Flexible presentations of graded monads

Shin-ya Katsumata Dylan McDermott Tarmo Uustalu Nicolas Wu

Motivation

- 1. Effects can be modelled using monads
- 2. which often come from presentations
- 3. which induce algebraic operations

[Moggi '89] [Plotkin and Power '02]

[Plotkin and Power '03]

Motivation

- 1. Effects can be modelled using monads
- 2. which often come from presentations
- 3. which induce algebraic operations

[Moggi '89] [Plotkin and Power '02]

[Plotkin and Power '03]

Example:

- $1. \ \mbox{Nondeterminism}$ can be modelled using List
- 2. which comes from the presentation of monoids

fail: 0 or: 2or(fail, x) = x = or(x, fail) or(or(x, y), z) = or(x, or(y, z))

3. which induces algebraic operations

$$fail_X = (\lambda_. []) : 1 \to \text{List} X$$
$$or_X = (\lambda(xs, ys). xs + ys) : \text{List} X \times \text{List} X \to \text{List} X$$

Motivation

1. Effects with quantitative information can be modelled using graded monads

[Katsumata '14]

2. which often come from graded presentations?

[Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]

3. which induce algebraic operations?

These computations can be modelled using a monad Cut

 $\operatorname{Cut} X = \operatorname{List} X \times \{\operatorname{cut}, \operatorname{nocut}\}$

which has a presentation involving or : 2, fail : 0, cut : 0 [Piróg and Staton '17]

 $or(t, u) \equiv t$ if t cuts

Assign grades $e \in \{\bot, 1, \top\}$ to computations:

Ŧ	don't know anything $\underline{\qquad}$ return x has grade 1	t_1 has grade e_1	t_2 has grade e_2	
vi Vi		return x has grade 1	$\texttt{or}(t_1, t_2)$ has grade $(e_1 \sqcap e_2)$	
1	definitely cuts or returns something	t has grade $e e \leq e'$	failhas	grade ⊤
VI		t has grade e'	cut has	grade
\bot	definitely cuts		Cutinas	grade ±

Then:

 $or(t, u) \equiv t$ if t has grade \perp

Assign grades $e \in \{\bot, 1, \top\}$ to computations:

Graded monad Cut:

 \top don't know anything

vi
definitely cuts
1 or returns something
vi

 $CutXe = \{(xs, c) \in ListX \times \{cut, nocut\} \\ | (e = \bot \Rightarrow c = cut) \\ \land (e = 1 \Rightarrow c = cut \lor xs \neq [])\}$

Kleisli extension:

 \perp definitely cuts

$$\frac{f: X \to \operatorname{Cut} Y e}{f_d^{\dagger}: \operatorname{Cut} X d \to \operatorname{Cut} Y (d \cdot e)} \quad \begin{array}{ccc} & \top \cdot e & = & \top \\ & 1 \cdot e & = & e \\ & \bot \cdot e & = & \bot \end{array}$$

Rigidly graded presentations [Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]

Each operation op has an arity $n \in \mathbb{N}$ and grade d

 $\frac{t_1 \text{ has grade } e \quad \cdots \quad t_n \text{ has grade } e}{\operatorname{op}(t_1, \dots, t_n) \text{ has grade } d \cdot e}$

Rigidly graded presentations [Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]

Each operation op has an arity $n \in \mathbb{N}$ and grade d

 $\frac{t_1 \text{ has grade } e \quad \cdots \quad t_n \text{ has grade } e}{\operatorname{op}(t_1, \dots, t_n) \text{ has grade } d \cdot e}$

These work well mathematically, but:

$$\frac{t_1 \text{ has grade } e_1 \qquad t_2 \text{ has grade } e_2}{\text{or}(t_1, t_2) \text{ has grade } (e_1 \sqcap e_2)} \quad \regap{2.5}$$

For or, we must have $d \ge 1$, but then or(cut, return 14) will not have grade \perp

Flexibly graded presentations

 $\frac{t_1 \text{ has grade } d'_1 \cdot e \quad \cdots \quad t_n \text{ has grade } d'_n \cdot e}{\operatorname{op}(t_1, \dots, t_n) \text{ has grade } d \cdot e}$

 $\frac{t_1 \text{ has grade } e_1 \qquad t_2 \text{ has grade } e_2}{\text{or}(t_1, t_2) \text{ has grade } (e_1 \sqcap e_2)}$

Grading

Have an ordered monoid $(\mathbb{E}, 1, \cdot, \leq)$ of grades $d, e \in \mathbb{E}$:

- ▶ a monoid $(\mathbb{E}, 1, \cdot)$
- ▶ with a partial order \leq on \mathbb{E}
- such that $(\cdot) : \mathbb{E} \times \mathbb{E} \to \mathbb{E}$ is monotone

Examples:

► Nondeterminism with cut:
$$(\mathbb{E}, \leq) = \{ \perp \leq 1 \leq \top \}$$

 $\downarrow \cdot e = \perp$
 $\downarrow \cdot e = \perp$

▶ Gifford-style effect systems: $(\mathcal{P} \{ \texttt{get}, \texttt{put}, \texttt{raise}, \dots \}, \emptyset, \cup, \subseteq)$

Flexibly graded presentations

Syntax:

- a flexibly graded signature is a collection of operations
- given a signature Σ , generate terms

$$x_1: d'_1, \ldots, x_n: d'_n \vdash t: d$$

- \blacktriangleright a flexibly graded presentation is a signature Σ , with a collection E of equations
- given a presentation (Σ, E) , have an equational logic

 $\Gamma \vdash t \equiv u : d$

Semantics \rightsquigarrow graded monads

Terms and substitution

Terms in context:

$$x_1: d'_1, \ldots, x_n: d'_n \vdash t: d$$

Variables:

$$x_1: d'_1, \ldots, x_n: d'_n \vdash x_i: d'_i$$

Substitution:

$$\frac{x_1:d'_1,\ldots,x_n:d'_n\vdash t:d\quad \Gamma\vdash u_1:d'_1\cdot e\quad \cdots\quad \Gamma\vdash u_n:d'_n\cdot e}{\Gamma\vdash t\{e;x_1\mapsto u_1,\ldots,x_n\mapsto u_n\}:d\cdot e}$$

A special case:

$$\frac{x_1:1,\ldots,x_n:1\vdash t:d\quad\Gamma\vdash u_1:e\quad\cdots\quad\Gamma\vdash u_n:e}{\Gamma\vdash t\{e;x_1\mapsto u_1,\ldots,x_n\mapsto u_n\}:d\cdot e}\qquad \frac{f:[n]\to\operatorname{Cut}Ye}{f_d^{\dagger}:\operatorname{Cut}[n]\,d\to\operatorname{Cut}Y(d\cdot e)}$$

Flexibly graded signatures

Definition A *flexibly graded signature* consists of a set

 $\Sigma(d'_1,\ldots,d'_n;d)$

for each $d'_1, \ldots, d'_n, d \in \mathbb{E}$.

Example

$$\begin{aligned} & \operatorname{or}_{d_1,d_2} \in \Sigma(d_1,d_2;(d_1 \sqcap d_2)) & \quad \left(\text{for each } d_1,d_2 \in \mathbb{E} \right) \\ & \text{fail} \in \Sigma(\ ; \top) \\ & \text{cut} \in \Sigma(\ ; \bot) \end{aligned}$$

Terms

Given a signature Σ , generate terms by

$$\frac{(x:d) \in \Gamma}{\Gamma \vdash x:d} \qquad \frac{d \leq d' \quad \Gamma \vdash t:d}{\Gamma \vdash (d \leq d')^* t:d'}$$
$$\frac{\operatorname{op} \in \Sigma(d'_1, \dots, d'_n; d) \qquad \Gamma \vdash t_1: d'_1 \cdot e \quad \dots \quad \Gamma \vdash t_n: d'_n \cdot e}{\Gamma \vdash \operatorname{op}(e; t_1, \dots, t_n): d \cdot e}$$

Substitution:

$$(op(e; t_1, ..., t_n)) \{ e'; x_1 \mapsto u_1, ... \}$$

= op(e:e'; t_1 {e'; x_1 \mapsto u_1, ... }, ..., t_n {e'; x_1 \mapsto u_1, ... })

Terms

Given a signature Σ , generate terms by

$$\begin{aligned} \frac{(x:d) \in \Gamma}{\Gamma \vdash x:d} & \frac{d \leq d' \quad \Gamma \vdash t:d}{\Gamma \vdash (d \leq d')^* t:d'} \\ \frac{\operatorname{op} \in \Sigma(d'_1, \dots, d'_n; d) \qquad \Gamma \vdash t_1: d'_1 \cdot e \quad \cdots \quad \Gamma \vdash t_n: d'_n \cdot e}{\Gamma \vdash \operatorname{op}(e; t_1, \dots, t_n): d \cdot e} \\ \end{aligned}$$
Example
$$\begin{aligned} \frac{\Gamma \vdash t_1: d'_1 \cdot e \qquad \Gamma \vdash t_2: d'_2 \cdot e}{\Gamma \vdash \operatorname{or}_{d'_1, d'_2}(e; t_1, t_2) : (d'_1 \sqcap d'_2) \cdot e \ (= (d'_1 \cdot e) \sqcap (d'_2 \cdot e))} \quad (\operatorname{or}_{d'_1, d'_2} \in \Sigma(d'_1, d'_2; (d'_1 \sqcap d'_2))) \\ \\ \overline{\Gamma \vdash \operatorname{fail}(e; \): \top \cdot e \ (= \top)} \qquad (\operatorname{fail} \in \Sigma(\ ; \top)) \\ \\ \overline{\Gamma \vdash \operatorname{cut}(e; \): \bot \cdot e \ (= \bot)} \qquad (\operatorname{cut} \in \Sigma(\ ; \bot)) \end{aligned}$$

Flexibly graded presentations

Definition

A flexibly graded presentation consists of

 \blacktriangleright a signature Σ

▶ for each $d'_1, \ldots, d'_n, d \in \mathbb{E}$, a set $E(d'_1, \ldots, d'_n; d)$ of equations

 $x_1:d'_1,\ldots,x_n:d'_n\vdash t\equiv u:d$

Example

$$\begin{split} x: e_1 \cdot d, y: e_2 \cdot d \vdash \operatorname{or}_{e_1, e_2}(d; x, y) &\equiv \operatorname{or}_{e_1 \cdot d, e_2 \cdot d}(1; x, y) : (e_1 \sqcap e_2) \cdot d \\ x: e_1, y: e_2 \vdash (e_1 \sqcap e_2 \leq e'_1 \sqcap e'_2)^* (\operatorname{or}_{e_1, e_2}(1; x, y)) &\equiv \operatorname{or}_{e_1, e_2}(1; (e_1 \leq e'_1)^* x, (e_2 \leq e'_2)^* y) : e'_1 \sqcap e'_2 \\ x: e \vdash \operatorname{or}_{\top, e}(1; \mathsf{fail}(1; \), x) &\equiv x: e \qquad x: e \vdash x \equiv \operatorname{or}_{e, \top}(1; x, \mathsf{fail}(1; \)) : e \\ x: e_1, y: e_2, z: e_3 \vdash \operatorname{or}_{e_1 \sqcap e_2, e_3}(1; \operatorname{or}_{e_1, e_2}(1; x, y), z) &\equiv \operatorname{or}_{e_1, e_2 \sqcap e_3}(1; x, \operatorname{or}_{e_2, e_3}(1; y, z)) : e \\ x: \bot, y: e \vdash \operatorname{or}_{\bot, e}(1; x, y) &\equiv x: \bot \end{split}$$

Example: stacks of booleans

A grading of a presentation from [Goncharov '13]:

- (has grade $e \in \mathbb{N} =$ pushes at most e values) • Grades: $(\mathbb{N}, 0, +, \leq)$
- Operations:

$$\begin{aligned} \mathsf{push}_v \in \Sigma(0;1) & \frac{\Gamma \vdash t:e}{\Gamma \vdash \mathsf{push}_v(e;t):1+e} & (v \in \{\mathsf{true},\mathsf{false}\}) \\ \mathsf{pop} \in \Sigma(0,1,1;0) & \frac{\Gamma \vdash t_{\mathsf{empty}}:e}{\Gamma \vdash \mathsf{pop}(e;t_{\mathsf{empty}},u_{\mathsf{true}},u_{\mathsf{false}}):e} \end{aligned}$$

Equations:

> $push_{true}(0; pop(0; x, u_{true}, u_{false})) \equiv u_{true}$ $push_{false}(0; pop(0; x, y_{true}, y_{false})) \equiv y_{false}$ $pop(0; x, push_{true}(0; x), push_{false}(0; x)) \equiv x$ $pop(0; pop(0; x, u_{true}, u_{false}), z_{true}, z_{false}) \equiv pop(0; x, z_{true}, z_{false})$

Flexibly graded equational logic

Generate

$$\Gamma \vdash t \equiv u : d$$

by reflexivity, transitivity, symmetry, congruence, naturality of operations, functoriality of $(-)^*$, and

$$\frac{(t,u) \in E(d'_1,\ldots,d'_n;d) \qquad \Gamma \vdash s_1 : d'_1 \cdot e \ \cdots \ \Gamma \vdash s_n : d'_n \cdot e}{\Gamma \vdash t\{e; x_1 \mapsto s_1,\ldots,x_n \mapsto s_n\} \equiv u\{e; x_1 \mapsto s_1,\ldots,x_n \mapsto s_n\} : d \cdot e}$$

Example: using $push_{true}(0; pop(0; x, y_{true}, y_{false})) \equiv y_{true}$ we have

$$\frac{\Gamma \vdash t : e \quad \Gamma \vdash u_{\mathsf{true}} : 1 + e \quad \Gamma \vdash u_{\mathsf{false}} : 1 + e}{\Gamma \vdash \mathsf{push}_{\mathsf{true}}(e; \mathsf{pop}(e; t, u_{\mathsf{true}}, u_{\mathsf{false}})) \equiv u_{\mathsf{true}} : 1 + e}$$

Graded sets

Definition

A graded set X is a functor $X : (\mathbb{E}, \leq) \rightarrow$ Set:

- ▶ a set Xe for each $e \in \mathbb{E}$ (elements of X of grade e)
- ▶ a function $(e \le e')^* : Xe \to Xe'$ for each $e \le e' \in \mathbb{E}$

such that $X(e \le e) = \text{id}$ and $X(e' \le e'') \circ X(e \le e') = X(e \le e'')$.

Example: for each presentation (Σ, E) and context Γ

 $\mathrm{Tm}_{(\Sigma,E)}\Gamma e = \{[t]_{\equiv} \mid \Gamma \vdash t : e\}$

Graded monads

Definition (Smirnov '08, Melliès '12, Katsumata '14)

A graded monad T (on Set) consists of:

- a graded set TX for each (ungraded) set X
- unit functions $\eta_X : X \to TX1$
- ► Kleisli extension $\frac{f: X \to TYe}{f_d^{\dagger}: TXd \to TY(d \cdot e)}$ natural in d, e

satisfying some laws

Example

Cut is a graded monad:

$$Cut X e = \{(xs, c) \in ListX \times \{cut, nocut\} \\ | (e = \bot \Rightarrow c = cut) \\ \land (e = 1 \Rightarrow c = cut \lor xs \neq [])\}$$
$$\eta_X x = ([x], nocut) \\ f_d^{\dagger}([x_1, \dots, x_n], c) = f x_1 \oplus \dots \oplus f x_n \oplus ([], c) \\ (ys, cut) \oplus (ys', c) = (ys, cut) \\ (ys, nocut) \oplus (ys', c) = (ys + ys', c)$$

/ F - J

. .

Algebraic operations

Definition

A $(d'_1, \ldots, d'_n; d)$ -ary algebraic operation for a graded monad T is a family of functions

$$\alpha_{X,e}:\prod_i TX(d'_i \cdot e) \to TX(d \cdot e)$$

natural in e and satisfying

$$f_{d\cdot e}^{\dagger}(\alpha_{X,e}(t_1,\ldots,t_n)) = \alpha_{Y,e\cdot e'}(f_{d'_1\cdot e}^{\dagger}t_1,\ldots,f_{d'_n\cdot e}^{\dagger}t_n) \qquad (f:X \to TYe')$$

Example

For the graded monad Cut, we have

$$\begin{split} \llbracket \mathsf{or}_{d_1',d_2'} \rrbracket_{X,e} &= (\oplus) : \mathrm{Cut}X(d_1' \cdot e) \times \mathrm{Cut}X(d_2' \cdot e) \to \mathrm{Cut}X((d_1' \sqcap d_2') \cdot e) \\ \\ \llbracket \mathsf{fail} \rrbracket_{X,e} &= (\lambda_.\,([],\mathsf{nocut})) : 1 \to \mathrm{Cut}X(\top \cdot e) \\ \\ \llbracket \mathsf{cut} \rrbracket_{X,e} &= (\lambda_.\,([],\mathsf{cut})) : 1 \to \mathrm{Cut}X(\bot \cdot e) \end{split}$$

Presenting graded monads

Given a flexibly graded presentation (Σ, E) , we want

▶ a graded monad $T_{(\Sigma,E)}$

• with a $(d'_1, \ldots, d'_n; d)$ -ary algebraic operation

$$\llbracket \operatorname{op} \rrbracket_{X,e} : \prod_i T_{(\Sigma,E)} X(d'_i \cdot e) \to T_{(\Sigma,E)} X(d \cdot e)$$

for each op $\in \Sigma(d'_1, \ldots, d'_n; d)$ (satisfying equations)

that is in some sense canonical

Algebras

- If (Σ, E) is a flexibly graded presentation, a (Σ, E) -algebra $(A, \llbracket \rrbracket)$ is
 - a graded set A
 - with a natural family of functions

$$\llbracket \operatorname{op} \rrbracket_e : \prod_i A(d'_i \cdot e) \to A(d \cdot e)$$

for each op $\in \Sigma(d'_1, \ldots, d'_n; d)$

such that

$$\llbracket t \rrbracket_e = \llbracket u \rrbracket_e : \prod_i A(d'_i \cdot e) \to A(d \cdot e)$$

for each $e \in \mathbb{E}$ and axiom $x_1 : d'_1, \ldots, x_n : d'_n \vdash t \equiv u : d$

Example

- $T_{(\Sigma,E)}X$, with algebraic operations $\llbracket \operatorname{op} \rrbracket_X$
- $\operatorname{Tm}_{(\Sigma,E)}\Gamma$, with $\llbracket \operatorname{op} \rrbracket_e([t_1]_{\equiv},\ldots,[t_n]_{\equiv}) = [\operatorname{op}(e;t_1,\ldots,t_n)]_{\equiv}$

The equational logic is sound and complete:

 $\Gamma \vdash t \equiv u : d \quad \Leftrightarrow \quad \text{for all } (\Sigma, E)\text{-algebras } (A, \llbracket - \rrbracket), \quad \llbracket t \rrbracket = \llbracket u \rrbracket$

Algebras

- If (Σ, E) is a flexibly graded presentation, a (Σ, E) -algebra $(A, \llbracket \rrbracket)$ is
 - \blacktriangleright a graded set A
 - with a natural family of functions

$$\llbracket \operatorname{op} \rrbracket_e : \prod_i A(d'_i \cdot e) \to A(d \cdot e)$$

for each op $\in \Sigma(d'_1, \ldots, d'_n; d)$

such that

$$\llbracket t \rrbracket_e = \llbracket u \rrbracket_e : \prod_i A(d'_i \cdot e) \to A(d \cdot e)$$

for each $e \in \mathbb{E}$ and axiom $x_1: d'_1, \ldots, x_n: d'_n \vdash t \equiv u: d$

A morphism $f:(A,[\![-]\!])\to (A',[\![-]\!]')$ is a natural family of functions $f_d:Ad\to A'd$

preserving $\llbracket op \rrbracket$

Algebras

- If (Σ, E) is a flexibly graded presentation, a (Σ, E) -algebra $(A, \llbracket \rrbracket)$ is
 - \blacktriangleright a graded set A
 - with a natural family of functions

$$\llbracket \operatorname{op} \rrbracket_e : \prod_i A(d'_i \cdot e) \to A(d \cdot e)$$

for each op $\in \Sigma(d'_1, \ldots, d'_n; d)$

such that

$$\llbracket t \rrbracket_e = \llbracket u \rrbracket_e : \prod_i A(d'_i \cdot e) \to A(d \cdot e)$$

for each $e \in \mathbb{E}$ and axiom $x_1: d'_1, \ldots, x_n: d'_n \vdash t \equiv u: d$

A morphism $f : (A, \llbracket - \rrbracket) - e \rightarrow (A', \llbracket - \rrbracket')$ of grade e is a natural family of functions $f_d : Ad \rightarrow A'(d \cdot e)$

preserving $\llbracket op \rrbracket$

Locally graded categories [Wood '76]

Definition

A locally graded category C consists of

- ▶ a collection |C| of objects
- graded sets C(X, Y) of morphisms
- identities $id_X : X 1 \rightarrow X$
- composition

$$\frac{f: X - e \rightarrow Y}{g \circ f: X - e \cdot e' \rightarrow Z}$$

 $(f: X - e \rightarrow Y \text{ means } f \in C(X, Y)e)$

natural in e, e'

such that

$$\operatorname{id}_Y \circ f = f = f \circ \operatorname{id}_X \qquad (h \circ g) \circ f = h \circ (g \circ f)$$

(These are categories enriched over $[\mathbb{E}, Set]$ with Day convolution)

Locally graded categories

Every graded monad T has a locally graded Kleisli category Kl(T):

- Objects are sets X
- Morphisms $f: X e \rightarrow Y$ are functions $f: X \rightarrow TYe$

The locally graded category GSet:

- Objects are graded sets
- ▶ Morphisms $f: X e \rightarrow Y$ are families of functions $f_d: Xd \rightarrow Y(d \cdot e)$, natural in d
- Identities are the identity functions
- Composition $g \circ f$ is

$$(g \circ f)_d : Xd \xrightarrow{f_d} Y(d \cdot e) \xrightarrow{g_d \cdot e} Z(d \cdot e \cdot e')$$

 $Alg(\Sigma, E)$:

- Objects are (Σ, E) -algebras
- ▶ Morphisms are as in GSet, but preserving [[-]]
- Identities and composition: as in GSet

Functors

Definition

A functor $F: C \to D$ between locally graded categories is an object mapping $F: |C| \to |D|$ with a mapping of morphisms

$$\frac{f: X - e \to Y}{Ff: FX - e \to FY}$$

natural in e, and preserving identities and composition.

There is a forgetful functor

$$U_{(\Sigma,E)} : \mathbf{Alg}(\Sigma, E) \to \mathbf{GSet}$$
$$(A, \llbracket - \rrbracket) \mapsto A$$
$$f \mapsto f$$

Algebra

An (Eilenberg-Moore) algebra for a graded monad T is

- a graded set A
- with an extension operator

$$\frac{f: X \to Ae}{f_d^{\ddagger}: TXd \to A(d \cdot e)}$$

satisfying some laws

These form a locally graded category, with a forgetful functor:

 $U_{\mathsf{T}}: \mathsf{EM}(\mathsf{T}) \to \mathsf{GSet}$

Presenting graded monads

Theorem

For every flexibly graded presentation (Σ, E) , there is

- ► a graded monad $T_{(\Sigma,E)}$
- ▶ and functor $R_{(\Sigma,E)}$: $Alg(\Sigma, E) \rightarrow EM(T_{(\Sigma,E)})$ over GSet

such that

- $(T_{(\Sigma,E)}X, (-)^{\dagger}) = R_{(\Sigma,E)}(T_{(\Sigma,E)}X, [[-]]_X)$ for some $[[-]]_X$
- For every graded monad T' and functor R' : Alg(Σ, E) → EM(T') over GSet, there is a unique F : EM(T_(Σ,E)) → EM(T') over GSet such that

$$\operatorname{Alg}(\Sigma, E) \xrightarrow[R']{R(\Sigma, E)} \operatorname{EM}(\mathsf{T}_{(\Sigma, E)})$$

$$\xrightarrow[R']{} \downarrow^{F}$$

$$\operatorname{EM}(\mathsf{T}')$$

Presenting graded monads

For the presentation of nondeterminism with Cut

 $\mathsf{T}_{(\Sigma,E)} \cong \mathsf{Cut}$ with algebraic operations $\llbracket \mathsf{cut}_{d'_i,d'_2} \rrbracket$, $\llbracket \mathsf{fail} \rrbracket$, $\llbracket \mathsf{cut} \rrbracket$

For the presentation of stacks of booleans:

 $T_{(\Sigma,E)}Xe \cong \operatorname{Stk}Xe \cong \{t : \operatorname{List} 2 \to \operatorname{List} 2 \times X \mid (\forall vs. |\operatorname{fst}(t vs)| \le |vs| + e) \land \cdots \}$

 $\llbracket \mathsf{push}_v \rrbracket_{X,e} : \mathsf{Stk}Xe \to \mathsf{Stk}X(1+e)$ $\llbracket \mathsf{push}_v \rrbracket_{X,e} t \, \mathsf{vs} = t(v :: \mathsf{vs})$

 $\llbracket pop \rrbracket_{X,e} : StkXe \times StkX(1+e) \times StkX(1+e) \rightarrow StkXe$ $\llbracket pop \rrbracket_{X,e}(t_{empty}, u_{true}, u_{false}) vs = \begin{cases} t_{empty} [] & \text{if } vs = [] \\ u_{head vs} (tail vs) & \text{otherwise} \end{cases}$

Constructing $T_{(\Sigma,E)}$

```
flexibly graded presentations
        (\Sigma, E) \mapsto \operatorname{Tm}_{(\Sigma, E)}
            flexibly graded clones
                                                       = sets of terms, with variables and substitution
left Kan extension along
      FCtx→GSet
           flexibly graded monads
                                                       = monad on GSet
                            compose with Free(Set) \rightarrow GSet
                graded monads
```

Constructing $T_{(\Sigma,E)}$

flexibly graded presentations $(\Sigma, E) \mapsto \operatorname{Tm}_{(\Sigma, E)} \simeq$ flexibly graded clones $\left| \begin{array}{c} \text{left Kan extension along} \\ FCtx \rightarrow GSet \end{array} \right| \simeq \left| \begin{array}{c} \\ \simeq \\ FCtx \rightarrow GSet \end{array} \right|$ flexibly graded monads preserving conical sifted colimits $\begin{array}{|c|c|} \neg & compose with \\ Free(Set) \rightarrow GSet \end{array}$ graded monads preserving conical sifted colimits

algebraic theories and relative monads are closely connected (jww Nathanael Arkor)

=
$$(FCtx \rightarrow GSet)$$
-relative monad

= monad on GSet preserving conical sifted colimits

=

 $(Free(Set) \rightarrow GSet)$ -relative monad preserving conical sifted colimits

Given a flexibly graded presentation (Σ, E) , there is

- ► a graded monad $T_{(\Sigma,E)}$
- with a $(d'_1, \ldots, d'_n; d)$ -ary algebraic operation

$$\llbracket \operatorname{op} \rrbracket_{X,e} : \prod_i T_{(\Sigma,E)} X(d'_i \cdot e) \to T_{(\Sigma,E)} X(d \cdot e)$$

for each op $\in \Sigma(d'_1, \ldots, d'_n; d)$ (satisfying equations)

that is in some sense canonical

Every graded monad that preserves conical sifted colimits has a flexibly graded presentation

Some of this is available at

https://dylanm.org/drafts/flexibly-graded-monads.pdf