 2001.

[20] P. Papadimitratos and Z.J. Haas. Secure
routing for mobile ad hoc networks. In Proc.
of SCS Communication Networks and Dis-
tributed Systems Modeling and Simulation
Conference 2002, pages 27–31, 2002.

[21] V. D. Park and M. S. Corson. A highly ad-
aptive distributed routing algorithm for mo-
bile wireless networks. In INFOCOM (3),
pages 1405–1413, 1997.

[22] C. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector rout-
ing (DSDV) for mobile computers. In ACM
SIGCOMM’94, pages 234–244, 1994.

49

Collaborative Power Management in Wireless Mesh Networks

[23] C.E. Perkins and E.M. Royer. Ad-hoc on-
demand distance vector routing. In Proc.
2nd IEEE Wksp. Mobile Comp. Sys. and
Apps., pages 90–100, February 1999.

[24] A. Perrig, R. Canetti, J. Tygar, and D. Song.
The tesla broadcast authentication protocol.
RSA CryptoBytes, 5(Summer), 2002.

[25] M. Pias, J. Crowcroft, S. Wilbur, T. Har-
ris, and S. Bhatti. Lighthouses for scalable
distributed location. In 2nd International
Workshop on Peer-to-Peer Systems (IPTPS
’03), feb 2003.

[26] B. Preneel. Preimage resistance.
http://www.win.tue.nl/~henkvt/

preimagev3.pdf.

[27] K. Rayner. Mesh wireless networking.
IEE Communications Engineer, 1(5):44–47,
2003.

[28] E. Royer and C. Toh. A review of current
routing protocols for ad-hoc mobile wireless
networks. IEEE Personal Communications,
pages 46–55, April 1999.

[29] E. Schenk and D. Bernstein. SYN cookies
– mailing list archive. http://cr.yp.to/

syncookies/archive.

[30] S. Singh, M. Woo, and C.S. Raghavendra.
Power aware routing in mobile ad hoc net-
works. In Proc. 4th annual ACM/IEEE con-
ference on Mobile computing and network-
ing, pages 181–190. ACM Press, 1998.

[31] I. Sommerville. Software Engineering.
Addison-Wesley, 1995.

[32] F. Stajano. Security for Ubiquitous Comput-
ing. John Wiley and Sons, 2002.

[33] R. Stefanova, G. Girling, J.L.K. Wa, and
P. Osborn. The design and implementa-
tion of a low power ad hoc protocol stack.
In Proc. IEEE Wireless Communications
and Networking Conference, volume 3, pages
1521–1529, September 2000.

[34] C.K. Toh. Maximum battery life routing
to support ubiquitous mobile computing in
wireless ad hoc networks. IEEE Communic-
ations Magazine, 39(6):138–147, June 2001.

[35] G. Xylomenos, G. C. Polyzos, P. Mähonen,
and M. Saaranen. TCP performance issues
over wireless links. IEEE Communications
Magazine, 39(4):52–58, 2001.

[36] M. Younis, M. Youssef, and K. Arisha.
Energy-aware management for cluster-based
sensor networks. Computer Networks,
43(5):649–668, 2003.

50

Proposer: David Cottingham

User ID: dnc25

College: Churchill

CST Part II Project Proposal

Collaborative Power Management in

Wireless Mesh Networks

October 2003

Project Originator: D. N. Cottingham

Resources Required: Please see the accompanying

Project Resource Form

Project Supervisor: Dr. J. K. Fawcett

Signature:

Director of Studies: Ms. C. H. Northeast

Signature:

Overseers: Prof. J. Crowcroft

Dr. K. Moody

Collaborative Power Management in Wireless Mesh Networks

Introduction

In the last two years the prevalence of wireless networking technologies has increased dramatically.
Previously infrared was the mainstream technology used to connect portable devices, with low
bandwidths, and over a limited range: it is now commonplace to find an 802.11b “WiFi” transceiver
in laptops and mobile telephones. Such explosive growth in wireless communication has found many
applications where nodes are required to be mobile, or where fixed cabling is undesirable.

Many wireless devices use a paradigm best illustrated by the mobile telephone network: a mobile
node connects to a fixed (i.e. wired) base station, which then routes all data to and from that node.
There are several consequences of this:

1. The transmission range of mobile nodes is limited, and therefore base station deployment is
required to be relatively dense (or, consequently, coverage for mobile entities is not guaran-
teed in many areas). This is both costly, and makes such devices useless in areas where the
appropriate wired infrastructure is not in place.

2. Mobile node battery life is reduced due to transmission ranges being large (and therefore
requiring more power).

3. For any mobile node in a particular area, there is likely to be a single point of failure in its
connection to other nodes: the wired base station.

4. As a consequence of the relatively high power of transmission, the likelihood that a signal will
be detected is increased – this is unfortunate in situations where a node’s location is to be
kept secret.

Mesh networks aim to lessen the above by dynamically routing data between nodes, i.e. packets
are sent via other nodes to eventually reach their destination, (be this a wired node or another
wireless entity). The RFC for mobile ad hoc networks5 provides an excellent description of the
needs and issues surrounding their implementation, and mentions specifically energy resources as a
major concern.

Several applications of wireless mesh networks are:

• Sensor networks – large manufacturing plants have hundreds of sensors that require a connec-
tion back to a central control room. Instead of wiring them in, they are implemented as a
mesh network, providing far greater flexibility and lowered cost.

• Traffic networks – data can be routed between cars in a city to and from wired base stations.

• Wireless MANs – broadband access is made possible in remote areas by routing packets via
other subscriber nodes. Whilst these are not mobile nodes, the system must deal with nodes
being unavailable, and interference.

This project aims to design and implement (possibly entirely within a simulator) a
protocol for mobile ad hoc networks that will conserve node resources by making rout-
ing choices that are dependent on the remaining energy of the nodes making up the
alternative routes. This will provide resilience and high availability for communication
between all nodes in the network.

5RFC 2501 – Corson, Macker, Batsell. IETF, January 2001

52

David Cottingham

Work to be Undertaken

The implementation of collaborative power management in an ad hoc wireless network necessitates
several core components, which will be required for the project to be deemed as a success. Other
components that improve the security of the system or that enable it to run more efficiently will be
extensions. These are outlined below.

Core Components

Each component listed has the OSI layer to which it corresponds approximately at the end of its
description. Note that physical connectivity, framing, CRCs (Layer 1), will be provided by the
C/C++ libraries being used. There is therefore no specific module to be written for this. This
project will not attempt to investigate hardware solutions for increasing battery life.

1. Transport Module: defines packet format, sending and receiving methods, ARQ (Automated
Repeat Request) system (Layer 2). This will allow two nodes to connect and send/receive data
on a direct connection with some packet loss.

2. Routing Module: discovers, maintains, and propagates routes. Chooses optimum route for
sending (Layer 3). This will allow multiple nodes to relay packets between each other on the
optimum routes with diverse paths in existence.

3. Energy-Aware Routing Module: varies link “goodness” (equivalent to latency) with energy
reserves remaining. Interacts with Routing Module to predict remaining energy on remote
nodes, and provides a credit-based energy system, whereby each relayed transmission decreases
the sender’s credit on the relaying node (Layer 3).

4. Application Module: This will take input from the console, output results, and interface with
simulation software (Layer ∼5).

Extensions

The following are possible extensions to the project, should time allow.

• Trusted Routing Information: routing using the core modules will result in the security risk that
bogus routes might be introduced, or genuine ones deleted by malicious nodes. To overcome
this problem, a shared secret would be used by all trusted nodes in the network to obtain a
one way hash of any routing information they transmit. On reception, if another node cannot
obtain the same hash value, the routes received are ignored. Note that this does not prevent
against internal attacks.

• Bitmapped ARQ: to conserve energy, a transmission control protocol is envisaged that would
only send an ACK every, say, 5 packets of data received. A bitmapped ARQ system allows
the receiver to tell the sender which of 5 packets have been received successfully.

• Encryption: wireless networks are a great deal more open to eavesdropping than wired links.
Therefore it is necessary that data be encrypted between the source and destination, but using
as little CPU time (i.e. energy) as possible.

• Multicast Traffic: the project is designed only for unicast traffic. It is likely that in some
applications there would be several nodes that data should be sent to. To avoid sending
out identical data multiple times, multicast groups could be established, and the data only
transmitted once. The beauty of this is that no extra transmissions are needed: because
transmissions are broadcast, all nearest neighbours (i.e. next hops) receive them, and therefore
all potential subscribers to the group can be (indirectly) reached.

53

Collaborative Power Management in Wireless Mesh Networks

• Link Contention/Collision Detection: for the purposes of the core project it will be assumed
that collisions will be detected indirectly by the ARQ protocol, and on retransmission colli-
sions will not continuously occur. In a real application it would be necessary to implement
randomised retransmission timers to prevent a second collision on retransmission.

Resources Required

Please see the associated project resource form for full details of the resource requirements for this
project.

Starting Point

There has a substantial amount of work carried out on wireless mesh networks in many different
contexts. Perhaps the most relevant work has been carried out at the Cambridge University Labor-
atory for Communications Engineering (LCE), and AT&T Labs: their Piconet (later PEN) project6,
concentrated on building a low power mesh network using a combination of hardware and low level
network protocol features. Later work on a proactive routing protocol for PEN was also carried
out7, and some of the ideas from this work are to be re-implemented here. Other mesh technologies
and routing algorithms such as the Temporally-Ordered Routing Algorithm8, Destination-Sequenced
Distance Vector protocol9, and wired protocols such as the Routing Information Protocol10 have also
been considered and various ideas will be used from them.

To the best of my knowledge there has been no published work on routing algorithms that attempt
to take into account the resources (and in this case, specifically energy levels remaining) of nodes in
the network.

Security in wireless mesh networks is also a well researched topic. Stajano’s text on the implications
of ubiquitous computing11 points out various security issues, some of which could be solved by the
project and its extensions (in particular the problem of DoS attacks resulting in “sleep deprivation”
and thereby battery exhaustion). Another useful overview by Wang, Lu, and Bhargava12 will be the
basis for several design decisions for the protocol.

My experience with C/C++ programming is minimal, and therefore initially time will need to be
spent sharpening my network programming skills in this area. In addition, I do not have any
experience with network simulation software (in this case I hope to use OPNET), which will again
warrant a somewhat steep learning curve. I have a fairly wide experience of networking technologies.

Measures of Success

The project will be deemed to have been a success when all items described above as core components
have been implemented and tested successfully, along with any extensions that time allows.

6Piconet - Embedded Mobile Networking – Bennett, Clarke, Evans, Hopper, Jones, Leask. IEEE Personal Com-
munications, Vol. 4, No. 5, October 1997, pp 8-15.

7The Design and Implementation of a Low Power Ad Hoc Protocol Stack – Li Kam Wa, Osborn, Stefanova.
Presented at IEEE Wireless Communications and Networking Conference, September 2000.

8A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks – Park, Corson. Published in
the proceedings of INFOCOM’97.

9Highly Dynamic Destination-Sequenced Distance Vector Routing (DSDV) for Mobile Computers – Perkins, Bhag-
watt. ACM SIGCOMM October 1994.

10RFC 1058 – Hedrick. IETF, January 2001
11Security for Ubiquitous Computing – Stajano. Wiley 2002.
12On Security Study of Two Distance Vector Routing Protocols for Mobile Ad Hoc Networks – Wang, Lu, Bhargava.

CERIAS, 2003.

54

David Cottingham

Network simulations will be performed to compare the spread of energy levels in an ad hoc network
after a specified running time with “standard” routing, and with energy aware routing. Other
measurements may be performed as time allows.

Project Plan

The work for this project will be broken down into 2 week work “packets”, each of which will have
an identifiable deliverable associated with it.

Noteworthy dates:

• Progress Report due Friday 30th of January.

• Final Dissertation due Friday 14th of May.

55

Collaborative Power Management in Wireless Mesh Networks

Start End Description Deliverable(s)
1 18/10/2003 31/10/2003 Investigation (80%) & Design Packet format specification,

(20%) draft transport protocol
Investigation: specification.
Research C/C++ network programming,
understand possibilities of network
simulation software and how best to
code to make use of it.
Design:
Specify protocol packet format, begin
specification of transport protocol.

2 01/11/2003 14/11/2003 Design (80%) & Test Plan Specifications for Routing
(20%) and Energy Routing complete.
Design: High level test plan.
Complete specification of routing prot.
specify energy aware routing prot. &
Application module.
Test Plan:
Devise high level module test plan.

3 15/11/2003 28/11/2003 Implementation I Hosts to be able to carry out
Implement enough of the system to bi-directional communication
enable direct communication between using the basic Transport
two hosts running the Transport and protocol, with ARQ.
Application modules. ARQ.

4 29/11/2003 12/12/2003 Implementation II Multiple hosts able to be on
Implement Routing module, initially network. Dynamic routing
with static routes (i.e. no updates), with updates to work.
then with dynamic distance vector Energy Routing module begun.
routing. Begin Energy Routing module.

5 13/12/2003 23/12/2003 Implementation III All routing should now work.
Finish Energy Aware Routing. Hosts should be able to
Interface with simulation software. communicate despite network
Fix problems. partitions and packet loss.
(Work over Christmas)

6 10/01/2004 23/01/2004 Progress Report, Testing Progress report deadline:
Write progress report. 30/01/2004.
Construct simulation models and carry Initial simulations complete.
out simulations to obtain data.

7 24/01/2004 06/02/2004 Testing None.
Continue simulations.

8 07/02/2004 20/02/2004 Testing/Dissertation Writing I Simulation conclusions.
Complete simulations, interpret data.
Begin dissertation.

9 21/02/2004 05/03/2004 Dissertation Writing II None.
Continue dissertation.

10 06/03/2004 19/03/2004 Dissertation Writing III First draft complete.
Complete first draft.

11 20/03/2004 02/04/2004 Dissertation Writing IV Dissertation complete.
Correct draft, finalise report.

12 03/04/2004 16/04/2004 Contingency I N/A.
Just in case...

13 17/04/2004 30/04/2004 Contingency II N/A.

56

David Cottingham

Contingency Plan

If, once simulation software has been investigated, it is decided that none of the third party packages
is a viable option, a simple custom simulator will be developed, with test cases developed by hand
involving a limited number of nodes in the network. This should be sufficient to show that the main
body of code functions correctly.

57

