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Abstract. We propose a new type system for WebAssembly. It is a re-
finement of the type system from the language specification and is based
on type qualifiers and subtyping. In the WebAssembly specification, a
typable instruction sequence gets many different types, depending in
particular on whether it contains instructions such as br (unconditional
branch) that are stack-polymorphic in an unusual way. But one cannot
single out a canonical type for a typable instruction sequence satisfac-
torily. We introduce qualifiers on code types to distinguish between the
two flavors of stack polymorphism that occur in WebAssembly and a
subtyping relation on such qualified types. Our type system gives every
typable instruction sequence a canonical type that is principal. We show
that the new type system is in a precise relationship to the type sys-
tem given in the WebAssembly specification. In addition, we describe a
typed functional-style big-step semantics based on this new type system
underpinned by an indexed graded monad and prove that it prevents
stack-manipulation related runtime errors. We have formalized our type
system, inference algorithm, and semantics in Agda.

1 Introduction

WebAssembly (Wasm) [10] is a statically typed, stack-oriented bytecode lan-
guage. Wasm has been designed with a formal semantics [2]. Watt [15] formal-
ized the type system, the type checker, the small-step semantics and a proof of
type soundness in Isabelle. Later, Wasm 1.0 became a W3C Recommendation
[14], and Huang [3] and Watt et al. [17] came with formalizations in Coq. As
type soundness gives safety, Wasm’s type system plays a significant role in its
semantics.

A key feature of the type system of Wasm is that it tracks how the stack
shape evolves in program execution. Stacks are typed by their shapes, which are
lists of value types. A piece of code is typed by a pair of stack types, an argument
type and a result type. In Wasm, most instructions are typed monomorphically
with their (net) stack effect, i.e., types for the portions of stack they pop and
push. Instructions for unconditional control transfer like br however are typed
differently, polymorphically and in an unusual way. Instruction sequences are
typed polymorphically (in particular one cannot read off from the type how
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long a prefix of the initial stack is actually touched) and typing of instruction
sequences involving br becomes subtle.

In this paper, we analyze the stack polymorphism of the type system of
Wasm in detail on a minimalistic fragment of the language. We first introduce
a type system (Dir) that uniformizes the typing of instructions and instruction
sequences making both stack-polymorphic in an adequate sense. Dir stands in a
precise relationship to the type system of the language specification (which we
call Spec); in particular instruction sequences get exactly the same types. Then
we refine this type system to another one (which we call Sub) that has subtyping
and equips all instructions and instruction sequences, notably br and instruction
sequences involving br, with canonical types in the form of principal types. We
achieve this by introducing the distinction between ordinary (“univariate”) stack
polymorphism (in the type of the untouched suffix of the stack) from the unusual
“bivariate” stack polymorphism of Wasm characteristic to br and instruction
sequences involving it. The two type systems Dir and Sub have a different status:
Dir is a minor variant of Spec, which we introduce as a first step toward Sub;
Sub is the main type system of our interest. On top of Sub, we build a typed
big-step operational semantics in which run-time errors cannot occur. We also
define an untyped big-step semantics that agrees with this typed semantics on
typed programs when invoked on initial stacks that the typed semantics accepts.

Our type system and type inference algorithm with their properties and
the typed and untyped big-step semantics have been formalized in Agda; the
development is available at https://github.com/moritayasuaki/wasm-types.

2 A Small Fragment of Wasm

For the sake of simplicity, we work with a minimalistic fragment of Wasm. The
syntax of the language is given in Figure 1. A piece of code in this language is
either an instruction or an instruction sequence.

a, r,m, d, e ∈ N stack types (called result types in the spec.)
t ::= a→ r code types (called stack types in the spec.)
` ∈ N label indices
z ∈ Z32 32-bit integers

uop ::= eqz | . . . unary numeric operations
bop ::= add | . . . binary numeric operations

i ::= const z | uop | bop numeric instructions
| blockt is end | loopt is end block-like instructions
| br if ` | br ` branch instructions

is ::= ε | is i instruction sequences
c ::= i | is code

Fig. 1. Syntax of reduced Wasm

https://github.com/moritayasuaki/wasm-types


A Type System with Subtyping for WebAssembly’s Stack Polymorphism 3

Since our focus is on stack manipulation and typing thereof, we have left
out all unrelated aspects of Wasm, even the linear memory; also we do not have
functions. To keep the presentation as clean as possible, we do not even have
multiple value types. Of Wasm’s value types i32, i64, f32, f64 etc., we have
kept only one, i32. A stack type in Wasm is a list of value types. Since in our
reduced language, there is just one value type, a stack type boils down to a
natural number for the height of the stack. With this simplification, issues such
as values of the wrong type in the stack and value-polymorphism (of, e.g., the
drop instruction) disappear. Having just numbers as stack types is arguably a
significant simplification. Still all phenomena we want to discuss are maintained;
we have verified that the arguments in this paper scale to lists of value types as
stack types by replacing the total order on natural numbers by the (prefix) partial
order on lists. The possibility of value-type mismatch then leads to partiality of
the central operations on stack types and code types that are total in this paper.

There are three main categories of instructions—numeric, block-like and
branch instructions—, and execution of each instruction is defined in the same
way as in [2,10]. A numeric instruction pops some arguments from the current
local stack (the global stack or the local stack of the closest encompassing block-
like instruction), performs the corresponding operation, and pushes the result.

A block-like instruction block or loop type-annotated with a → r pops a
values (“arguments”) from the current local stack, constructs its own local stack
containing these arguments, and executes the inner instruction sequence on this
new local stack as current. If this terminates normally, there must be r values
(“results”) left on this local stack. The local stack is then destroyed and the r
values are pushed to the parent local stack, which becomes current.

The unconditional branch instruction br ` is a jump instruction targeting
either the end or the beginning of the `-th encompassing block-like instruction
depending on whether it is a block or a loop. If the type annotation on this
instruction is a → r, then, before the jump, r resp. a values are popped from
the current local stack, the local stacks of enclosing block-like instructions up to
the jump target are emptied and destroyed, the local stack of the jump target
is emptied and the r or a values are pushed to it, and it becomes current. The
conditional branch instruction br if ` behaves similarly except that it consumes
the top of the current local stack as a condition.

Type System

Figure 2 shows the typing rules of our chosen subset of Wasm. This type system
matches the Wasm specification, and we call this type system Spec.

Typing judgements for instructions i and instruction sequences is have simi-
lar forms rs `I i : a→ r and rs `S is : a→ r where the code type a→ r describes
in both cases in some way (which we will discuss in detail) the stack effect of i
or is in terms of a pair of stack types: the shapes of the local stack before (a,
for “arguments”) and after (r, for “results”) a possible execution. The typing
context rs, which is a list of stack types, records the result resp. argument types
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rs `I const z : 0→ 1
Const

rs `I uop : 1→ 1
Uop

rs `I bop : 2→ 1
Bop

r :: rs `S is : a→ r

rs `I blocka→r is end : a→ r
Block

a :: rs `S is : a→ r

rs `I loopa→r is end : a→ r
Loop

rs !! ` = r

rs `I br if ` : 1 + r → r
Br if

rs !! ` = r

rs `I br ` : r + d→ e
Br

rs `S ε : a→ a
Empty

rs `S is : a→ m+ d rs `I i : m→ r

rs `S is i : a→ r + d
Seq

Fig. 2. Typing rules of type system Spec, following the specification of Wasm

of the block or loop instructions encompassing i or is, in the inside-out order.
We write rs !! ` for the `-th element of rs (` < |rs|).

In this type system, every instruction except for br gets a unique code type
(if it gets one at all). For numeric instructions, the meaning of this type is
clear: a → r reflects the numbers of arguments and results of the operation,
the numbers of elements popped from and pushed onto the stack. The type of
br if ` according to the rule Br if also reflects the operational semantics: br if `
pops the top of the stack as a condition and then pops r(= rs !! `) next elements
additionally if this condition is non-zero (true). The argument type of br if `
is therefore 1 + r. Although br if ` terminates abnormally by a jump in this
case (thereby not posing any requirement on the result type), the same r next
elements remain on the stack if the condition is zero (false). Therefore, the result
type must be r since the code type must cover both cases; in the false case, we
have to pretend that 1 + r elements are popped and the r last of those are
pushed back (even if in reality only one element is popped and none pushed).
We postpone a discussion of br `.

In contrast, every instruction sequence gets many code types. For instance,
the empty sequence ε in Empty gets code types a→ a for any natural number
a. If we take 0 for a, then it becomes 0→ 0. This choice can be called the tightest
because the empty sequence consumes and produces nothing on the stack. The
rule also allows us to choose a = 1. It is natural to think of the empty sequence as
the identity function on the stack. However, the type 1→ 1 no longer tells us that
the value at the top of the stack remains unchanged. In such a sense, we would
say ε : 1→ 1 is a reasonable typing but loose in comparison to ε : 0→ 0. Though
the specification does not give a specific term for this phenomenon, we call it
univariate stack polymorphism, or simply, univariate polymorphism (as opposed
to bivariate polymorphism, discussed below).3 Univariate polymorphism allows
code types to be loosened by adding the same number to both the argument
and result type corresponding to an untouched part of the local stack.

3 We use the term ‘stack polymorphism’ in the sense of Morrisett et al. [6], viz. poly-
morphism of stack functions in the type of the untouched part of the stack.
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The premises of the typing rule Seq for the sequencing is i of is and i require
the result type m + d of is to be at least the argument type m of i. This rule
can be intuitively motivated relying on univariate polymorphism of instructions
(which Spec does not have, but which is semantically justified). First, we think
of the type m+d→ r+d as a loosened version of the type m→ r of i, although
no typing rules allow us to give i this type officially. Since this loosening has
made the types at the middle equal (the result type of is and the argument type
of i have both become m + d), we can consider that the argument type a of is
and the result type r + d of i form a type for the sequence is i.

We notice that an instruction i and the singleton instruction sequence i (i.e.,
ε i) are not treated the same way in Spec. For example, const 17 as an instruction
only has type 0 → 1 in any context, but as an instruction sequence it has the
type d→ 1 + d for any d (since ε admits the type d→ d).

Bivariate stack polymorphism

Although br ` is operationally the same as (const 1) (br if `), it has different
characteristics in the type system (which does not involve any constant propa-
gation analysis). The rule Br assigns many types to the instruction br `: the d
and e in the conclusion are arbitrary natural numbers. This is a big difference
from the other instructions, which all get at most one type. Although the Wasm
specification takes stack polymorphism to mean only this phenomenon, we will
refer to it more specifically as bivariate stack polymorphism, or simply bivariate
polymorphism, since d and e are independent metavariables for stack types. The
natural intuition “code type = local stack type before and after” is no longer
useful, since an execution of br cannot terminate normally at “after”; the next
instructions in an encompassing block-like instruction or the end of it are never
reached. Thanks to bivariate polymorphism, it is possible to place any instruc-
tion immediately after br, and this instruction will be unreachable code. In [2],
an example of the use of bivariate stack polymorphism in compilers is discussed.

Typing of unreachable code is quite subtle in this type system. For example,
the following instruction sequence is not typable when r = 0 and is typable
when r ≥ 1, even though the instruction const 17 and the end of the loop are
unreachable:

block0→0 loop0→r (br 1) (const 17) end (br 0) end

We notice that the design of Spec is uneven in that br and instruction se-
quences are stack-polymorphic, but instructions other than br are not. For con-
sistency, they should all be stack-polymorphic. The rules for sequencing “fix”
this discrepancy—or cover it up, depending on how one looks at this. In the
next section, we introduce a variant type system Dir, which remedies this issue.

3 Type System Dir with “Direct” Sequential Composition

The typing rules of the type system Dir are given in Figure 3. They give many
types not only to br, but also to other single instructions. The typing rule in



6 D. McDermott, Y. Morita and T. Uustalu

Dir loosens the type assigned to an instruction by Spec by adding any natural
number d to both the argument and result types. For the bivariate polymorphic
instruction br, the typing rule is as in Spec. In other words, Dir has stack poly-
morphism (univariate or bivariate) for all instructions. The rule for sequencing
is “direct”: it only admits the case where the result type of is and the argu-
ment type of i coincide. This is fine now since all instructions have become
stack-polymorphic.

rs ` const z : d→ 1 + d
Const

rs ` uop : 1 + d→ 1 + d
Uop

rs ` bop : 2 + d→ 1 + d
Bop

r :: rs ` is : a→ r

rs ` blocka→r is end : a+ d→ r + d
Block

a :: rs ` is : a→ r

rs ` loopa→r is end : a+ d→ r + d
Loop

rs !! ` = r

rs ` br if ` : 1 + r + d→ r + d
Br if

rs !! ` = r

rs ` br ` : r + d→ e
Br

rs ` ε : r → r
Empty

rs ` is : a→ m rs ` i : m→ r

rs ` is i : a→ r
Seq

Fig. 3. Typing rules in the type system Dir

For single instructions, Dir gives more valid types than Spec does. For exam-
ple, rs ` const 17 : d→ 1 + d in Dir, but in Spec, only rs `I const 17 : 0→ 1 can
be derived. (But also recall that Spec does derive rs `S const 17 : d→ 1 + d: for
instruction sequences the two type systems give the same types.)

For an instruction to have a type in Dir, it must be typable also in Spec, but
the argument and result type may be smaller by some same d. An instruction
sequence has exactly the same types in Dir and Spec.

Theorem 1 (Dir vs. Spec).

rs `Dir i : a→ r ⇐⇒ (∃d, a′, r′. a = a′ + d ∧ r = r′ + d ∧ rs `I
Spec i : a′ → r′)

rs `Dir is : a→ r ⇐⇒ rs `S
Spec is : a→ r

Proof. (=⇒) By mutual induction on the derivation trees of rs `Dir i : a → r
and rs `Dir is : a→ r.

(⇐=) We replace the backwards implication of the statement for i with the
equivalent property that

(∀d. rs `Dir i : a+ d→ r + d)⇐= rs `I
Spec i : a→ r

and then proceed by mutual induction on the derivation trees of rs `Spec i : a→ r
and rs `Spec is : a→ r.

The type system Dir is free of some of the problems of Spec: both instructions
and instruction sequences get all types they should reasonably get. However,
there is no satisfactory canonical type among them in all cases. Instructions other
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a→bi r <: a+ d→q r + e
Subtbi

a→uni r <: a+ d→uni r + d
Subtuni

rs ` const z : 0→uni 1
Const

rs ` uop : 1→uni 1
Uop

rs ` bop : 2→uni 1
Bop

r :: rs ` is : a→uni r

rs ` blocka→r is end : a→uni r
Block

a :: rs ` is : a→uni r

rs ` loopa→r is end : a→uni r
Loop

rs !! ` = r

rs ` br if ` : 1 + r →uni r
Br if

rs !! ` = r

rs ` br ` : r →bi 0
Br

rs ` ε : 0→uni 0
Empty

rs ` is : a→q m rs ` i : m→q′ r

rs ` is i : a→quq′ r
Seq

rs ` c : t′ t′ <: t

rs ` c : t
Subs

Fig. 4. Subtyping and typing rules in the type system Sub

than br and the empty sequence do have principal types under the (unstated,
but conceivable) subtyping relation induced by the inequation a→ r <: a+d→
r + d, which can be justified by the fact that in Dir rs ` c : a → r implies
rs ` c : a + d → r + d for any piece of code c. But br and general instruction
sequences (specifically those containing br) do not have such principal types. We
will now improve on this and introduce a type system Sub where even br and
instruction sequences have principal types.

4 Type System Sub with Qualifiers and Subtyping

We introduce two qualifiers uni and bi (for “univariate” and “bivariate”, using q
as a typical metavariable for these qualifiers), and a partial order ≤ on them:

bi ≤ q uni ≤ uni

In the type system Sub code types have the form a→q r; the qualifier q specifies
whether the code is univariately or bivariately stack-polymorphic. Code types
are ordered by a subtyping relation <:, defined by the top two rules of Figure 4.

The remainder of Figure 4 consists of the typing rules of Sub. All instructions
except br are assigned a uni-type by their typing rule; br gets a bi-type. This
way, all single instructions including br, and the empty instruction sequence,
get assigned their tightest type. The typing rule Seq for sequencing is as in
Dir, but the qualifier in the conclusion is the meet u of the qualifiers in the
premises. This operation is defined by uni u uni = uni and q u q′ = bi otherwise.
All looseness of typing is introduced by a subsumption rule Subs that applies
to both instructions and instruction sequences.

The uni-types assigned to a piece of code by Sub are precisely the types
assigned by Dir.
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Proposition 1 (Sub vs. Dir, take 1).

rs `Sub c : a→uni r ⇐⇒ rs `Dir c : a→ r

Proof. (=⇒) By induction on the derivation of rs `Sub c : a →uni r (by which
we mean mutual induction on the derivation of rs `Sub c : a →uni r for the two
cases i and is of c).

(⇐=) By induction on the derivation in rs `Dir c : a→ r.

To also describe the bi-types of a piece of code in Sub in terms of its types
in Dir, we first show a lemma about bi-types.

Lemma 1.

rs `Dir c : a+d→ r∧rs `Dir c : a→ r+e∧(d > 0∨e > 0) =⇒ rs `Sub c : a→bi r

Proof. By induction on c.

For a piece of code to acquire a particular type in Sub, all of its uni-supertypes
must type it in Dir (and so also in Spec in the case of an instruction sequence).

Theorem 2 (Sub vs. Dir).

rs `Sub c : a0 →q r0 ⇐⇒ (∀a, r. a0 →q r0 <: a→uni r =⇒ rs `Dir c : a→ r)

Proof. From Proposition 1 and Lemma 1.

Type Inference

We define a type inference algorithm for Sub. We prove this algorithm computes
a principal type for a given piece of code c for a given type context rs, provided
it is typable in that context at all, i.e., type inference computes a derivable type
which is a subtype of every other derivable type.

The algorithm is defined as a function infer recursive on c (i.e., mutually
recursive on the two cases of c being an instruction or an instruction sequence)
in Fig. 5; the algorithm traverses c once, from left to right (depth-first left-first).
MaybeX is the disjoint sum 1+X, with coprojections Nothing and Just. For every
instruction, and for the empty sequence, the inferred type is the type from the
conclusion of the typing rule. This is not the case for sequencing. For numeric
instructions and the empty sequence ε, their typing rules give them one type
and this is the type inferred. For a given context, the types of br and br if are
also determined uniquely, but differently from all other instructions br gets a
bi-type. The types of block and loop are determined by the annotation, but the
instruction sequence inside may fail to admit this type. For this reason, infer is
called recursively on this sequence to check its compatibility with the annotation.

The inferred type for a sequence is i is defined by an operation ⊕ on qualified
code types. Firstly, to satisfy the premises of the rule Seq, the operation ⊕ needs
to reconcile the middle stack types m and m′ of the inferred types a →q m
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infer c rs : Maybe CodeType

infer (const z) rs = Just(0→uni 1)
infer uop rs = Just(1→uni 1)
infer bop rs = Just(2→uni 1)

infer (blocka→r is end) rs = do tis ← infer is (r :: rs)
if tis <: a→uni r then Just(a→uni r) else Nothing

infer (loopa→r is end) rs = do tis ← infer is (a :: rs)
if tis <: a→uni r then Just(a→uni r) else Nothing

infer (br if `) rs = if ` < |rs| then Just((1 + rs !! `)→uni (rs !! `)) else Nothing
infer (br `) rs = if ` < |rs| then Just((rs !! `)→bi 0) else Nothing

infer ε rs = Just(0→uni 0)
infer (is :: i) rs = do tis ← infer is rs

ti ← infer i rs
Just(tis ⊕ ti)

Fig. 5. Type inference for Sub

and m′ →q′ r of is and i. The unified middle type is actually max(m,m′),
whatever q and q′ are.4 But the possible invocations of Subs differ depending
on q and q′. For example, if we have rs ` is : a →bi m, then we can achieve
rs ` is : a →bi max(m,m′), but if we have rs ` is : a →uni m, then we only get
rs ` is : a+ (max(m,m′)−m)→uni max(m,m′). As a result of exactly the same
thing happening for rs ` i : m′ →q r, the operation ⊕ can be defined uniformly
in the four cases of q, q′ using the “monus” operation m ·−m′ = max(m,m′)−m
and its qualified version m ·−uni m

′ = m ·−m′, m ·−bi m
′ = 0. We define

(a→q m)⊕ (m′ →q′ r) = a+ (m′ ·−q m)→quq′ r + (m ·−q′ m′)

The algorithm is sound and complete, i.e., the algorithm infers a type for
a piece of code precisely when it is typable, and the inferred type is principal
(derivable and a subtype of any other derivable type).

Theorem 3 (Soundness of type inference of Sub).

infer c rs = Just t =⇒ rs ` c : t

Proof. By induction on c.

Theorem 4 (Completeness of type inference of Sub).

rs ` c : t =⇒ (∃t0. infer c rs = Just t0 ∧ t0 <: t)

Proof. By induction on the derivation of rs ` c : t.

4 The intermediate type max(m,m′) here is always defined just because we have one
value type and stack types are natural numbers. If we consider multiple value types,
the stack types m and m′ are no longer natural numbers but lists of value types. In
this setting, the unified middle type is defined only if one of m and m′ is a prefix of
the other; when this is not the case, the instruction sequence is not typable.
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Pomonoid

The set of code types of Sub, together with its subtyping relation <:, the element
0→uni 0 and the operation⊕ form a pomonoid (a partially ordered monoid). This
pomonoid is a generalization for the qualified case of the stack effect pomonoid
first considered as such by Pöial [9] (see also [13]) and studied earlier in algebra
as the polycyclic monoid (the inverse envelope of a free monoid) by Nivat and
Perrin [8] (modulo the fact that we have replaced lists of value types as stack
types by natural numbers, which gives the bicyclic monoid).5

That we get a pomonoid is very reasonable: it is reflects the expectation
that sequential composition of two pieces of code should be associative (up to
semantic equivalence) and have the empty code as the unit, also that it should
not matter whether subsumption is applied to one of the two pieces of code or to
the composition. (Notice though that in Wasm we have no syntactic operation
of composition of two sequences of instructions.) We have a reason to return to
this pomonoid structure in the next section.

5 Typed Big-Step Semantics Based on Sub

We now demonstrate Sub in action by building on it a typed functional-style
big-step semantics (a denotational semantics)6 of simplified Wasm.

The denotation of a typing derivation of a piece of code is a function that
takes

– a natural number as a bound on the number of backjumps that can be made
within the loops that this piece of code is encompassed by7

– and a list of integers as an initial local stack,

runs the code and returns either

– nothing if the bound on the number of backjumps was exceeded,
– or a final local stack from normal termination (in the case of a bi-type, this

is not a possibility),
– or a portion of stack to transfer to the branch target from abnormal termi-

nation from a jump to a label index.

Denotations of derivable subtypings coerce between such functions.

5 In the bicyclic monoid, the partial operation ⊕ is made total by adding a special
zero element >, the greatest in the partial order, for ’possible untypability’.

6 For a discussion of the merits of functional-style rather than the usual relational-style
big-step semantics in constructive programming theory, see e.g., [7].

7 To avoid coinduction in the formalization of our constructive mathematical develop-
ment, we make sure that all program executions terminate by limiting the number
of backjumps—the only source of nontermination in simplified Wasm. This is poor
man’s domain theory that works well for our purposes; what we are using is a certain
variation of Capretta’s delay monad [1].
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The semantic function for code types is therefore defined by

Ja→q rK rs = N→ Za32 → 1 + NTq(r) +
∑
`<|rs|Zrs!!`

32

where NTbi(r) = 0 and NTuni(r) = Zr32 (NT for “normal termination”); here 0
stands for the empty set and

∑
for an indexed disjoint sum. We write Timeout,

Norm and Jump for the coprojections of the ternary disjoint sum above.8

The semantic functions for derivable subtypings and type derivations are
defined in Figure 6; the latter is defined by structural recursion on the type
derivation. The definitions use auxiliary functions split a : Za+d32 → Za32×Zd32 that
split a given local stack into two parts, with the first part containing the first a
elements and the second containing the rest. The function take a : Za+d32 → Za32
gives only the first part.

The denotation of a derivable subtyping a →q r <: a + d →q′ r + e is a
higher-order function that takes a function f sending any stack of height a to
a stack of height r if it terminates normally and returns a function sending a
given stack stk of height a+ d to a stack of height r + e if f applied to the first
a elements of stk terminates normally. It is important to realize that, if q = bi
(and d 6= e in general), then normal termination (the case Norm stk′) cannot
happen. If q = uni, then the last d(= e) elements of stk that are split off from it
before the first a elements are supplied to f are appended back to the result in
this case.

Importantly, despite the fact that denotations
r π

rs ` c : t

z
are defined for

type derivations (indicated by π) and not just for derivable typing judgements,
any two derivations of the same typing judgement rs ` c : t still acquire the
same denotation. We prove this by relating the semantics to type inference:
if there is a derivation of rs ` c : t, then, by completeness of type inference
(Theorem 4), there exists a unique t0 (depending only on c and rs) such that
infer rs c = Just t0 and t0 <: t, and by soundness (Theorem 3) there is also a
derivation of rs ` c : t0. We relate the denotations of the derivations of rs ` c : t
and rs ` c : t0.

Proposition 2 (Coherence of typed semantics). If rs ` c : t, then

r π
rs ` c : t

z
= Jt0 <: tK rs

r π0
rs ` c : t0

z

where the unique t0 such that infer rs c = Just t0 is from Theorem 4 and
π0

rs ` c : t0 is from Theorem 3. Hence any two derivations of rs ` c : t have

the same denotation.

We also define an untyped semantics, which we relate to the typed semantics
to characterize the safety the latter gives. In the untyped semantics, two kinds

8 Notice that Ja→bi rK does not really depend on r. This suggests that bi-types should
perhaps not have a result type at all. Such a design is possible, we look at this in
Section 6. The resulting type system accepts more programs but still provides safety.
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Jt <: t
′K rs : JtK rs → Jt′K rs

Ja→q r <: a+ d→q′ r + eK f n stk = let (astk , pstk) = split a stk in case f n astk of

Timeout 7→ Timeout

Norm stk
′ 7→ Norm(stk

′
++ pstk)

Jump(`, stk ′) 7→ Jump(`, stk ′)

r π
rs ` c : t

z
: JtK rs

r
rs ` const z : 0→uni 1

z
n stk = Norm(z :: stk)

r
rs ` uop : 1→uni 1

z
n (z :: stk) = Norm(JuopKz :: stk)

r
rs ` bop : 2→uni 1

z
n (z2 :: z1 :: stk) = Norm(JbopKz1z2 :: stk)

t π
r :: rs ` is : a→ r

rs ` blocka→r is end : a→uni r

|

n stk = case
r π
r :: rs ` is : a→ r

z
n stk of

Timeout 7→ Timeout

Norm stk
′ 7→ Norm stk

′

Jump(0, stk ′) 7→ Norm stk
′

Jump(`+ 1, stk
′
) 7→ Jump(`, stk ′)

u

v π′
{ π
a :: rs ` is : a→ r

rs ` loopa→r is end : a→uni r

}

~ n stk = case
r π
a :: rs ` is : a→ r

z
n stk of

Timeout 7→ Timeout

Norm stk
′ 7→ Norm stk

′

Jump(0, stk ′) 7→ if n = 0 then Timeout else

s
π′

rs ` loopa→r is end : a→uni r

{
(n− 1) stk

′

Jump(`+ 1, stk
′
) 7→ Jump(`, stk ′)

r
rs ` br ` : r →bi 0

z
n stk = Jump(`, take (rs !! `) stk)

r
rs ` br if ` : r →uni 1 + r

z
n (z :: stk) = if z 6= 0 then Jump(`, take (rs !! `) stk) else Norm stk

r
rs ` ε : 0→uni 0

z
n stk = Norm stk

u

v
π

rs ` is : a→q m
π′

rs ` i : m→q′ r

rs ` is i : a→quq′ r

}

~ n stk = case
r π
rs ` is : a→q m

z
n stk of

Timeout 7→ Timeout

Norm stk
′ 7→

s
π′

rs ` i : m→q′ r

{
n stk

′

Jump(`, stk ′) 7→ Jump(`, stk ′)
t π

rs ` c : t t <: t′

rs ` c : t′

|

n = Jt <: t
′Krs(

r π
rs ` c : t

z
n)

Fig. 6. Typed big-step semantics based on Sub
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of runtime errors can occur in addition to exceeding the bound on backjumps:
jumps too far out and stack underflow. The untyped semantics is defined in Fig-
ure 7 where we write JumpOutside, StackUnderflow and Ok for the coprojections
of the outer ternary disjoint sum and Timeout, Norm and Jump for those of the
inner one.

We define two kinds of type erasure to relate the untyped semantics to the
typed semantics. One is an injection from typed initial stacks (specific-length
lists) to untyped initial stacks (arbitrary-length lists). The other is an injec-
tion from typed outcomes to untyped outcomes. Let erasea be the inclusion
Za32 ↪→ ListZ32 and erasers,q,r be the inclusion 1 + NTq(r) +

∑
`<|rs| Zrs!!`

32 ↪→
1+ListZ32+N×ListZ32 (which hinges in particular on the inclusion 0 ↪→ ListZ32

in the case q = bi). For every well-typed instruction sequence, the untyped de-
notation is identical to the type erasure of the typed denotation.

Theorem 5 (Untyped vs. typed semantics). If rs ` c : a→q r, then

LcM rs n (erasea stk) = Ok(erasers,q,r(Jrs ` c : a→q rK n stk))

for all n and stk ∈ Za32.

Proof. We prove that whenever a→q r <: a′ →q′ r
′, we have

LcM rs n (erasea′ stk)

= Ok(erasers,q′,r′(Ja→q r <: a′ →q′ r
′K rs Jrs ` c : a→q rKn stk))

for all n ∈ N and stk ∈ Za′32, by induction on the derivation of rs ` c : a →q r.
The result follows because Ja→q r <: a→q rK rs is the identity function.

In particular, Theorem 5 implies that no well-typed piece of code c can cause
StackUnderflow or JumpOutside when run on a good initial stack stk .

Graded Monad

We further justify the denotational semantics of Sub by noting that underpin-
ning it there is an indexed graded monad [11,5,4] (on the category of sets and
functions). The indexed graded monad consists of sets of computations, indexed
by stack types rs and graded by code types a →q r, and describes composition
of functions from values to computations. It is a graded version of a combination
of a state monad (for stack manipulation), an exception monad (for jumps) and
the delay monad (to avoid nontermination).

Recall that the set of Sub’s code types forms a pomonoid, with order <:,
unit 0 →uni 0 and multiplication ⊕. The pomonoid structure is used in the
types of the data of the indexed graded monad that we define in Figure 8.
For each context rs, code type a →q r, and set X, there is a set T rs

a→qrX of
computations that produce values in the set X. The sets T rs

a→qrX are functorial
in X in the obvious way. The unit ηX of the graded monad sends each result
x ∈ X to the computation that immediately returns x, and the multiplication µX
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LcM rs : N→ List Z32 → 1 + 1 + (1 + List Z32 + N× List Z32)

Lconst zM rs n stk = Ok(Norm(z :: stk))

LuopM rs n stk = case stk of

z :: stk
′ 7→ Ok(Norm(JuopKz :: stk

′
))

7→ StackUnderflow

LbopM rs n stk = case stk of

z2 :: z1 :: stk
′ 7→ Ok(Norm(JbopKz1z2 :: stk

′
))

7→ StackUnderflow

Lblocka→r is endM rs n stk = if a > |stk | then StackUnderflow else

let (astk , pstk) = split a stk in case LisM (r :: rs) n astk of

Timeout 7→ Ok Timeout

Norm stk
′ 7→ Ok(Norm(stk

′
++ pstk))

Jump(0, stk ′) 7→ Ok(Norm(stk
′
++ pstk))

Jump(`+ 1, stk
′
) 7→ Ok(Jump(`, stk ′))

Lloopa→r is endM rs n stk = if a > |stk | then StackUnderflow else

let (astk , pstk) = split a stk in case LisM (a :: rs) n astk of

Timeout 7→ Ok Timeout

Norm stk
′ 7→ Ok(Norm(stk

′
++ pstk))

Jump(0, stk ′) 7→ if n = 0 then Ok Timeout else

Lloopa→r is endM rs (n− 1) (stk
′
++ pstk)

Jump(`+ 1, stk
′
) 7→ Ok(Jump(`, stk ′))

Lbr `M rs n stk = if ` ≥ |rs| then JumpOutside else

if rs !! ` > |stk | then StackUnderflow else

Ok(Jump(`, take (rs !! `) stk))

Lbr if `M rs n stk = case stk of

0 :: stk
′ 7→ Ok(Norm stk

′
)

:: stk
′ 7→ if ` ≥ |rs| then JumpOutside else

if rs !! ` > |stk ′| then StackUnderflow else

Ok(Jump(`, take (rs !! `) stk
′
))

7→ StackUnderflow

LεM rs n stk = Ok(Norm stk)

Lis iM rs n stk = case LisM rs n stk of

Timeout 7→ Ok Timeout

Norm stk
′ 7→ LiM rs n stk

′

Jump(`, stk ′) 7→ Ok(Jump(`, stk ′))

Fig. 7. Untyped big-step semantics
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T
rs
a→qrX = N→ Za

32 → 1 +X × NTq(r) +
∑

i<|rs|Z
rs!!i
32

η
rs
X : X → T

rs
0→uni0

X

η
rs
X x n stk = (x,Norm stk)

µ
rs
t,t′,X : T

rs
t (T

rs
t′X)→ T

rs
t⊕t′ X

µ
rs
a→qm,m′→

q′r,X
f n stk = let (astk , pstk) = split a stk in case f n astk of

Timeout 7→ Timeout

Norm(f
′
, stk

′
) 7→ let (astk

′
, pstk

′
) = split m′ (stk ′ ++ pstk) in case f ′ n astk

′ of

Timeout 7→ Timeout

Norm(x
′
, stk

′′
) 7→ Norm(x

′
, stk

′′
++ pstk

′
)

Jump(`, stk ′′) 7→ Jump(`, stk ′′)

Jump(`, stk ′) 7→ Jump(`, stk ′)

T
rs
t<:t′,X : T

rs
t X → T

rs
t′X

T
rs
a→qr<:a+d→

q′r+e,X f n stk = let (astk , pstk) = split a stk in case f n astk of

Timeout 7→ Timeout

Norm(x, stk
′
) 7→ Norm(x, stk

′
++ pstk)

Jump(`, stk ′) 7→ Jump(`, stk ′)

Fig. 8. Indexed graded monad T

provides composition of functions from values to computations via flattening of
computations of computations into computations. Finally, the coercion functions
T rs
t<:t′ provide subsumption.

This is indeed the structure that we use in the denotational semantics of Sub:
the set Ja→q rKrs is just 1→ T rs

a→qr1, i.e., a special case of a general Kleisli map
X → T rs

a→qrY , while the denotations of ε, is i and subsumptions can be written
using the unit, multiplication resp. coercion of the indexed graded monad.

6 An Improvement over Sub

The typed big-step semantics of Section 5 hints that there is no need for code
types qualified with bi to have a result type since they type pieces of code that
surely fail to terminate normally—as they surely jump.

This suggests that we can improve on Sub by dropping result types from
bi-types. Indeed, we can work with types a → r for pieces of code that may
terminate normally and types a → for pieces of code that surely do not. The
subtyping and typing rules of this improved type system are in Figure 9.

Notice that Sub′ types more programs than Sub (and hence Spec). The in-
struction block0→0 (br 0) (const 17) end, for instance, is untypable in Sub, but
typable with principal type 0→ 0 in Sub′.

Similarly to Sub, the type system Sub′ enjoys principal types, with the prin-
cipal type of a sequence given by an operation ⊕′.
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a→ <: a+ d→
Subt00

a→ <: a+ d→ r + e
Subt01

a→ r <: a+ d→ r + d
Subt1

rs ` const z : 0→ 1
Const

rs ` uop : 1→ 1
Uop

rs ` bop : 2→ 1
Bop

r :: rs ` is : a→ r

rs ` blocka→r is end : a→ r
Block

a :: rs ` is : a→ r

rs ` loopa→r is end : a→ r
Loop

rs !! ` = r

rs ` br if ` : 1 + r → r
Br if

rs !! ` = r

rs ` br ` : r → Br
rs ` ε : 0→ 0

Empty

rs ` is : a→ rs ` i : m→
rs ` is i : a→

Seq00
rs ` is : a→ rs ` i : m→ r

rs ` is i : a→
Seq01

rs ` is : a→ m rs ` i : m→
rs ` is i : a→

Seq10
rs ` is : a→ m rs ` i : m→ r

rs ` is i : a→ r
Seq11

rs ` c : t′ t′ <: t

rs ` c : t
Subs

Fig. 9. Subtyping and typing rules of Sub′

The code types of Sub′ with their subtyping relation <:, the type 0→ 0 and
the type operation ⊕′ again form a pomonoid.9 Moreover, there is an evident
pomonoid homomorphism h from the pomonoid of code types of Sub, sending
a→uni r to a→ r and a→bi r to a→ . This function h has the properties that
t <: t′ in Sub implies h t <: h t′ in Sub′ and rs ` c : t in Sub implies rs ` c : h t
in Sub′, i.e., the subtyping and typing derivations in Sub translate into Sub′.

The type system Sub′ admits a functional-style big-step semantics analogous
to Sub in Section 5 and with the same property that the untyped denotations of
typed programs agree with their typed denotations (in particular, they do not
go wrong). In fact, the semantic functions for subtyping and typing derivations
of Sub can be obtained by taking those for subtyping and typing derivations of
Sub′ and precomposing them with the translations from Sub to Sub′.

7 Conclusions and Future Work

We have shown two refinements of the type system of Wasm, explained on a
minimal fragment of the language that only has the features of interest. Wasm’s
type system has the discrepancy that, while instruction sequences get assigned
all valid types (for some definition of validity), instructions other than the ex-
ceptional br only get assigned their “tightest” (most informative) types. Thus
instruction sequences are typed as one would expect from a declarative type sys-
tem, but instructions are typed more in the spirit of a type inference algorithm.
Our first type system Dir removes this discrepancy: both instructions and instruc-
tion sequences get all of their valid types, so Dir is properly declarative, one could

9 But with lists instead of natural numbers as stack types, normal associativity of ⊕′
is lost, as ((a0 → )⊕′ (a→ m))⊕′ (m′ → r) = (a0 → ) while (a→ m)⊕′ (m′ → r)
is undefined when neither m nor m′ is a prefix of the other. Totalizing ⊕′ with a zero
greatest element > gives a skew pomonoid: associativity holds as an inequation.
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say. Our second type system Sub improves on Dir by equipping all instructions
and instruction sequences (specifically br and instruction sequences containing
br) with principal types. This is achieved by introducing a code type qualifier
to specifically mark what we have here called bivariate stack polymorphism—
an unusual form of stack polymorphism that only instructions and instruction
sequences that surely fail to terminate normally enjoy.

We have argued that our type system design is systematic. Importantly,
qualified code types form a pomonoid, leading to a denotational (functional big-
step) semantics based on an indexed graded monad indexed by type contexts and
graded by this pomonoid. This design demonstrates, in particular, that the Wasm
type system may be considered to be too pedantic about surely non-returning
programs. Such programs could be typed as a having no result type; then more
programs would become typable without compromising safety, cf. system Sub′ in
Section 6. The systems Dir and Sub are (on purpose) conservative over the type
system of the Wasm specification in that they type exactly the same programs.
Sub has principal types because it has specifically marked types for surely non-
returning programs. The type system of the specification does not record such
information in types, but its type-checking algorithm calculates it nonetheless.10

Our semantics shows that Wasm, despite being profiled as low-level, is very
well suited for big-step reasoning, thanks, of course, to the language having
structured control in a form characteristic to high-level languages; small-step
reasoning is not necessary. We should also highlight that continuation-passing is
not necessary either; direct style is enough, one can use exceptions to describe
the semantics of branching. Finally, the semantics is fully compositional also in
regards to how the stack is treated: one only ever needs to talk about the local
portion of the stack that the instruction or instruction sequence under analysis
has access to; there is no need to pass around the global stack and information
about which portion is owned by which parent block-like structure.

In future work, we will formally prove that the big-step semantics agrees with
the small-step semantics from the specification. The big-step semantics readily
suggests a design for a Hoare-style program logic that we will prove sound and
complete wrt. the big-step semantics; adequacy for the small-step semantics will
then be a corollary. (Cf. the work on a Hoare logic for Wasm by Watt et al. [16].)
The short distance between big-step semantics and Hoare-style program logics is
another good reason to work with big-step reasoning. Finally, we want to study
some source-level stack-based program analyses, define them compositionally
and show them correct wrt. the big-step semantics. (See for example [12].)

Acknowledgements This work was supported by the Icelandic Research Fund
grant no. 196323-053.

10 One could argue that all of this is splitting hairs over typing code fragments that can
be seen to be unreachable by a very simple analysis and that a good compiler from
a higher-level language to Wasm should not produce this kind of unreachable code.
The latter might be true, but a type system for Wasm must still handle all Wasm
programs, in particular also programs containing this kind of unreachable code, in
some adequate way, unless we declare these programs syntactically ill-formed.
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9. Pöial, J.: Algebraic specification of stack-effects for Forth-programs. In: 1990
FORML Conf. Proc., pp. 282–290. Forth Interest Group (1991), https://www.
kodu.ee/∼jpoial/teadus/EuroForth90 Algebraic.pdf

10. Rossberg, A.: WebAssembly core specification, version 1.1. Editor’s Draft, 18 Dec.
2021 (2021), https://webassembly.github.io/spec/core/

11. Smirnov, A.: Graded monads and rings of polynomials. J. Math. Sci. 151(3), 3032–
3051 (2008). https://doi.org/10.1007/s10958-008-9013-7
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