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Abstract
We establish a general framework for reasoning about the relationship between call-by-value and
call-by-name.

In languages with side-effects, call-by-value and call-by-name executions of programs often have
different, but related, observable behaviours. For example, if a program might diverge but otherwise
has no side-effects, then whenever it terminates under call-by-value, it terminates with the same
result under call-by-name. We propose a technique for stating and proving these properties. The key
ingredient is Levy’s call-by-push-value calculus, which we use as a framework for reasoning about
evaluation orders. We construct maps between the call-by-value and call-by-name interpretations of
types. We then identify properties of side-effects that imply these maps form a Galois connection.
These properties hold for some side-effects (such as divergence), but not others (such as mutable
state). This gives rise to a general reasoning principle that relates call-by-value and call-by-name.
We apply the reasoning principle to example side-effects including divergence and nondeterminism.
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1 Introduction

Suppose that we have a language in which terms can be statically tagged either as using
call-by-value evaluation or as using call-by-name evaluation. Each program in this language
would therefore use a mix of call-by-value and call-by-name at runtime. Given any such
program M , we can construct a new program M ′ by changing call-by-value to call-by-name
for some subterm. The question we consider in this paper is: what is the relationship between
the observable behaviour of M and the observable behaviour of M ′?

For a language with side-effects (such as divergence), changing the evaluation order in
this way will in general change the behaviour of the program, but for some side-effects we
can often say something about how we expect the behaviour to change:

If there are no side-effects at all (in particular, programs are normalizing), the choice of
evaluation order is irrelevant: M and M ′ terminate with the same result.
If there are diverging terms (for instance, via recursion), then the behaviour may change:
a program might diverge under call-by-value and return a result under call-by-name.
However, we can say something about how the behaviour changes: if M terminates with
some result, then M ′ terminates with the same result.
If nondeterminism is the only side-effect, every result of M is a possible result of M ′.
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29:2 Galois connecting call-by-value and call-by-name

These three instances of the problem are intuitively obvious, and each can be proved separately.
We develop a general technique for proving these properties.

The idea is to use a calculus that captures both call-by-value and call-by-name, as a
setting in which we can reason about both evaluation orders (this is where M and M ′ live).
The calculus we use is Levy’s call-by-push-value (CBPV) [11]. Levy describes how to translate
(possibly open) expressions e into CBPV terms LeMv and LeMn, which respectively correspond
to call-by-value and call-by-name. We study the relationship between the behaviour of LeMv

and the behaviour of LeMn in a given program context.
The main obstacle is that LeMv and LeMn have different types, and hence cannot be directly

compared. Our solution to this is based on Reynolds’s work relating direct and continuation
semantics of the λ-calculus [25]: we identify maps between the call-by-value and call-by-name
interpretations, and compose these with the translations of expressions to arrive at two terms
that can be compared directly. We show that, under certain conditions (satisfied only for
some side-effects, such as our examples), the maps between call-by-value and call-by-name
form a Galois connection (Theorem 17). This fact gives rise to a general reasoning principle
(Theorem 21) that we use to compare call-by-value with call-by-name. Given any preorder ≼
that captures the property we wish to show about programs, our reasoning principle gives
sufficiency conditions for showing M ≼M ′, where M ′ is constructed as above by replacing
call-by-value with call-by-name. We apply our reasoning principle to examples by choosing
different relations ≼; each of these relations indicates the extent to which changing evaluation
order affects the behaviour of the program. In the divergence example N ≼ N ′ is defined to
mean termination of N implies termination of N ′ with the same result; in the other examples
≼ similarly mirrors the properties described informally above.

Rather than just considering some fixed collection of (allowable) side-effects, we work
abstractly and identify properties of side-effects that enable us to relate call-by-value and
call-by-name. An advantage of our approach is that the properties can be derived by looking
at the structure of the two maps between evaluation orders.

Our reasoning principle relies on the existence of some denotational model of the side-
effects. We construct the Galois connections and relate the call-by-value and call-by-name
translations inside the model itself. Crucially, we use order-enriched models, which order the
denotations of terms. The ordering on denotations is necessary to obtain a general reasoning
principle. (Our example properties cannot be proved by showing that denotations are equal,
because they are not symmetric.) Working inside the semantics rather than using syntactic
logical relations makes it easier to prove and to use our reasoning principle, especially for the
divergence example.

In Section 2 we summarize the call-by-push-value calculus (CBPV) and the call-by-value
and call-by-name translations. We then make the following contributions:

We describe an order-enriched categorical semantics for CBPV (Section 3).
We define maps between the call-by-value and call-by-name translations (Section 4), and
show that they form a Galois connection for side-effects satisfying certain conditions
(Theorem 17).
We use the Galois connection to prove a novel reasoning principle (Theorem 21) that
relates the call-by-value and call-by-name translations of expressions (Section 5).

Throughout, we consider three different examples: no side-effects, divergence, and non-
determinism. We apply our reasoning principle to each, proving all of the above properties.
Our motivation is partly to demonstrate the Galois connection technique as a way of reasoning
about different semantics of a given language. Call-by-value and call-by-name is one example
of this (and Reynolds’s original application to direct and continuation semantics is another).
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2 Call-by-push-value, call-by-value, and call-by-name

Levy [11, 13] introduced call-by-push-value (CBPV) as a calculus that captures both call-
by-value and call-by-name. We reason about the relationship between call-by-value and
call-by-name evaluation inside CBPV.

The syntax of CBPV terms is stratified into two kinds: values V,W do not reduce,
computations M,N might reduce (possibly with side-effects). The syntax of types is similarly
stratified into value types A,B and computation types C,D.

value types A,B ::= bool | UC

computation types C,D ::= A → C | FA
values V,W ::= x | true | false | thunkM

computations M,N ::= λx :A.M | V ‘M | returnV | M to x.N

| if V then M1 else M2 | forceV

We include only a minimal subset of CBPV (containing higher-order functions, which are
the main source of difficulty).

We include booleans (the value type bool) as a representative base type. The value type
UC is the type of thunks of computations of type C. Elements of UC are introduced using
thunk: the value thunkM is the suspension of the computation term M . The corresponding
eliminator is force, which is the inverse of thunk. Computation types include function
types (where functions send values to computations). Function application is written V ‘M ,
where V is the argument and M is the function to apply. The returner type FA has as
elements computations that return elements of the value type A; these computations may
have side-effects. Elements of FA are introduced by return; the computation returnV
immediately returns the value V (with no side-effects). Computations can be sequenced
using M to x.N . This first evaluates M (which is required to have returner type), and then
evaluates N with x bound to the result of M . (It is similar to M >>= \x -> N in Haskell.)
The syntax we give here does not include any method of introducing effects; we extend CBPV
with divergence (via recursion) and with nondeterminism in Section 2.2.

The evaluation order in CBPV is fixed for each program. The only primitive that causes
the evaluation of two separate computations is to, which implements eager sequencing.
Thunks give us more control over the evaluation order: they can be arbitrarily duplicated
and discarded, and can be forced in any order chosen by the program. This is how CBPV
captures both call-by-value and call-by-name.

CBPV has two typing judgments: Γ ⊢ V : A for values and Γ ⊢cM : C for computations.
Typing contexts Γ are ordered lists of (variable, value type) pairs. We require that no variable
appears more than once in any typing context. Figure 1 gives the typing rules. Rules that
add a new variable to a typing context implicitly require that the variable is fresh. We write
⋄ for the empty typing context, V : A as an abbreviation for ⋄ ⊢ V : A, and M : C as an
abbreviation for ⋄ ⊢cM : C.

We give an operational semantics for CBPV. This consists of a big-step evaluation relation
M ⇓ R, which means the computation M evaluates to R. Here R ranges over terminal
computations, which are the subset of computations with an introduction form on the outside:

R ::= λx :A.M | returnV

We only evaluate closed, well-typed computations, so when we write M ⇓ R we assume M : C
for some C (this implies R : C). Reduction therefore cannot get stuck. The rules defining
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29:4 Galois connecting call-by-value and call-by-name

Γ ⊢ V : A

Γ ⊢ x : A
if (x : A) ∈ Γ

Γ ⊢ true : bool Γ ⊢ false : bool
Γ ⊢cM : C

Γ ⊢ thunkM : UC

Γ ⊢cM : C

Γ, x : A ⊢cM : C
Γ ⊢cλx :A.M : A → C

Γ ⊢ V : A Γ ⊢cM : A → C

Γ ⊢cV ‘M : C
Γ ⊢ V : A

Γ ⊢c returnV : FA

Γ ⊢cM : FA Γ, x : A ⊢cN : C
Γ ⊢cM to x.N : C

Γ ⊢ V : bool Γ ⊢cM1 : C Γ ⊢cM2 : C
Γ ⊢c if V then M1 else M2 : C

Γ ⊢ V : UC

Γ ⊢c forceV : C

Figure 1 CBPV typing rules

λx :A.M ⇓ λx :A.M
M ⇓ λx :A.N N [x 7→ V ] ⇓ R

V ‘M ⇓ R

returnV ⇓ returnV
M ⇓ returnV N [x 7→ V ] ⇓ R

M to x.N ⇓ R

M ⇓ R

force (thunkM) ⇓ R

M1 ⇓ R

if true then M1 else M2 ⇓ R

M2 ⇓ R

if false then M1 else M2 ⇓ R

Figure 2 Big-step operational semantics of CBPV

⇓ are given in Figure 2. All terminal computations evaluate to themselves. Since we have
not yet included any way of forming impure computations, the semantics is deterministic
and normalizing: given any M : C, there is exactly one terminal computation R such that
M ⇓ R. Section 2.2 extends the semantics in ways that violate these properties. We are
primarily interested in evaluating computations of returner type.

A CBPV program is a closed computation M : Fbool. The reasoning principle we give for
call-by-value and call-by-name relates open terms in program contexts. A program relation
consists of a preorder1 ≼ on closed computations of type Fbool. For example, we could use

M ≼M ′ if and only if ∀V :bool. (M ⇓ returnV ) ⇒ (M ′ ⇓ returnV )

We could also use, for example, the total relation for ≼ (and in this case apply our reasoning
principle for call-by-value and call-by-name even if we include e.g. mutable state as a side
effect – but then of course the conclusion of our reasoning principle would be trivial). Given
any program relation ≼, we define a contextual preorder M ≼Γ

ctx M
′ on arbitrary well-typed

computations (in typing context Γ) by considering the behaviour of M and M ′ in programs

1 We do not actually need to assume that ≼ is reflexive or transitive at any point, but because of
constraints we add later (such as existence of an adequate model), it is unlikely that there are any
interesting examples in which ≼ is not a preorder.
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τ 7→ value type Lτ Mv τ 7→ computation type Lτ Mn

bool 7→ bool bool 7→ F bool
τ → τ ′ 7→ U(Lτ Mv → FLτ ′Mv) τ → τ ′ 7→ (ULτ Mn) → Lτ ′Mn

Γ 7→ typing context LΓMv Γ 7→ typing context LΓMn

⋄ 7→ ⋄ ⋄ 7→ ⋄
Γ, x : τ 7→ LΓMv, x : Lτ Mv Γ, x : τ 7→ LΓMn, x : ULτ Mn

expression
Γ ⊢ e : τ 7→ computation

LΓMv ⊢c LeMv : FLτ Mv
expression

Γ ⊢ e : τ 7→ computation
LΓMn ⊢c LeMn : Lτ Mn

x 7→ returnx x 7→ forcex
true 7→ return true true 7→ return true
false 7→ return false false 7→ return false

if e0 then
e1 else e2

7→ Le0Mv to z. if z then
Le1Mv else Le2Mv

if e0 then
e1 else e2

7→ Le0Mn to z. if z then
Le1Mn else Le2Mn

λx :τ. e 7→ return thunkλx :Lτ Mv. LeMv λx :τ. e 7→ λx :ULτ Mn. LeMn

e e′ 7→ LeMv to y. Le′Mv to z. z ‘ force y e e′ 7→ (thunk Le′Mn) ‘ LeMn

Figure 3 Call-by-value (left) and call-by-name (right) translations into CBPV

as follows. A computation context E is a computation term, with a single hole □ where
a computation term is expected. We write E [M ] for the computation that results from
replacing □ with M (which may capture some of the free variables of M).

▶ Definition 1 (Contextual preorder). Suppose that ≼ is a program relation, and that Γ⊢cM : C
and Γ ⊢cM

′ : C are two computations of the same type. We write M ≼Γ
ctx M

′ if, for all
computation contexts E such that E [M ], E [M ′] : Fbool, we have E [M ] ≼ E [M ′]. We write
M ∼=Γ

ctx M
′, and say that M and M ′ are contextually equivalent, when both M ≼Γ

ctx M
′ and

M ′ ≼Γ
ctx M hold.

We sometimes omit Γ, and write just M ≼ctx M
′ or M ∼=ctx M

′.

2.1 Call-by-value and call-by-name
We use CBPV (instead of e.g. the monadic metalanguage [20]) because it captures both
call-by-value and call-by-name evaluation. Levy [11] gives two compositional translations
from a source language into CBPV: one for call-by-value and one for call-by-name. We recall
both translations in this section; our goal is to reason about the relationship between them.

For the source language, we use the following syntax of types τ and expressions e:

τ ::= bool | τ → τ ′ e ::= x | true | false | if e0 then e1 else e2 | λx :τ. e | e e′

The source language has a typing judgement of the form Γ ⊢ e : τ , defined by the usual rules.
The two translations from the source language to CBPV are defined in Figure 3. For

call-by-value, each source language type τ is mapped to a CBPV value type Lτ Mv that contains
the results of call-by-value computations. For call-by-name, τ is translated to a computation

FSCD 2022



29:6 Galois connecting call-by-value and call-by-name

type Lτ Mn, which contains the computations themselves. Functions under the call-by-value
translation accept values of type Lτ Mv as arguments; arguments are evaluated before being
passed to the function. Under the call-by-name translation, functions accept thunks of
computations as arguments; instead of evaluating them, arguments are thunked before
passing them to call-by-name functions. Source-language typing contexts Γ are translated to
CBPV typing contexts LΓMv and LΓMn. In call-by-value they contain values, in call-by-name
they contain thunks of computations. Source-language expressions e are mapped to CBPV
computations LeMv and LeMn. The translation uses some auxiliary program variables, which
are assumed fresh. Levy [11] proves that, in a precise sense, these translations do indeed
capture call-by-value and call-by-name.

2.2 Examples
We consider three collections of (allowable) side-effects as examples throughout the paper.

▶ Example 2 (No side-effects). We include the simplest possible example: the case where
there are no side-effects at all. For this example, call-by-value and call-by-name turn out to
have identical behaviour. We define the program relation M ≼M ′ (for closed computations
M,M ′ : Fbool) as:

M ≼M ′ if and only if ∃V :bool. (M ⇓ returnV ) ∧ (M ′ ⇓ returnV )

In other words, M and M ′ both evaluate to the same result V . The contextual preorder
M ≼Γ

ctx M ′ means if we construct two programs by wrapping M and M ′ in the same
computation context, then these two programs evaluate to the same result. This relation is
symmetric. Our other examples use non-symmetric relations.

▶ Example 3 (Divergence). For our second example, the only side-effect is divergence (via
recursion). In this case, call-by-value and call-by-name do not have identical behaviour (they
are not related by ≼ctx as it is defined in our no-side-effects example). We instead show
that replacing call-by-value with call-by-name does not change a terminating program into a
diverging one.

We extend our two languages with recursion. For CBPV we extend the syntax of
computations with fixed points recx :UC.M , and correspondingly extend the type system
and operational semantics with the following rules:

Γ, x : UC ⊢c M : C
Γ ⊢c recx :UC.M : C

M [x 7→ thunk (recx :UC.M)] ⇓ R

recx :UC.M ⇓ R

Of course, by adding recursion we lose normalization (but the semantics is still deterministic).
We extend the source language, and the two translations into CBPV, with recursive functions:

e ::= . . . | rec f :τ → τ ′. λx. e
Γ, f : τ → τ ′, x : τ ⊢ e : τ ′

Γ ⊢ rec f :τ → τ ′. λx. e : τ → τ ′

Lrec f :τ → τ ′. λx. eMv = return thunk (rec f :U(Lτ Mv → FLτ ′Mv). λx :Lτ Mv. LeMv)
Lrec f :τ → τ ′. λx. eMn = rec f :U(ULτ Mn → Lτ ′Mn). λx :ULτ Mn. LeMn

The expression Ωτ = ((rec f :bool → τ. λx. f x) false) : τ enables us to distinguish between
call-by-value and call-by-name: (λx :τ. true) Ωτ diverges in call-by-value but not in call-by-
name. In particular, we have L(λx :τ. true) Ωτ Mn ⇓ return true, but there is no R such that
L(λx :τ. true) Ωτ Mv ⇓ R.
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For this example, we define the program relation ≼ by

M ≼M ′ if and only if ∀V :bool. (M ⇓ returnV ) ⇒ (M ′ ⇓ returnV )

so that M ≼Γ
ctx M

′ informally means if a program containing M terminates with some result
then the same program with M ′ instead of M terminates with the same result.

▶ Example 4 (Nondeterminism). Finally, we consider finite nondeterminism. Again call-by-
value and call-by-name have different behaviour, but any result of a call-by-value execution
is also a result of a call-by-name execution (if suitable nondeterministic choices are made).

We consider CBPV without recursion, but augmented with computations failC for nullary
nondeterministic choice and M orN for binary nondeterministic choice between computations;
the typing and evaluation rules are standard:

Γ ⊢c failC : C
Γ ⊢cM : C Γ ⊢cN : C

Γ ⊢cM orN : C
M ⇓ R

M orN ⇓ R

N ⇓ R

M orN ⇓ R

(There is no R such that failC ⇓ R.) We similarly include nullary and binary nondeterminism
in the source language, and extend the call-by-value and call-by-name translations:

Γ ⊢ failτ : τ
Γ ⊢ e : τ Γ ⊢ e′ : τ

Γ ⊢ e or e′ : τ
Lfailτ Mv = failFLτ Mv Lfailτ Mn = failLτ Mn

Le or e′Mv = LeMv or Le′Mv Le or e′Mn = LeMn or Le′Mn

As an example, evaluating the expression e = (λx. if x then x else true)(true or false)
under call-by-value necessarily results in true, but under call-by-name we can also get false.
(We have LeMv ̸⇓ return false but LeMn ⇓ return false.)

For nondeterminism, we define ≼ in the same way as our divergence example:

M ≼M ′ if and only if ∀V :bool. (M ⇓ returnV ) ⇒ (M ′ ⇓ returnV )

This captures the property that any result that arises from an execution of M (which may
involve call-by-value) might arise from an execution of M ′ (which may involve call-by-name).

3 Order-enriched denotational semantics

We give a denotational semantics for CBPV, which we use to prove instances of ≼ctx. Since
≼ctx is not in general symmetric, we use order-enriched models, which come with partial
orders ⊑ between denotations. In an adequate model, JMK ⊑ JNK implies M ≼ctx N . Our
semantics is based on Levy’s algebra models [13] for CBPV, in which each computation type
is interpreted as a monad algebra. (We restrict to algebra models for simplicity. Other forms
of model, such as adjunction models [12] can be used for the same purpose.)

We assume no knowledge of enriched category theory; instead we give the relevant order-
enriched (specifically Poset-enriched) definitions here. (We do however assume some basic
ordinary category theory.)

▶ Definition 5. A Poset-category C is an ordinary category, together with a partial order
⊑ on each hom-set C(X,Y ), such that composition is monotone.

If C is a Poset-category, we refer to the ordinary category as the underlying ordinary
category, and write |C| for the class of objects.

▶ Example 6. We use the following three Poset-categories.

FSCD 2022



29:8 Galois connecting call-by-value and call-by-name

Poset-category C Objects X ∈ |C| Morphisms f : X → Y Order f ⊑ f ′

Set sets functions equality
Poset posets monotone functions pointwise
ωCpo ωcpos ω-continuous functions pointwise

In each case, composition and identities are defined in the usual way. For Set, since the
hom-posets Set(X,Y ) are discrete, all of the Poset-enriched definitions coincide with the
ordinary (unenriched) definitions. The objects of ωCpo are posets (X,⊑) for which ⊑
is ω-complete, i.e. for which every ω-chain x0 ⊑ x1 ⊑ · · · has a least upper bound

⊔
x.

Morphisms are ω-continuous functions, i.e. monotone functions that preserve least upper
bounds of ω-chains.

Let C be a Poset-category. We say that C is cartesian when its underlying category
has a terminal object 1 and binary products X1 × X2, such that the pairing functions
⟨−,−⟩ : C(W,X1) × C(W,X2) → C(W,X1 ×X2) are monotone. When this is the case, there
are canonical isomorphisms assocX1,X2,X3 : (X1 × X2) × X3 → X1 × (X2 × X3). We say
that C is cartesian closed when it is cartesian and its underlying category has exponentials
X ⇒ Y for which the currying functions Λ : C(W ×X,Y ) → C(W,X ⇒ Y ) are monotone.
(It follows that the uncurrying functions Λ−1 : C(W,X ⇒ Y ) → C(W × X,Y ) are also
monotone.) We write evX,Y for the canonical morphism Λ−1id : (X ⇒ Y ) ×X → Y . Binary
coproducts in C are just binary coproducts in the underlying ordinary category, except that
the copairing functions [−,−] : C(X1,W ) × C(X2,W ) → C(X1 +X2,W ) are required to be
monotone. The Poset-categories Set, Poset, and ωCpo are all cartesian closed, and have
binary coproducts.

We interpret computation types as (Eilenberg-Moore) algebras for an order-enriched
monad T, which we need to be strong (just as models of Moggi’s monadic metalanguage [20]
use a strong monad). The definitions of strong Poset-monad and of T-algebra we give are
slightly non-standard, but are equivalent to the standard ones (see for example [17]). (In
particular, it is more convenient for us to bake the strength into the Kleisli extension of the
monad instead of having a separate strength.)

▶ Definition 7 (Strong Poset-monad). A strong Poset-monad T = (T, η, (−)†) on a cartesian
Poset-category C consists of an object TX ∈ |C| and morphism ηX : X → TX for each X ∈
|C|, and a monotone function (Kleisli extension) (−)† : C(W ×X,TY ) → C(W × TX, TY )
for each W,X, Y ∈ |C|, such that

f† ◦ (idW × ηX) = f : W ×X → TY for all f : W ×X → TY

(ηX ◦ π2)† = π2 : 1 × TX → TX for all X ∈ |C|

(g† ◦ (idW ′×f) ◦ assoc)† = g† ◦ (idW ′×f†) ◦ assoc for all f : W ×X → TY,

: (W ′ ×W ) × TX → TZ g : W ′ × Y → TZ

Specializing the Kleisli extension of T to W = 1 produces a (non-strong) extension operator
(−)† : C(X,TY ) → C(TX, TY ). We use this to define, for every f : X → Y , a morphism
Tf : TX → TY by Tf = (ηY ◦ f)†. (The latter definition makes T into a Poset-functor.)

▶ Definition 8 (Eilenberg-Moore algebra). Let T be a strong Poset-monad on a cartesian
Poset-category C. A T-algebra Z = (Z, (−)‡) is a pair of an object Z ∈ |C| (the carrier)
and monotone function ( extension operator) (−)‡ : C(W ×X,Z) → C(W × TX,Z) for each
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W,X ∈ |C|, such that

f‡ ◦ (idW × ηX) = f : W ×X → Z for all f : W ×X → TY

(g‡ ◦ (idW ′×f) ◦ assoc)‡ = g‡ ◦ (idW ′×f†) ◦ assoc for all f : W ×X → TY,

: (W ′ ×W ) × TX → Z g : W ′ × Y → Z

For each X ∈ |C|, we write FTX for the free T-algebra (TX, (−)†), and for each T-algebra
Z, we write UTZ for the carrier Z ∈ |C|.

Specializing the extension operator of a T-algebra Z to W = 1 produces a (non-strong)
extension operator (−)‡ : C(X,Z) → C(TX,Z).

Let T be a strong Poset-monad on a cartesian closed Poset-category C. If Y ∈ |C| and
Z is a T-algebra, then there is a T-algebra Y ⇒ Z with carrier Y ⇒ Z and extension operator

f‡ = Λ((Λ−1f ◦ βW,Y,X)‡ ◦ βW,T X,Y ) : W × TX → Y ⇒ Z for f : W ×X → Y ⇒ Z

where βX1,X2,X3 = ⟨⟨π1 ◦π1, π2⟩, π2 ◦π1⟩ : (X1 ×X2)×X3 → (X1 ×X3)×X2. These provide
the interpretations of function types A → C.

▶ Definition 9. A model of CBPV consists of
a cartesian closed Poset-category C;
the coproduct 2 = 1 + 1, together with the corresponding morphisms inl, inr : 1 → 2;
a strong Poset-monad T = (T, η, (−)†) on C.

Given any model, the interpretation J−K of CBPV is defined in Figure 4. Value types A
are interpreted as objects JAK ∈ |C|, while computation types C are interpreted as T-algebras.
Typing contexts Γ are interpreted as objects JΓK ∈ C using the cartesian structure of C; if
(x : A) ∈ Γ then we write πx for the corresponding projection JΓK → JAK. Values Γ ⊢ V : A
(respectively computations Γ ⊢c M : C) are interpreted as morphisms JΓ ⊢ V : AK (resp.
JΓ ⊢cM : CK) in C; we often omit the typing context and type when writing these. Programs
⋄ ⊢cM : bool are therefore interpreted as morphisms JMK : 1 → T2. To interpret if , we use
the fact that, since C is cartesian closed, products distribute over the coproduct 2 = 1 + 1.
This means that for every W ∈ |C|, the coproduct W +W also exists in C, and the canonical
morphism

W +W
[⟨idW ,inl◦⟨⟩W ⟩,⟨idW ,inr◦⟨⟩W ⟩]−−−−−−−−−−−−−−−−−−−−→ W × 2

has an inverse distW : W × 2 → W +W .
By composing the semantics of CBPV with the two translations of the source language, we

obtain a call-by-value semantics J−Kv = JL−MvK and a call-by-name semantics J−Kn = JL−MnK
of the source language.

We use the denotational semantics as a tool for proving instances of contextual preorders;
for this we need adequacy.

▶ Definition 10. A model of CBPV is adequate (with respect to a given program relation ≼)
if for all computations Γ ⊢cM : C and Γ ⊢cM

′ : C we have

JΓ ⊢cM : CK ⊑ JΓ ⊢cM
′ : CK ⇒ M ≼Γ

ctx M
′

We give three different models, one for each of our three examples in Section 2.2. Each model
is adequate with respect to the corresponding definition of ≼; the proof in each case is a
standard logical relations argument (e.g. [31]).
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C-object JAK

JboolK = 2 (= 1+1)
JUCK = UTJCK

T-algebra JCK

JA → CK = JAK ⇒ JCK

JFAK = FTJAK

C-object JΓK

J⋄K = 1
JΓ, x : AK = JΓK × JAK

JΓ ⊢ V : AK : JΓK → JAK

JxK = πx

JtrueK = inl ◦ ⟨⟩JΓK

JfalseK = inr ◦ ⟨⟩JΓK

JthunkMK = JMK

JΓ ⊢cM : CK : JΓK → UTJCK

Jλx :A.MK = ΛJMK

JV ‘MK = Λ−1JMK ◦ ⟨id, JV K⟩
JreturnV K = η ◦ JV K

JM to x.NK = JNK‡ ◦ ⟨id, JMK⟩
Jif V then M1 else M2K = [JM1K, JM2K] ◦ dist ◦ ⟨id, JV K⟩

JforceV K = JV K

Figure 4 Denotational semantics of CBPV

▶ Example 11. For CBPV with no side-effects, we use C = Set. The strong Poset-monad
T is the identity on Set. Each T-algebra Z is completely determined by its carrier Z; the
extension operator (−)‡ : Set(W ×X,Z) → Set(W ×X,Z) is necessarily the identity. The
interpretation JMK of each program M is just an element of 2.

▶ Example 12. For divergence, we use C = ωCpo. The strong Poset-monad T freely
adjoins a least element ⊥ to each ωCpo. The unit ηX is the inclusion X ↪→ TX, while
Kleisli extension is given by

f†(w, x) =
{

⊥ if x = ⊥
f(w, x) otherwise

A T-algebra Z is equivalently an ωCpo Z with a least element ⊥ ∈ Z. The extension
operator is completely determined once the carrier is fixed; it is analogous to (−)†. Since the
exponential Y ⇒ Z is the set of ω-continuous functions Y → Z ordered pointwise, it has a
least element (forms a T-algebra) whenever Z does.

If Z is a T-algebra, then every ω-continuous function f : Z → Z has a least fixed point
fix f =

⊔
n∈N f

n⊥ ∈ Z. These enable us to interpret recursive computations, by defining
Jrecx :UC.MKρ = fix

(
x 7→ JMK(ρ, x)

)
. The interpretation JMK of a program M : Fbool

is either ⊥ (signifying divergence), or one of the two elements of 2.

▶ Example 13. For finite nondeterminism, we use C = Poset. The strong Poset-monad T
freely adds finite joins to each poset. It is defined by

TX = ({↓S′ | S′ ∈ PfinX},⊆) ηX x = ↓{x} f†(w, S) =
⋃

x∈S f(w, x)

where PfinX is the set of finite subsets of X, and ↓S′ = {x ∈ X | ∃x′ ∈ S′. x ⊑ x′} is
the downwards-closure of S′ ⊆ X. Each T-algebra is again completely determined by its
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carrier; a T-algebra Z is equivalently a poset Z that has finite joins. The extension operator
is necessarily given by f‡(w, S) =

⊔
x∈S f(w, x). (The latter join exists because S is the

downwards-closure of a finite set, even though S itself might not be finite.) The function
space Y ⇒ Z is the set of monotone functions Y → Z, ordered pointwise; if Z has finite
joins then Y ⇒ Z has finite joins computed pointwise.

We interpret nondeterministic computations using nullary and binary joins:
q
failC

y
ρ = ⊥ JM orNKρ = JMKρ ⊔ JNKρ

The interpretation JMK of a program M : Fbool is one of the four subsets of 2.

4 A Galois connection between call-by-value and call-by-name

We now return to the main contribution of this paper: relating call-by-value and call-by-name.
The main difficulty in doing this is that the call-by-value and call-by-name translations of
expressions have different types:

LΓMv ⊢c LeMv : FLτ Mv LΓMn ⊢c LeMn : Lτ Mn

We cannot ask whether LeMv and LeMn are related by ≼ctx, because ≼ctx only relates terms of
the same type. It does not make sense to replace LeMv with LeMn inside a CBPV program,
because the result would not be well-typed.

Reynolds [25] solves a similar problem when comparing direct and continuation semantics
of the λ-calculus by defining maps between the two semantics, so that a denotation in the
direct semantics can be viewed as a denotation in the continuation semantics and vice versa.
We use the same idea here. Specifically, we define maps Φ from call-by-value computations
to call-by-name computations, and Ψ from call-by-name to call-by-value:2

Γ ⊢cM : FLτ Mv 7→ Γ ⊢c ΦτM : Lτ Mn Γ ⊢cN : Lτ Mn 7→ Γ ⊢c ΨτN : FLτ Mv

Then instead of replacing LeMv with LeMn directly, we use Φ and Ψ to convert LeMn to a
computation of the same type as LeMv (we define this computation formally in Section 5):

LΓMv −→ LΓMn LeMn

−−−→ Lτ Mn −→ FLτ Mv

This behaves like a call-by-name computation, but has the same type as a call-by-value
computation. We do not want just any maps between call-by-value and call-by-name. We
show that, under certain conditions (the assumptions of Theorem 17 below) the maps we
define form Galois connections [18] in the denotational semantics. This is crucial for the
correctness of our reasoning principle. The conditions needed to show that we have Galois
connections are where the choice of side-effects becomes important.

▶ Definition 14. A Galois connection consists of two posets X, Y and two monotone
functions ϕ : X → Y , ψ : Y → X, such that x ⊑ ψ(ϕ x) for all x ∈ X and ϕ(ψ y) ⊑ y for
all y ∈ Y .

2 We define Φ and Ψ directly as maps from computations to computations, but we could instead have
defined computations

x : UFLτ Mv ⊢c Φ′
τ : Lτ Mn x : ULτ Mn ⊢c Ψ′

τ : FLτ Mv

and then recovered Φ and Ψ using substitution (up to the equational theory defined in Appendix A).
This definition is slightly less convenient to work with however.
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The syntactic maps Φτ and Ψτ are defined as follows. (We use some extra variables in
the definition, which are assumed to be fresh.)

ΦτM = M to x. Φ̂τx

Φ̂boolV = returnV Φ̂τ→τ ′V = λx :ULτ Mn.Ψτ (forcex) to y. (y ‘ forceV ) to z. Φ̂τ ′z

ΨboolN = N Ψτ→τ ′N = return thunkλx :Lτ Mv.Ψτ ′
(
(thunk (Φ̂τx)) ‘N

)
The maps Φτ from call-by-value computations first evaluate the computation, and then map
the result to call-by-name using Φ̂τ , which has the following typing:

Γ ⊢ V : Lτ Mv 7→ Γ ⊢c Φ̂τV : Lτ Mn

Given any model of CBPV, we correspondingly define morphisms ϕτ : T JτKv → UTJτKn

and ψτ : UTJτKn → T JτKv as follows (where ϕ̂τ : JτKv → UTJτKn).

ϕτ = ϕ̂‡
τ ϕ̂bool = η2 ϕ̂τ→τ ′ = Λ((ϕτ ′ ◦ ev)‡ ◦ (idJτ→τ ′Kv × ψτ ))

ψbool = idT 2 ψτ→τ ′ = ηJτ→τ ′Kv ◦ (ϕ̂τ ⇒ ψτ ′)

These morphisms are the interpretations of Φ and Ψ in the following sense.

▶ Lemma 15. Given any model of CBPV, if Γ ⊢cM : FLτ Mv then JΦτMK = ϕτ ◦ JMK, and
if Γ ⊢cN : Lτ Mn then JΨτNK = ψτ ◦ JNK.

Proof sketch. By induction on the type τ . Each case is an easy calculation. ◀

For the rest of this section, we show that in every model of CBPV that satisfies certain
conditions (the assumptions of Theorem 17 below), the functions

ϕτ ◦ − : C(W,T JτKv) → C(W,UTJτKn) ψτ ◦ − : C(W,UTJτKn) → C(W,T JτKv)

form a Galois connection for every τ and W ∈ |C|. This is the key step in the proof of our
reasoning principle (Theorem 21).

First we note that we cannot expect these maps to form Galois connections in general.
Consider what happens when we convert a CBPV computation M : FLbool → boolMv =
F(U(bool → Fbool)) to call-by-name and then back to call-by-value. The computation
Ψbool→bool(Φbool→boolM) that results is essentially3 the same as

return thunkλx :bool.M to z. x ‘ force z

The computation M may cause side-effects before producing a (thunk of a) function; but
Ψbool→bool(Φbool→boolM) does not. Thus in general (e.g. if side-effects include mutable
state), we cannot expect to have JMK ⊑ ψbool→bool ◦ ϕbool→bool ◦ JMK, and hence cannot
expect to have a Galois connection. The round-trip from call-by-value to call-by-name and
back thunks the side-effects of M .

The inequality JMK ⊑ ψbool→bool(ϕbool→boolJMK) does however hold when JMK is lax
thunkable in the following sense.

3 Precisely, they are the same in the sense that Ψbool→bool(Φbool→boolM) ≡ return thunk λx :
bool. M to z. x ‘ force z, where ≡ is the equational theory defined in Appendix A.
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▶ Definition 16. Let T be a strong Poset-monad on a cartesian C. We say that a morphism
f : X → TY is lax thunkable when TηY ◦ f ⊑ ηT Y ◦ f . We say that T is lax idempotent4

when TηY ⊑ ηT Y for all Y ∈ |C| (equivalently, when every such morphism is lax thunkable).

Our notion of lax thunkable morphism is an inequational version of Führmann’s [5] notion
of thunkable morphism. We do not need it below, but we can give a corresponding definition
for CBPV: a computation Γ ⊢cM : FA is lax thunkable (with respect to a given ≼) when

M to x. return thunk returnx ≼Γ
ctx return thunkM

This is the case in particular when the interpretation JMK : JΓK → T JAK of M , in an adequate
model, is a lax thunkable morphism.

Assuming that T is lax idempotent is enough to achieve the goal of this section:

▶ Theorem 17. Given a CBPV model in which T is lax idempotent, the functions

ϕτ ◦ − : C(W,T JτKv) → C(W,UTJτKn) ψτ ◦ − : C(W,UTJτKn) → C(W,T JτKv)

form a Galois connection for every source-language type τ and object X ∈ |C|.

Proof sketch. By induction on the type τ . This is trivial for bool. For function types both
of the required inequalities use the fact that T is lax idempotent. ◀

▶ Example 18. Each of our three example models is adequate, and has a lax idempotent
T. For no side-effects, we use the identity monad, which is trivially lax idempotent because
TηY = idY = ηT Y . For divergence, the monad is lax idempotent because the left hand side
of TηY t ⊑ ηT Y t is ⊥ when t = ⊥ (intuitively, we can thunk diverging computations), and
otherwise the two sides are equal. For nondeterminism, we have

TηY S = ↓{↓{y} | y ∈ S} ⊆ ↓{S} = ηT Y S

because ↓{y} ⊆ S for every y ∈ S (intuitively, we can postpone nondeterministic choices).
Thus we obtain Galois connections in each of these three cases.

▶ Remark 19. Given an adequate model in which T is lax idempotent, it follows from
Theorem 17 that the maps Φτ and Ψτ on terms form a Galois connection (with respect to
≼ctx), by Lemma 15. In particular, we have

M ≼ctx Ψτ (ΦτM) Φτ (ΨτN) ≼ctx N

Both of these inequalities are in general proper (they are not contextual equivalences). To
see this, consider our divergence example, for which the above inequalities hold. For each
C, let ΩC be the diverging computation recx : UC. forcex (which has type C). Then
if τ = bool → bool and M = ΩFLτ Mv , we do not have M ≽ctx Ψτ (ΦτM), because for
E = (□ to f. return false) the computation E [M ] diverges but E [Ψτ (ΦτM)] ⇓ return false.
In this case we have Ψτ (ΦτM) ∼=ctx return thunkλx : bool.ΩFbool. For a counterexample
to Φτ (ΨτN) ≽ctx N , let τ = bool → bool and N = λx :UFbool. return true. Then for
E ′ = ((thunk ΩFbool) ‘□), the computation E ′[Φτ (ΨτN)] diverges but E ′[N ] ⇓ return true.
Here we have Φτ (ΨτN) ∼=ctx λx :UFbool. forcex to y. return true.

4 Lax idempotent Poset-monads are a special case of lax idempotent 2-monads, which are well-known,
and are often called Kock-Zöberlein monads [8].
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5 The reasoning principle

We now use the Galois connections defined in the previous section to relate the call-by-value
and call-by-name translations of expressions, and arrive at our main reasoning principle.

Recall that we compose the call-by-name translation of each e with the maps Φ and Ψ
defined above, to form a CBPV computation of the same type as the call-by-value translation:

LΓMv −→ LΓMn LeMn

−−−→ Lτ Mn −→ FLτ Mv

We first define this composition precisely. The arrow on the right is just given by applying
Ψτ . The arrow on the left is a substitution that maps terms in call-by-name contexts
LΓMn to terms in call-by-value contexts LΓMv. Given any source-language typing context
Γ = x1 : τ1, . . . xn : τn, we define Φ̂Γ = x1 7→ thunk

(
Φ̂τ1x1

)
, . . . , xn 7→ thunk

(
Φ̂τn

xn

)
.

If Γ ⊢ e : τ then LΓMv ⊢c Ψτ

(
LeMn[Φ̂Γ]

)
: FLτ Mv, which has the same typing as LeMv. The

statement we wish to prove is LeMv ≼ctx Ψτ

(
LeMn[Φ̂Γ]

)
. Again we reason using the denotational

semantics. Given a CBPV model, the interpretation of the substitution Φ̂Γ is a morphism
ϕ̂Γ : JΓKv → JΓKn, given by ϕ̂⋄ = id1 and ϕ̂Γ,x:τ = ϕ̂Γ × ϕ̂τ . If the model is adequate, to show
our goal LeMv ≼ctx Ψτ

(
LeMn[Φ̂Γ]

)
, it suffices to show that JeKv ⊑ ψτ ◦ JeKn ◦ ϕ̂Γ.

We show that this is the case directly using the properties of Galois connections, which
allow us to push composition with ψτ into the structure of terms.

▶ Lemma 20. In every CBPV model for which the functions

ϕτ ◦ − : C(W,T JτKv) → C(W,UTJτKn) ψτ ◦ − : C(W,UTJτKn) → C(W,T JτKv)

form Galois connections for all τ , W , we have JeKv ⊑ ψτ ◦ JeKn ◦ ϕ̂Γ for all Γ ⊢ e : τ .

Proof sketch. By induction on the derivation of Γ ⊢ e : τ . We give just the case for function
applications e e′; which shows where having Galois connections is useful. The two inequalities
below both use properties of Galois connections. The equalities follow from properties of
products, exponentials, and T-algebras.

Je e′Kv = (ev† ◦ ⟨π2, Je′Kv ◦ π1⟩)† ◦ ⟨id, JeKv⟩

⊑ ψτ ′ ◦ ϕτ ′ ◦ (ev† ◦ ⟨π2, ψτ ◦ Je′Kn ◦ ϕ̂Γ ◦ π1⟩)
†

◦ ⟨id, ψτ→τ ′ ◦ JeKn ◦ ϕ̂Γ⟩

= ψτ ′ ◦ Λ−1(ϕτ→τ ′ ◦ ψτ→τ ′ ◦ JeKn) ◦ ⟨id, Je′Kn⟩ ◦ ϕ̂Γ

⊑ ψτ ′ ◦ Λ−1JeKn ◦ ⟨id, Je′Kn⟩ ◦ ϕ̂Γ

= ψτ ′ ◦ Je e′Kn ◦ ϕ̂Γ ◀

Theorem 17 provides a sufficient condition for the maps between the two evaluation orders
to form Galois connections. By combining this sufficient condition with the above lemma,
we arrive at our reasoning principle, which we state formally as Theorem 21. Recall that
a program relation ≼ is a family of relations on CBPV programs, and that each program
relation induces a contextual preorder ≼ctx. Given any program relation ≼, to show that
the call-by-value and call-by-name translations of source-language expressions are related by
≼ctx it is enough to find an adequate model involving a lax idempotent T.

▶ Theorem 21 (Relationship between call-by-value and call-by-name). Suppose we are given a
program relation ≼, and a model of CBPV that is adequate with respect to ≼, and has a lax
idempotent T. If Γ ⊢ e : τ then

LeMv ≼ctx Ψτ

(
LeMn[Φ̂Γ]

)
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Proof. Theorem 17 implies that ϕ and ψ form Galois connections, and then Lemma 20 implies
JeKv ⊑ ψτ ◦ JeKn ◦ ϕ̂Γ. The result follows from adequacy of the model and Lemma 15. ◀

The generality of this theorem comes from two sources. First, we consider arbitrary
program relations ≼. The only requirement on these is the existence of some adequate model
in which morphisms are lax thunkable. Second, this theorem applies to terms that are open
and have higher types, using the maps between the two evaluation orders. We obtain a
corollary about source-language programs (closed expressions of type bool). This corollary
is closer to the standard results that are proved for specific side-effects.

▶ Corollary 22. If the assumptions of Theorem 21 hold, then for every closed expression e

of type bool, we have LeMv ≼ LeMn.

Proof. We have JeKv ⊑ ψbool ◦ JeKn ◦ ϕ̂⋄ = JeKn because both ψbool and ϕ̂⋄ are identities.
Adequacy implies LeMv ≼ctx LeMn, and hence LeMv ≼ LeMn. ◀

Our reasoning principle also has a partial converse:

▶ Lemma 23. If JeKv ⊑ ψτ ◦ JeKn ◦ ϕ̂Γ for each Γ ⊢ e : τ , then Tη2 ⊑ ηT 2, and every
morphism X → T2 is lax thunkable.

Proof sketch. The first step is to show that id ⊑ ψτ ◦ ϕτ for every τ , by applying the
assumption to the expression x : bool → τ ⊢ x false : τ . (It does not matter whether we use
false or use true; we could have used x : unit → τ if we had a unit type.) Then, since ϕbool
and ψbool are identities, we get idT (2⇒T 2) ⊑ ψbool→bool ◦ ϕbool→bool = η2⇒T 2 ◦ id2⇒T 2

‡,
from which the result follows. ◀

As a final remark, while we compose the call-by-value translation on both sides, this choice
is in fact arbitrary. By properties of Galois connections, the inequality JeKv ⊑ ψτ ◦ JeKn ◦ ϕ̂Γ
is equivalent to ϕτ ◦ JeKv ⊑ JeKn ◦ ϕ̂Γ, and two other inequalities are available when T is lax
idempotent by defining suitable morphisms ψΓ : JΓKn → T JΓKv.

We now return to our three examples. For each example, we take the adequate model
defined in Section 3; in all three cases, the strong Poset-monad T is lax idempotent. After
extending the inductive proof of Lemma 20 with cases for the extra syntax, we can apply
our relationship between call-by-value and call-by-name (Theorem 21).

In particular, we can apply Corollary 22 to relate source-language programs. For no
side-effects, this shows for each e : bool that there is some V such that LeMv ⇓ returnV and
LeMn ⇓ returnV . In other words, e evaluates to the same result in call-by-value and in call-by-
name (since evaluation is deterministic). For divergence and for nondeterminism, the corollary
says that LeMv ⇓ returnV implies LeMn ⇓ returnV for all V . Hence for divergence, if the
call-by-value execution terminates with some result, the call-by-name execution terminates
with the same result. For nondeterminism, all possible results of call-by-value executions are
possible results of call-by-name executions.

6 Related work

Comparing evaluation orders Plotkin [24] and many others (e.g. [7]) relate call-by-value
and call-by-name. Crucially, they consider lambda-calculi with no side-effects other than
divergence. This makes a significant difference to the techniques that can be used, in
particular because in this case the equational theory for call-by-name is strictly weaker than
for call-by-value. This is not necessarily true for other side-effects. Other evaluation orders
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(such as call-by-need) have also been compared in similarly restricted settings [14, 15, 6]. We
suspect our technique could also be adapted to these. Here we use CBPV as a calculus in
which to reason about both call-by-value and call-by-name, but other calculi (e.g. the modal
calculus of [28]) may be suitable for this purpose.

It might also be possible to recast some of our work in terms of the duality between
call-by-value and call-by-name [3, 2, 30, 29], In particular, this may shed some light on
our definitions of Φ and Ψ. It is not clear to us what the precise connection is however.
While Selinger [29] defines translations between call-by-value and call-by-name versions of
Parigot’s λµ-calculus [23], these translations behave differently to ours, in particular, they
are semantics-preserving.

Relating semantics of languages The technique we use here to relate call-by-value and
call-by-name is based on the idea used first by Reynolds [25] to relate direct and continuation
semantics of the lambda calculus, and later used by others (e.g. [19, 9, 1, 4]). There are
several differences with our approach. Reynolds constructs a logical relation between the two
semantics, and uses this to establish a relationship with the two maps. We skip the logical
relation step. Reynolds also relies on continuations with a large-enough domain of answers
(e.g. a solution to a particular recursive domain equation). Our maps exist for any choice of
model. We are the first to use this technique to relate call-by-value and call-by-name. There
has been some work [26, 10, 27] on soundness and completeness properties of translations
(similar to the translations into CBPV), in particular using Galois connections (and similar
structures) for which the order is reduction of programs. Our results would fail if we used
reduction of programs directly, so we consider only the observable behaviour of programs.

There are some similarities between our work and the work of New et al. [21, 22] on
gradual typing. In particular, [22] has embedding-projection pairs (a special case of Galois
connections) for casting from a more dynamic type to a less dynamic type, and vice versa.
Their application is quite different however. The double category perspective used in [21]
may also be illuminating here.

7 Conclusions

In this paper, we give a general reasoning principle (Theorem 21) that relates the observable
behaviour of terms under call-by-value and call-by-name. The reasoning principle works
for various collections of side-effects, in particular, it enables us to obtain theorems about
divergence and nondeterminism. It is about open expressions, and allows us to change
evaluation order within programs. We obtain a result about call-by-value and call-by-name
evaluations of programs as a corollary (Corollary 22). Applying this to divergence, we
show that if the call-by-value execution terminates with some result then the call-by-name
execution terminates with the same result. For nondeterminism, we show that all possible
results of call-by-value executions are possible results of call-by-name executions. There may
be other collections of side-effects we can apply our technique to, including combinations of
divergence and nondeterminism.

We expect that our technique can be applied to other evaluation orders. Two evaluation
orders can be related by giving translations into some common language (here we use CBPV),
constructing maps between the two translations, and showing that (for some models) these
maps form Galois connections. A major advantage of the technique is that it allows us to
identify axiomatic properties of side-effects (thunkable, etc.) that give rise to relationships
between evaluation orders.
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if true then M1 else M2 ≡ M1 V ‘λx :A.M ≡ M [x 7→ V ]
if false then M1 else M2 ≡ M2 force thunkM ≡ M

V ≡ thunk forceV
M [x 7→ V ] ≡ if V then M [x 7→ true] else M [x 7→ false]

M ≡ λx :A. x‘M

returnV to x.M ≡ M [x 7→ V ]
M ≡ M to x. returnx
(M1 to x.M2) to y.M3 ≡ M1 to x. (M2 to y.M3)
λy :A.M to x.N ≡ M to x. λy :A.N

Figure 5 (Typed) equations between CBPV terms

A CBPV equational theory

We define an equational theory for CBPV. We write ≡ for the smallest equivalence relation
on terms of the same type that is closed under the axioms in Figure 5 and under the syntax
of CBPV terms (for example, M ≡ N implies thunkM ≡ thunkN and V ≡ W implies
returnV ≡ returnW ). (This is not exactly Levy’s equational theory for CBPV, because
we do not include complex values.)

All of the axioms should be read as subject to suitable typing constraints. The group of
axioms at the top of Figure 5 contains the β-laws for all of the type formers except F. The
second group contains η-laws. The bottom group contains axioms governing the behaviour of
sequencing of computations: there is a left-unit axiom, a right-unit axiom, an associativity
axiom, and axioms for commuting sequencing with the introduction form for functions.

FSCD 2022
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