Flexible presentations of graded monads

Shin-ya Katsumata Dylan McDermott
Tarmo Uustalu Nicolas Wu

Motivation

1. Effects can be modelled using monads
[Moggi '89]
2. which often come from presentations
3. which induce algebraic operations
[Plotkin and Power '03]

Motivation

1. Effects can be modelled using monads
[Moggi '89]
2. which often come from presentations
[Plotkin and Power '02]
3. which induce algebraic operations
[Plotkin and Power '03]

Example:

1. Nondeterminism can be modelled using List
2. which comes from the presentation of monoids

$$
\begin{gathered}
\text { fail : } 0 \quad \text { or :2 } \\
\operatorname{or}(\text { fail }, x)=x=\operatorname{or}(x, \text { fail }) \quad \operatorname{or}(\operatorname{or}(x, y), z)=\operatorname{or}(x, \operatorname{or}(y, z))
\end{gathered}
$$

3. which induces algebraic operations

$$
\begin{gathered}
\text { fail }_{X}=\left(\lambda_{-} \cdot[]\right): 1 \rightarrow \operatorname{List} X \\
\text { or }_{X}=(\lambda(\mathrm{xs}, \mathrm{ys}) \cdot \mathrm{xs}+\mathrm{ys}): \operatorname{List} X \times \operatorname{List} X \rightarrow \operatorname{List} X
\end{gathered}
$$

Motivation

1. Effects with quantitative information can be modelled using graded monads [Katsumata '14]
2. which often come from graded presentations?
[Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]
3. which induce algebraic operations?

Running example: nondeterminism with backtracking and cut

or(or(or(or(return11, return12), fail), or(return13, cut)), return14)

is equivalent to

```
or(return11,
    or(return12, or(return13, cut)))
```


Running example: nondeterminism with backtracking and cut

These computations can be modelled using a monad Cut

$$
\operatorname{Cut} X=\text { List } X \times\{\text { cut, nocut }\}
$$

which has a presentation involving or : 2, fail : 0 , cut : 0 [Piróg and Staton '17]

Running example: nondeterminism with backtracking and cut

$$
\text { or }(t, u) \equiv t \quad \text { if } t \text { cuts }
$$

Running example: nondeterminism with backtracking and cut

Assign grades $e \in\{\perp, 1, \top\}$ to computations:

T don't know anything
VI
definitely cuts
or returns something
VI
\perp definitely cuts
t_{1} has grade $e_{1} \quad t_{2}$ has grade e_{2} or $\left(t_{1}, t_{2}\right)$ has grade ($e_{1} \sqcap e_{2}$)
$\operatorname{return} x$ has grade 1 t has grade $e \quad e \leq e^{\prime}$ t has grade e^{\prime}
fail has grade T
$\overline{\text { cut has grade } \perp}$

Then:

$$
\text { or }(t, u) \equiv t \quad \text { if } t \text { has grade } \perp
$$

Running example: nondeterminism with backtracking and cut

Assign grades $e \in\{\perp, 1, \top\}$ to computations:
Graded monad Cut:

T don't know anything
VI
definitely cuts
or returns something VI
\perp definitely cuts

$$
\begin{aligned}
\operatorname{Cut} X e=\{(\mathrm{xs}, c) & \in \operatorname{List} X \times\{\text { cut, nocut }\} \\
\mid & (e=\perp \Rightarrow c=\text { cut }) \\
\wedge & (e=1 \Rightarrow c=\text { cut } \vee \mathrm{xs} \neq[])\}
\end{aligned}
$$

Kleisli extension:

$$
\frac{f: X \rightarrow \operatorname{Cut} Y e}{f_{d}^{\dagger}: \operatorname{Cut} X d \rightarrow \operatorname{Cut} Y(d \cdot e)} \text { where } \quad \begin{aligned}
\top \cdot e & =\top \\
1 \cdot e & =e \\
\perp \cdot e & =\perp
\end{aligned}
$$

Rigidly graded presentations [Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]

Each operation op has an arity $n \in \mathbb{N}$ and grade d
t_{1} has grade $e \quad \cdots \quad t_{n}$ has grade e $\operatorname{op}\left(t_{1}, \ldots, t_{n}\right)$ has grade $d \cdot e$

Rigidly graded presentations [Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]

Each operation op has an arity $n \in \mathbb{N}$ and grade d

$$
\frac{t_{1} \text { has grade } e \quad \cdots \quad t_{n} \text { has grade } e}{\operatorname{op}\left(t_{1}, \ldots, t_{n}\right) \text { has grade } d \cdot e}
$$

These work well mathematically, but:

$$
\frac{t_{1} \text { has grade } e_{1} \quad t_{2} \text { has grade } e_{2}}{\text { or }\left(t_{1}, t_{2}\right) \text { has grade }\left(e_{1} \sqcap e_{2}\right)} \text { ??? }
$$

For or, we must have $d \geq 1$, but then or(cut, return 14) will not have grade \perp

Flexibly graded presentations

$$
\begin{gathered}
\frac{t_{1} \text { has grade } d_{1}^{\prime} \cdot e \quad \cdots \quad t_{n} \text { has grade } d_{n}^{\prime} \cdot e}{\operatorname{op}\left(t_{1}, \ldots, t_{n}\right) \text { has grade } d \cdot e} \\
\frac{t_{1} \text { has grade } e_{1} \quad t_{2} \text { has grade } e_{2}}{\operatorname{or}\left(t_{1}, t_{2}\right) \text { has grade }\left(e_{1} \sqcap e_{2}\right)}
\end{gathered}
$$

Grading

Have an ordered monoid ($\mathbb{E}, 1, \cdot, \leq$) of grades $d, e \in \mathbb{E}$:

- a monoid ($\mathbb{E}, 1, \cdot$)
- with a partial order \leq on \mathbb{E}
- such that $(\cdot): \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{E}$ is monotone

Examples:

$$
\begin{aligned}
\top \cdot e & =\top \\
1 \cdot e & =e \\
\perp \cdot e & =\perp
\end{aligned}
$$

- Nondeterminism with cut: $(\mathbb{E}, \leq)=\{\perp \leq 1 \leq \top\}$
- Gifford-style effect systems: ($\mathcal{P}\{$ get, put, raise, $\ldots\}, \emptyset, \cup, \subseteq)$

Flexibly graded presentations

Syntax:

- a flexibly graded signature is a collection of operations
- given a signature Σ, generate terms

$$
x_{1}: d_{1}^{\prime}, \ldots, x_{n}: d_{n}^{\prime} \vdash t: d
$$

- a flexibly graded presentation is a signature Σ, with a collection E of equations
- given a presentation (Σ, E), have an equational logic

$$
\Gamma \vdash t \equiv u: d
$$

Semantics \leadsto graded monads

Terms and substitution

Terms in context:

$$
x_{1}: d_{1}^{\prime}, \ldots, x_{n}: d_{n}^{\prime} \vdash t: d
$$

Variables:

$$
\overline{x_{1}: d_{1}^{\prime}, \ldots, x_{n}: d_{n}^{\prime} \vdash x_{i}: d_{i}^{\prime}}
$$

Substitution:

$$
\frac{x_{1}: d_{1}^{\prime}, \ldots, x_{n}: d_{n}^{\prime} \vdash t: d \quad \Gamma \vdash u_{1}: d_{1}^{\prime} \cdot e \quad \cdots \quad \Gamma \vdash u_{n}: d_{n}^{\prime} \cdot e}{\Gamma \vdash t\left\{e ; x_{1} \mapsto u_{1}, \ldots, x_{n} \mapsto u_{n}\right\}: d \cdot e}
$$

A special case:

$$
\frac{x_{1}: 1, \ldots, x_{n}: 1 \vdash t: d \quad \Gamma \vdash u_{1}: e \quad \cdots \quad \Gamma \vdash u_{n}: e}{\Gamma \vdash t\left\{e ; x_{1} \mapsto u_{1}, \ldots, x_{n} \mapsto u_{n}\right\}: d \cdot e}
$$

$$
\frac{f:[n] \rightarrow \operatorname{Cut} Y e}{f_{d}^{\dagger}: \operatorname{Cut}[n] d \rightarrow \operatorname{Cut} Y(d \cdot e)}
$$

Flexibly graded signatures

Definition
A flexibly graded signature consists of a set

$$
\Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)
$$

for each $d_{1}^{\prime}, \ldots, d_{n}^{\prime}, d \in \mathbb{E}$.

Example

$$
\begin{aligned}
& \text { or } \left._{d_{1}, d_{2}} \in \Sigma\left(d_{1}, d_{2} ;\left(d_{1} \sqcap d_{2}\right)\right) \quad \text { (for each } d_{1}, d_{2} \in \mathbb{E}\right) \\
& \quad \text { fail } \in \Sigma(; T) \\
& \quad \text { cut } \in \Sigma(; \perp)
\end{aligned}
$$

Terms

Given a signature Σ, generate terms by

$$
\begin{gathered}
\frac{(x: d) \in \Gamma}{\Gamma \vdash x: d} \quad \frac{d \leq d^{\prime} \quad \Gamma \vdash t: d}{\Gamma \vdash\left(d \leq d^{\prime}\right)^{*} t: d^{\prime}} \\
\frac{\mathrm{op} \in \sum\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right) \quad \Gamma \vdash t_{1}: d_{1}^{\prime} \cdot e \cdots \quad \Gamma \vdash t_{n}: d_{n}^{\prime} \cdot e}{\Gamma \vdash \mathrm{op}\left(e ; t_{1}, \ldots, t_{n}\right): d \cdot e}
\end{gathered}
$$

Substitution:

$$
\begin{aligned}
& \left(\operatorname{op}\left(e ; t_{1}, \ldots, t_{n}\right)\right)\left\{e^{\prime} ; x_{1} \mapsto u_{1}, \ldots\right\} \\
& \quad=\operatorname{op}\left(e \cdot e^{\prime} ; t_{1}\left\{e^{\prime} ; x_{1} \mapsto u_{1}, \ldots\right\}, \ldots, t_{n}\left\{e^{\prime} ; x_{1} \mapsto u_{1}, \ldots\right\}\right)
\end{aligned}
$$

Terms

Given a signature Σ, generate terms by

$$
\begin{gathered}
\frac{(x: d) \in \Gamma}{\Gamma \vdash x: d} \quad \frac{d \leq d^{\prime} \quad \Gamma \vdash t: d}{\Gamma \vdash\left(d \leq d^{\prime}\right)^{*} t: d^{\prime}} \\
\frac{\mathrm{op} \in \Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right) \quad \Gamma \vdash t_{1}: d_{1}^{\prime} \cdot e \cdots \quad \Gamma \vdash t_{n}: d_{n}^{\prime} \cdot e}{\Gamma \vdash \mathrm{op}\left(e ; t_{1}, \ldots, t_{n}\right): d \cdot e}
\end{gathered}
$$

Example

$$
\begin{array}{cc}
\frac{\Gamma \vdash t_{1}: d_{1}^{\prime} \cdot e \quad \Gamma \vdash t_{2}: d_{2}^{\prime} \cdot e}{\Gamma \vdash \operatorname{or}_{d_{1}^{\prime}, d_{2}^{\prime}}^{\prime}\left(e ; t_{1}, t_{2}\right):\left(d_{1}^{\prime} \sqcap d_{2}^{\prime}\right) \cdot e\left(=\left(d_{1}^{\prime} \cdot e\right) \sqcap\left(d_{2}^{\prime} \cdot e\right)\right)} & \left(\operatorname{or}_{\left.d_{1}^{\prime}, d_{2}^{\prime} \in \Sigma\left(d_{1}^{\prime}, d_{2}^{\prime} ;\left(d_{1}^{\prime} \sqcap d_{2}^{\prime}\right)\right)\right)}^{\overline{\Gamma \vdash \text { fail }(e ;): \top \cdot e(=\mathrm{T})}}\right. \\
\overline{\Gamma \vdash \operatorname{cut}(e ;): \perp \cdot e(=\perp)} & (\text { fail } \in \Sigma(; \mathrm{T})) \\
& (\operatorname{cut} \in \Sigma(; \perp))
\end{array}
$$

Flexibly graded presentations

Definition

A flexibly graded presentation consists of

- a signature Σ
- for each $d_{1}^{\prime}, \ldots, d_{n}^{\prime}, d \in \mathbb{E}$, a set $E\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$ of equations

$$
x_{1}: d_{1}^{\prime}, \ldots, x_{n}: d_{n}^{\prime} \vdash t \equiv u: d
$$

Example

$$
\begin{gathered}
x: e_{1} \cdot d, y: e_{2} \cdot d \vdash \operatorname{or}_{e_{1}, e_{2}}(d ; x, y) \equiv \operatorname{or}_{e_{1} \cdot d, e_{2} \cdot d}(1 ; x, y):\left(e_{1} \sqcap e_{2}\right) \cdot d \\
x: e_{1}, y: e_{2} \vdash\left(e_{1} \sqcap e_{2} \leq e_{1}^{\prime} \sqcap e_{2}^{\prime}\right)^{*}\left(\operatorname{or}_{e_{1}, e_{2}}(1 ; x, y)\right) \equiv \operatorname{or}_{e_{1}, e_{2}}\left(1 ;\left(e_{1} \leq e_{1}^{\prime}\right)^{*} x,\left(e_{2} \leq e_{2}^{\prime}\right)^{*} y\right): e_{1}^{\prime} \sqcap e_{2}^{\prime} \\
x: e \vdash \operatorname{or}_{\mathrm{T}, e}\left(1 ; \operatorname{fail}^{\prime}(1 ;), x\right) \equiv x: e \quad x: e \vdash x \equiv \operatorname{or}_{e, \mathrm{~T}}(1 ; x, \operatorname{fail}(1 ;)): e \\
x: e_{1}, y: e_{2}, z: e_{3} \vdash \operatorname{or}_{e_{1} \sqcap e_{2}, e_{3}}\left(1 ; \operatorname{or}_{e_{1}, e_{2}}(1 ; x, y), z\right) \equiv \operatorname{or}_{e_{1}, e_{2} \sqcap e_{3}}\left(1 ; x, \operatorname{or}_{e_{2}, e_{3}}(1 ; y, z)\right): e \\
x: \perp, y: e \vdash \operatorname{or}_{\perp, e}(1 ; x, y) \equiv x: \perp
\end{gathered}
$$

Example: stacks of booleans

A grading of a presentation from [Goncharov '13]:

- Grades: $(\mathbb{N}, 0,+, \leq) \quad$ (has grade $e \in \mathbb{N}=$ pushes at most e values)
- Operations:

$$
\begin{array}{cc}
\operatorname{push}_{v} \in \Sigma(0 ; 1) & \frac{\Gamma \vdash t: e}{\Gamma \vdash \operatorname{push}_{v}(e ; t): 1+e} \\
\operatorname{pop} \in \Sigma(0,1,1 ; 0) & \frac{\Gamma \vdash t_{\text {empty }}: e}{\Gamma \vdash u_{\text {true }}: 1+e \quad \Gamma \vdash u_{\text {false }}: 1+e} \\
\Gamma \vdash \operatorname{pop}\left(e ; t_{\text {empty }}, u_{\text {true }}, u_{\text {false }}\right): e
\end{array}
$$

- Equations:

$$
\begin{aligned}
\operatorname{push}_{\text {true }}\left(0 ; \operatorname{pop}\left(0 ; x, y_{\text {true }}, y_{\text {false }}\right)\right) & \equiv y_{\text {true }} \\
\operatorname{push}_{\text {false }}\left(0 ; \operatorname{pop}\left(0 ; x, y_{\text {true }}, y_{\text {false }}\right)\right) & \equiv y_{\text {false }} \\
\operatorname{pop}\left(0 ; x, \operatorname{push}_{\text {true }}(0 ; x), \operatorname{push}_{\text {false }}(0 ; x)\right) & \equiv x \\
\operatorname{pop}\left(0 ; \operatorname{pop}\left(0 ; x, y_{\text {true }}, y_{\text {false }}\right), z_{\text {true }}, z_{\text {false }}\right) & \equiv \operatorname{pop}\left(0 ; x, z_{\text {true }}, z_{\text {false }}\right)
\end{aligned}
$$

Flexibly graded equational logic

Generate

$$
\Gamma \vdash t \equiv u: d
$$

by reflexivity, transitivity, symmetry, congruence, naturality of operations, functoriality of $(-)^{*}$, and

$$
\frac{(t, u) \in E\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right) \quad \Gamma \vdash s_{1}: d_{1}^{\prime} \cdot e \cdots \Gamma \vdash s_{n}: d_{n}^{\prime} \cdot e}{\Gamma \vdash t\left\{e ; x_{1} \mapsto s_{1}, \ldots, x_{n} \mapsto s_{n}\right\} \equiv u\left\{e ; x_{1} \mapsto s_{1}, \ldots, x_{n} \mapsto s_{n}\right\}: d \cdot e}
$$

Example: using push true $\left(0 ; \operatorname{pop}\left(0 ; x, y_{\text {true }}, y_{\text {false }}\right)\right) \equiv y_{\text {true }}$ we have

$$
\frac{\Gamma \vdash t: e \quad \Gamma \vdash u_{\text {true }}: 1+e \quad \Gamma \vdash u_{\mathrm{false}}: 1+e}{\Gamma \vdash \operatorname{push}_{\text {true }}\left(e ; \operatorname{pop}\left(e ; t, u_{\mathrm{true}}, u_{\mathrm{false}}\right)\right) \equiv u_{\mathrm{true}}: 1+e}
$$

Graded sets

Definition

A graded set X is a functor $X:(\mathbb{E}, \leq) \rightarrow$ Set:

- a set $X e$ for each $e \in \mathbb{E}$ (elements of X of grade e)
- a function $\left(e \leq e^{\prime}\right)^{*}: X e \rightarrow X e^{\prime}$ for each $e \leq e^{\prime} \in \mathbb{E}$
such that $X(e \leq e)=\operatorname{id}$ and $X\left(e^{\prime} \leq e^{\prime \prime}\right) \circ X\left(e \leq e^{\prime}\right)=X\left(e \leq e^{\prime \prime}\right)$.

Example: for each presentation (Σ, E) and context Γ

$$
\operatorname{Tm}_{(\Sigma, E)} \Gamma e=\left\{[t]_{\equiv} \mid \Gamma \vdash t: e\right\}
$$

Graded monads

Definition (Smirnov '08, Melliès '12, Katsumata '14)
A graded monad T (on Set) consists of:

- a graded set TX for each (ungraded) set X
- unit functions $\eta_{X}: X \rightarrow T X 1$
- Kleisli extension $\frac{f: X \rightarrow T Y e}{f_{d}^{\dagger}: T X d \rightarrow T Y(d \cdot e)}$ natural in d, e
satisfying some laws

Example

Cut is a graded monad:

$$
\begin{array}{cc}
\text { Cut } X e=\{(\mathrm{xs}, c) \in \operatorname{List} X \times\{\text { cut, nocut }\} & \eta_{X} x=([x], \text { nocut }) \\
\mid(e=\perp \Rightarrow c=\mathrm{cut}) & f_{d}^{\dagger}\left(\left[x_{1}, \ldots, x_{n}\right], c\right)=f x_{1} \oplus \cdots \oplus f x_{n} \oplus([], c) \\
\wedge(e=1 \Rightarrow c=\mathrm{cut} \vee \mathrm{xs} \neq[])\} & (\mathrm{ys}, \mathrm{cut}) \oplus\left(\mathrm{ys}^{\prime}, c\right)=(\mathrm{ys}, \mathrm{cut}) \\
& (\mathrm{ys}, \mathrm{nocut}) \oplus\left(\mathrm{ys}^{\prime}, c\right)=\left(\mathrm{ys}+\mathrm{ys}^{\prime}, c\right)
\end{array}
$$

Algebraic operations

Definition

A $\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$-ary algebraic operation for a graded monad T is a family of functions

$$
\alpha_{X, e}: \prod_{i} T X\left(d_{i}^{\prime} \cdot e\right) \rightarrow T X(d \cdot e)
$$

natural in e and satisfying

$$
f_{d \cdot e}^{\dagger}\left(\alpha_{X, e}\left(t_{1}, \ldots, t_{n}\right)\right)=\alpha_{Y, e \cdot e^{\prime}}\left(f_{d_{1}^{\prime} \cdot e}^{\dagger} t_{1}, \ldots, f_{d_{n}^{\prime} \cdot e^{\prime}}^{\dagger} t_{n}\right) \quad\left(f: X \rightarrow T Y e^{\prime}\right)
$$

Example

For the graded monad Cut, we have

$$
\begin{gathered}
\llbracket \mathrm{or}_{d_{1}^{\prime}, d_{2}^{\prime}} \|_{X, e}=(\oplus): \operatorname{Cut} X\left(d_{1}^{\prime} \cdot e\right) \times \operatorname{Cut} X\left(d_{2}^{\prime} \cdot e\right) \rightarrow \operatorname{Cut} X\left(\left(d_{1}^{\prime} \sqcap d_{2}^{\prime}\right) \cdot e\right) \\
\llbracket \text { fail } \rrbracket_{X, e}=\left(\lambda_{-} \cdot([], \operatorname{nocut})\right): 1 \rightarrow \operatorname{Cut} X(\top \cdot e) \\
\llbracket \mathrm{cut} \rrbracket_{X, e}=\left(\lambda _\cdot([], \mathrm{cut})\right): 1 \rightarrow \operatorname{Cut} X(\perp \cdot e)
\end{gathered}
$$

Presenting graded monads

Given a flexibly graded presentation (Σ, E), we want

- a graded monad $T_{(\Sigma, E)}$
- with a $\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$-ary algebraic operation

$$
\llbracket \mathrm{op} \rrbracket_{X, e}: \prod_{i} T_{(\Sigma, E)} X\left(d_{i}^{\prime} \cdot e\right) \rightarrow T_{(\Sigma, E)} X(d \cdot e)
$$

for each op $\in \Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$ (satisfying equations)

- that is in some sense canonical

Algebras

If (Σ, E) is a flexibly graded presentation, a (Σ, E)-algebra $(A, \llbracket-\rrbracket)$ is

- a graded set A
- with a natural family of functions

$$
\llbracket \mathrm{op} \rrbracket_{e}: \prod_{i} A\left(d_{i}^{\prime} \cdot e\right) \rightarrow A(d \cdot e)
$$

for each op $\in \Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$

- such that

$$
\llbracket t \rrbracket_{e}=\llbracket u \rrbracket_{e}: \prod_{i} A\left(d_{i}^{\prime} \cdot e\right) \rightarrow A(d \cdot e)
$$

for each $e \in \mathbb{E}$ and axiom $x_{1}: d_{1}^{\prime}, \ldots, x_{n}: d_{n}^{\prime} \vdash t \equiv u: d$

Example

- $T_{(\Sigma, E)} X$, with algebraic operations $\llbracket \mathrm{op} \rrbracket_{X}$
- $\operatorname{Tm}_{(\Sigma, E)} \Gamma$, with $\llbracket \mathrm{op} \rrbracket_{e}\left(\left[t_{1}\right]_{\equiv}, \ldots,\left[t_{n}\right]_{\equiv}\right)=\left[\mathrm{op}\left(e ; t_{1}, \ldots, t_{n}\right)\right]_{\equiv}$

The equational logic is sound and complete:

$$
\Gamma \vdash t \equiv u: d \quad \Leftrightarrow \quad \text { for all }(\Sigma, E) \text {-algebras }(A, \llbracket-\rrbracket), \llbracket t \rrbracket=\llbracket u \rrbracket
$$

Algebras

If (Σ, E) is a flexibly graded presentation, a (Σ, E)-algebra $(A, \llbracket-\rrbracket)$ is

- a graded set A
- with a natural family of functions

$$
\llbracket \mathrm{op} \rrbracket_{e}: \prod_{i} A\left(d_{i}^{\prime} \cdot e\right) \rightarrow A(d \cdot e)
$$

for each op $\in \Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$

- such that

$$
\llbracket t \rrbracket_{e}=\llbracket u \rrbracket_{e}: \prod_{i} A\left(d_{i}^{\prime} \cdot e\right) \rightarrow A(d \cdot e)
$$

for each $e \in \mathbb{E}$ and axiom $x_{1}: d_{1}^{\prime}, \ldots, x_{n}: d_{n}^{\prime} \vdash t \equiv u: d$

A morphism $f:(A, \llbracket-\rrbracket) \rightarrow\left(A^{\prime}, \llbracket-\rrbracket^{\prime}\right)$ is a natural family of functions

$$
f_{d}: A d \rightarrow A^{\prime} d
$$

preserving 【op】

Algebras

If (Σ, E) is a flexibly graded presentation, a (Σ, E)-algebra $(A, \llbracket-\rrbracket)$ is

- a graded set A
- with a natural family of functions

$$
\llbracket \mathrm{op} \rrbracket_{e}: \prod_{i} A\left(d_{i}^{\prime} \cdot e\right) \rightarrow A(d \cdot e)
$$

for each op $\in \Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$

- such that

$$
\llbracket t \rrbracket_{e}=\llbracket u \rrbracket_{e}: \prod_{i} A\left(d_{i}^{\prime} \cdot e\right) \rightarrow A(d \cdot e)
$$

for each $e \in \mathbb{E}$ and axiom $x_{1}: d_{1}^{\prime}, \ldots, x_{n}: d_{n}^{\prime} \vdash t \equiv u: d$

A morphism $f:(A, \llbracket-\rrbracket)-e \rightarrow\left(A^{\prime}, \llbracket-\rrbracket^{\prime}\right)$ of grade e is a natural family of functions

$$
f_{d}: A d \rightarrow A^{\prime}(d \cdot e)
$$

preserving 【op】

Locally graded categories [Wood '76]

Definition

A locally graded category C consists of

- a collection $|C|$ of objects
- graded sets $C(X, Y)$ of morphisms $\quad(f: X-e \rightarrow Y$ means $f \in C(X, Y) e)$
- identities $\operatorname{id}_{X}: X-1 \rightarrow X$
- composition

$$
\frac{f: X-e \rightarrow Y \quad g: Y-e^{\prime} \rightarrow Z}{g \circ f: X-e \cdot e^{\prime} \rightarrow Z}
$$

natural in e, e^{\prime}
such that

$$
\operatorname{id}_{Y} \circ f=f=f \circ \operatorname{id}_{X} \quad(h \circ g) \circ f=h \circ(g \circ f)
$$

(These are categories enriched over $[\mathbb{E}$, Set $]$ with Day convolution)

Locally graded categories

Every graded monad T has a locally graded Kleisli category $\mathrm{Kl}(\mathrm{T})$:

- Objects are sets X
- Morphisms $f: X-e \rightarrow Y$ are functions $f: X \rightarrow$ TYe

The locally graded category GSet:

- Objects are graded sets
- Morphisms $f: X-e \rightarrow Y$ are families of functions $f_{d}: X d \rightarrow Y(d \cdot e)$, natural in d
- Identities are the identity functions
- Composition $g \circ f$ is

$$
(g \circ f)_{d}: X d \xrightarrow{f_{d}} Y(d \cdot e) \xrightarrow{g_{d \cdot e}} Z\left(d \cdot e \cdot e^{\prime}\right)
$$

$\operatorname{Alg}(\Sigma, E)$:

- Objects are (Σ, E)-algebras
- Morphisms are as in GSet, but preserving 【-】
- Identities and composition: as in GSet

Functors

Definition

A functor $F: C \rightarrow \mathcal{D}$ between locally graded categories is an object mapping $F:|C| \rightarrow|\mathcal{D}|$ with a mapping of morphisms

$$
\frac{f: X-e \rightarrow Y}{F f: F X-e \rightarrow F Y}
$$

natural in e, and preserving identities and composition.

There is a forgetful functor

$$
\begin{aligned}
U_{(\Sigma, E)}: \operatorname{Alg}(\Sigma, E) & \rightarrow \mathrm{GSet} \\
(A, \llbracket-\rrbracket) & \mapsto A \\
f & \mapsto f
\end{aligned}
$$

Algebra

An (Eilenberg-Moore) algebra for a graded monad T is

- a graded set A
- with an extension operator

$$
\frac{f: X \rightarrow A e}{f_{d}^{\ddagger}: T X d \rightarrow A(d \cdot e)}
$$

- satisfying some laws

These form a locally graded category, with a forgetful functor:

$$
U_{\mathrm{T}}: \mathrm{EM}(\mathrm{~T}) \rightarrow \text { GSet }
$$

Presenting graded monads

Theorem

For every flexibly graded presentation (Σ, E), there is

- a graded monad $\mathrm{T}_{(\Sigma, E)}$
- and functor $R_{(\Sigma, E)}: \operatorname{Alg}(\Sigma, E) \rightarrow \operatorname{EM}\left(\mathrm{T}_{(\Sigma, E)}\right)$ over GSet
such that
- $\left(T_{(\Sigma, E)} X,(-)^{\dagger}\right)=R_{(\Sigma, E)}\left(T_{(\Sigma, E)} X, \llbracket-\rrbracket_{X}\right)$ for some $\llbracket-\rrbracket_{X}$
- for every graded monad T^{\prime} and functor $R^{\prime}: \operatorname{Alg}(\Sigma, E) \rightarrow \mathrm{EM}\left(\mathrm{T}^{\prime}\right)$ over GSet, there is a unique $F: \operatorname{EM}\left(\mathrm{T}_{(\Sigma, E)}\right) \rightarrow \mathrm{EM}\left(\mathrm{T}^{\prime}\right)$ over GSet such that

Presenting graded monads

For the presentation of nondeterminism with Cut

$$
\mathrm{T}_{(\Sigma, E)} \cong \mathrm{Cut}
$$

with algebraic operations $\llbracket \mathrm{cut}_{d_{1}^{\prime}, d_{2}^{\prime}} \rrbracket, \llbracket$ fail $\rrbracket, \llbracket \mathrm{cut} \rrbracket$

For the presentation of stacks of booleans:

$$
\begin{aligned}
& T_{(\Sigma, E)} X e \cong \operatorname{Stk} X e \cong\{t: \operatorname{List} 2 \rightarrow \operatorname{List} 2 \times X \mid(\forall \mathrm{vs} .|\operatorname{fst}(t \mathrm{vs})| \leq|\mathrm{vs}|+e) \wedge \cdots\} \\
& \llbracket \text { push }_{v} \rrbracket_{X, e}: \operatorname{Stk} X e \rightarrow \operatorname{Stk} X(1+e) \\
& \llbracket \text { push }_{v} \rrbracket_{X, e} t \text { vs }=t(v:: \text { vs }) \\
& \llbracket \mathrm{pop} \rrbracket_{X, e}: \operatorname{Stk} X e \times \operatorname{Stk} X(1+e) \times \operatorname{Stk} X(1+e) \rightarrow \operatorname{Stk} X e \\
& \llbracket \text { pop } \rrbracket_{X, e}\left(t_{\text {empty }}, u_{\text {true }}, u_{\text {false }}\right) \text { vs }= \begin{cases}t_{\text {empty }}[] & \text { if vs }=[] \\
u_{\text {head vs }}(\text { tail vs }) & \text { otherwise }\end{cases}
\end{aligned}
$$

Constructing $T_{(\Sigma, E)}$

flexibly graded presentations

$$
(\Sigma, E) \mapsto \operatorname{Tm}_{(\Sigma, E)} \downarrow
$$

flexibly graded clones
left Kan extension along
FCtx \rightarrow GSet \downarrow
flexibly graded monads
$=$ sets of terms, with variables and substitution
compose with
Free $($ Set $) \rightarrow$ GSet
graded monads

Constructing $T_{(\Sigma, E)}$

flexibly graded presentations

flexibly graded clones

flexibly graded monads
preserving conical sifted colimits

$$
\uparrow \dashv \downarrow \begin{gathered}
\text { compose with } \\
\text { Free }(\text { Set }) \rightarrow \text { GSet }
\end{gathered}
$$

graded monads
preserving conical sifted colimits
algebraic theories and relative monads are closely connected (jww Nathanael Arkor)
$=($ FCtx \rightarrow GSet $)$-relative monad

- monad on GSet preserving conical sifted colimits
(Free(Set) \rightarrow GSet)-relative monad preserving conical sifted colimits

Given a flexibly graded presentation (Σ, E), there is

- a graded monad $T_{(\Sigma, E)}$
- with a ($d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d$)-ary algebraic operation

$$
\llbracket \mathrm{op} \rrbracket_{X, e}: \prod_{i} T_{(\Sigma, E)} X\left(d_{i}^{\prime} \cdot e\right) \rightarrow T_{(\Sigma, E)} X(d \cdot e)
$$

for each op $\in \Sigma\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime} ; d\right)$ (satisfying equations)

- that is in some sense canonical

Every graded monad that preserves conical sifted colimits has a flexibly graded presentation

Some of this is available at
https://dylanm.org/drafts/flexibly-graded-monads.pdf

