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Motivation
1. Effects can be modelled using monads

[Moggi ’89]
2. which often come from presentations [Plotkin and Power ’02]

3. which induce algebraic operations [Plotkin and Power ’03]

Example:
1. Nondeterminism can be modelled using List
2. which comes from the presentation of monoids

fail : 0 or : 2
or(fail, 𝑥) = 𝑥 = or(𝑥, fail) or(or(𝑥,𝑦), 𝑧) = or(𝑥, or(𝑦, 𝑧))

3. which induces algebraic operations
fail𝑋 = (𝜆_. []) : 1 → List𝑋

or𝑋 = (𝜆(xs, ys). xs ++ ys) : List𝑋 × List𝑋 → List𝑋
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Motivation
1. Effects with quantitative information can be modelled using graded monads

[Katsumata ’14]
2. which often come from graded presentations?

[Smirnov ’08, Milius et al. ’15, Dorsch et al. ’19, Kura ’20]
3. which induce algebraic operations?

Example:
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Running example: nondeterminism with backtracking and cut

or(or(or(or(return11, return12), fail),
or(return13, cut)), return14)

or
or

or

or

11 12

fail

or

13 cut

14

is equivalent to

or(return11,
or(return12, or(return13, cut)))

or

or11

12 or

13 cut

These computations can be modelled using a monad Cut

Cut𝑋 = List𝑋 × {cut, nocut}

which has a presentation involving or : 2, fail : 0, cut : 0 [Piróg and Staton ’17]
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Running example: nondeterminism with backtracking and cut

or(𝑡,𝑢) ≡ 𝑡 if 𝑡 cuts
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Running example: nondeterminism with backtracking and cut

Assign grades 𝑒 ∈ {⊥, 1,⊤} to computations:

⊤ don’t know anything

≤

1
definitely cuts
or returns something

≤

⊥ definitely cuts

return𝑥 has grade 1

𝑡 has grade 𝑒 𝑒 ≤ 𝑒′

𝑡 has grade 𝑒′

𝑡1 has grade 𝑒1 𝑡2 has grade 𝑒2
or(𝑡1, 𝑡2) has grade (𝑒1⊓𝑒2)

fail has grade⊤

cut has grade⊥

Graded monad Cut:

Cut𝑋𝑒 = {(xs, 𝑐) ∈ List𝑋 × {cut, nocut}
| (𝑒 = ⊥ ⇒ 𝑐 = cut)
∧ (𝑒 = 1 ⇒ 𝑐 = cut ∨ xs ≠ [])}

Kleisli extension:

𝑓 : 𝑋 → Cut𝑌𝑒

𝑓 †
𝑑
: Cut𝑋𝑑 → Cut𝑌 (𝑑 · 𝑒)

where
⊤ · 𝑒 = ⊤
1 · 𝑒 = 𝑒
⊥ · 𝑒 = ⊥

Then:
or(𝑡,𝑢) ≡ 𝑡 if 𝑡 has grade ⊥
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Rigidly graded presentations [Smirnov ’08, Milius et al. ’15, Dorsch et al. ’19, Kura ’20]

Each operation op has an arity 𝑛 ∈ N and grade 𝑑

𝑡1 has grade 𝑒 · · · 𝑡𝑛 has grade 𝑒

op(𝑡1, . . . , 𝑡𝑛) has grade 𝑑 · 𝑒

These work well mathematically, but:

𝑡1 has grade 𝑒1 𝑡2 has grade 𝑒2
or(𝑡1, 𝑡2) has grade (𝑒1⊓𝑒2)

???

For or, we must have 𝑑 ≥ 1, but then or(cut, return 14) will not have grade ⊥
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Flexibly graded presentations

𝑡1 has grade 𝑑 ′1 · 𝑒 · · · 𝑡𝑛 has grade 𝑑 ′𝑛 · 𝑒
op(𝑡1, . . . , 𝑡𝑛) has grade 𝑑 · 𝑒

𝑡1 has grade 𝑒1 𝑡2 has grade 𝑒2
or(𝑡1, 𝑡2) has grade (𝑒1⊓𝑒2)
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Grading

Have an ordered monoid (E, 1, ·, ≤) of grades 𝑑, 𝑒 ∈ E:
▶ a monoid (E, 1, ·)
▶ with a partial order ≤ on E
▶ such that (·) : E × E→ E is monotone

Examples:

▶ Nondeterminism with cut: (E, ≤) = {⊥ ≤ 1 ≤ ⊤}
⊤ · 𝑒 = ⊤
1 · 𝑒 = 𝑒
⊥ · 𝑒 = ⊥

▶ Gifford-style effect systems: (P{get, put, raise, . . . }, ∅,∪, ⊆)
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Flexibly graded presentations

Syntax:
▶ a flexibly graded signature is a collection of operations
▶ given a signature Σ, generate terms

𝑥1 : 𝑑
′
1, . . . , 𝑥𝑛 : 𝑑 ′𝑛 ⊢ 𝑡 : 𝑑

▶ a flexibly graded presentation is a signature Σ, with a collection 𝐸 of equations
▶ given a presentation (Σ, 𝐸), have an equational logic

Γ ⊢ 𝑡 ≡ 𝑢 : 𝑑

Semantics { graded monads
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Terms and substitution

Terms in context:
𝑥1 : 𝑑

′
1, . . . , 𝑥𝑛 : 𝑑 ′𝑛 ⊢ 𝑡 : 𝑑

Variables:
𝑥1 : 𝑑 ′1, . . . , 𝑥𝑛 : 𝑑 ′𝑛 ⊢ 𝑥𝑖 : 𝑑 ′𝑖

Substitution:

𝑥1 : 𝑑 ′1, . . . , 𝑥𝑛 : 𝑑 ′𝑛 ⊢ 𝑡 : 𝑑 Γ ⊢ 𝑢1 : 𝑑 ′1 · 𝑒 · · · Γ ⊢ 𝑢𝑛 : 𝑑 ′𝑛 · 𝑒
Γ ⊢ 𝑡{𝑒;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛} : 𝑑 · 𝑒

A special case:

𝑥1 : 1, . . . , 𝑥𝑛 : 1 ⊢ 𝑡 : 𝑑 Γ ⊢ 𝑢1 : 𝑒 · · · Γ ⊢ 𝑢𝑛 : 𝑒

Γ ⊢ 𝑡{𝑒;𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛} : 𝑑 · 𝑒
𝑓 : [𝑛] → Cut𝑌𝑒

𝑓 †
𝑑
: Cut [𝑛] 𝑑 → Cut𝑌 (𝑑 · 𝑒)
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Flexibly graded signatures

Definition
A flexibly graded signature consists of a set

Σ(𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑)

for each 𝑑 ′1, . . . , 𝑑
′
𝑛, 𝑑 ∈ E.

Example
or𝑑1,𝑑2 ∈ Σ(𝑑1, 𝑑2; (𝑑1 ⊓ 𝑑2)) (for each 𝑑1, 𝑑2 ∈ E)

fail ∈ Σ( ;⊤)
cut ∈ Σ( ;⊥)
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Terms
Given a signature Σ, generate terms by

(𝑥 : 𝑑) ∈ Γ

Γ ⊢ 𝑥 : 𝑑
𝑑 ≤ 𝑑 ′ Γ ⊢ 𝑡 : 𝑑
Γ ⊢ (𝑑≤𝑑 ′)∗ 𝑡 : 𝑑 ′

op ∈ Σ(𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑) Γ ⊢ 𝑡1 : 𝑑 ′1 · 𝑒 · · · Γ ⊢ 𝑡𝑛 : 𝑑 ′𝑛 · 𝑒
Γ ⊢ op(𝑒; 𝑡1, . . . , 𝑡𝑛) : 𝑑 · 𝑒

Substitution:
(op(𝑒; 𝑡1, . . . , 𝑡𝑛)){𝑒′;𝑥1 ↦→ 𝑢1, . . . }

= op(𝑒 ·𝑒′; 𝑡1{𝑒′;𝑥1 ↦→ 𝑢1, . . . }, . . . , 𝑡𝑛{𝑒′;𝑥1 ↦→ 𝑢1, . . . })

Example
Γ ⊢ 𝑡1 : 𝑑 ′1 · 𝑒 Γ ⊢ 𝑡2 : 𝑑 ′2 · 𝑒

Γ ⊢ or𝑑 ′
1,𝑑

′
2
(𝑒; 𝑡1, 𝑡2) : (𝑑 ′1 ⊓ 𝑑 ′2) · 𝑒 (= (𝑑 ′1 · 𝑒) ⊓ (𝑑 ′2 · 𝑒))

(or𝑑 ′
1,𝑑

′
2
∈ Σ(𝑑 ′1, 𝑑 ′2; (𝑑 ′1 ⊓ 𝑑 ′2)))

Γ ⊢ fail(𝑒; ) : ⊤ · 𝑒 (= ⊤) (fail ∈ Σ( ;⊤))

Γ ⊢ cut(𝑒; ) : ⊥ · 𝑒 (= ⊥) (cut ∈ Σ( ;⊥))
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Flexibly graded presentations
Definition
A flexibly graded presentation consists of
▶ a signature Σ

▶ for each 𝑑 ′1, . . . , 𝑑
′
𝑛, 𝑑 ∈ E, a set 𝐸 (𝑑 ′1, . . . , 𝑑 ′𝑛 ; 𝑑) of equations

𝑥1 : 𝑑
′
1, . . . , 𝑥𝑛 : 𝑑 ′𝑛 ⊢ 𝑡 ≡ 𝑢 : 𝑑

Example
𝑥 : 𝑒1 · 𝑑,𝑦 : 𝑒2 · 𝑑 ⊢ or𝑒1,𝑒2 (𝑑 ;𝑥,𝑦) ≡ or𝑒1 ·𝑑,𝑒2 ·𝑑 (1;𝑥,𝑦) : (𝑒1 ⊓ 𝑒2) · 𝑑

𝑥 : 𝑒1, 𝑦 : 𝑒2 ⊢ (𝑒1⊓𝑒2≤𝑒′1⊓𝑒′2)∗ (or𝑒1,𝑒2 (1;𝑥,𝑦)) ≡ or𝑒1,𝑒2 (1; (𝑒1≤𝑒′1)∗𝑥, (𝑒2≤𝑒′2)∗𝑦) : 𝑒′1 ⊓ 𝑒′2
𝑥 : 𝑒 ⊢ or⊤,𝑒 (1; fail(1; ), 𝑥) ≡ 𝑥 : 𝑒 𝑥 : 𝑒 ⊢ 𝑥 ≡ or𝑒,⊤ (1;𝑥, fail(1; )) : 𝑒

𝑥 : 𝑒1, 𝑦 : 𝑒2, 𝑧 : 𝑒3 ⊢ or𝑒1⊓𝑒2,𝑒3 (1; or𝑒1,𝑒2 (1;𝑥,𝑦), 𝑧) ≡ or𝑒1,𝑒2⊓𝑒3 (1;𝑥, or𝑒2,𝑒3 (1;𝑦, 𝑧)) : 𝑒

𝑥 : ⊥, 𝑦 : 𝑒 ⊢ or⊥,𝑒 (1;𝑥,𝑦) ≡ 𝑥 : ⊥
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Example: stacks of booleans
A grading of a presentation from [Goncharov ’13]:
▶ Grades: (N, 0, +, ≤) (has grade 𝑒 ∈ N = pushes at most 𝑒 values)
▶ Operations:

push𝑣 ∈ Σ(0; 1)
Γ ⊢ 𝑡 : 𝑒

Γ ⊢ push𝑣 (𝑒; 𝑡) : 1 + 𝑒
(𝑣 ∈ {true, false})

pop ∈ Σ(0, 1, 1; 0)
Γ ⊢ 𝑡empty : 𝑒 Γ ⊢ 𝑢true : 1 + 𝑒 Γ ⊢ 𝑢false : 1 + 𝑒

Γ ⊢ pop(𝑒; 𝑡empty, 𝑢true, 𝑢false) : 𝑒

▶ Equations:

pushtrue(0; pop(0;𝑥,𝑦true, 𝑦false)) ≡ 𝑦true

pushfalse(0; pop(0;𝑥,𝑦true, 𝑦false)) ≡ 𝑦false

pop(0;𝑥, pushtrue(0;𝑥), pushfalse(0;𝑥)) ≡ 𝑥

pop(0; pop(0;𝑥,𝑦true, 𝑦false), 𝑧true, 𝑧false) ≡ pop(0;𝑥, 𝑧true, 𝑧false)
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Flexibly graded equational logic

Generate
Γ ⊢ 𝑡 ≡ 𝑢 : 𝑑

by reflexivity, transitivity, symmetry, congruence, naturality of operations, functoriality
of (−)∗, and

(𝑡,𝑢) ∈ 𝐸 (𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑) Γ ⊢ 𝑠1 : 𝑑 ′1 · 𝑒 · · · Γ ⊢ 𝑠𝑛 : 𝑑 ′𝑛 · 𝑒
Γ ⊢ 𝑡{𝑒;𝑥1 ↦→ 𝑠1, . . . , 𝑥𝑛 ↦→ 𝑠𝑛} ≡ 𝑢{𝑒;𝑥1 ↦→ 𝑠1, . . . , 𝑥𝑛 ↦→ 𝑠𝑛} : 𝑑 · 𝑒

Example: using pushtrue(0; pop(0;𝑥,𝑦true, 𝑦false)) ≡ 𝑦true we have

Γ ⊢ 𝑡 : 𝑒 Γ ⊢ 𝑢true : 1 + 𝑒 Γ ⊢ 𝑢false : 1 + 𝑒

Γ ⊢ pushtrue(𝑒; pop(𝑒; 𝑡,𝑢true, 𝑢false)) ≡ 𝑢true : 1 + 𝑒
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Graded sets

Definition
A graded set 𝑋 is a functor 𝑋 : (E, ≤) → Set:
▶ a set 𝑋𝑒 for each 𝑒 ∈ E (elements of 𝑋 of grade 𝑒)
▶ a function (𝑒≤𝑒′)∗ : 𝑋𝑒 → 𝑋𝑒′ for each 𝑒 ≤ 𝑒′ ∈ E

such that 𝑋 (𝑒 ≤ 𝑒) = id and 𝑋 (𝑒′≤𝑒′′) ◦ 𝑋 (𝑒≤𝑒′) = 𝑋 (𝑒≤𝑒′′).

Example: for each presentation (Σ, 𝐸) and context Γ

Tm(Σ,𝐸 )Γ𝑒 = {[𝑡]≡ | Γ ⊢ 𝑡 : 𝑒}
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Graded monads
Definition (Smirnov ’08, Melliès ’12, Katsumata ’14)
A graded monad T (on Set) consists of:
▶ a graded set 𝑇𝑋 for each (ungraded) set 𝑋
▶ unit functions 𝜂𝑋 : 𝑋 → 𝑇𝑋1

▶ Kleisli extension 𝑓 : 𝑋 → 𝑇𝑌𝑒

𝑓 †
𝑑
: 𝑇𝑋𝑑 → 𝑇𝑌 (𝑑 · 𝑒)

natural in 𝑑, 𝑒

satisfying some laws

Example
Cut is a graded monad:

Cut𝑋 𝑒 = {(xs, 𝑐) ∈ List𝑋 × {cut, nocut}
| (𝑒 = ⊥ ⇒ 𝑐 = cut)
∧ (𝑒 = 1 ⇒ 𝑐 = cut ∨ xs ≠ [])}

𝜂𝑋𝑥 = ( [𝑥], nocut)
𝑓 †
𝑑
( [𝑥1, . . . , 𝑥𝑛], 𝑐) = 𝑓 𝑥1 ⊕ · · · ⊕ 𝑓 𝑥𝑛 ⊕ ([], 𝑐)

(ys, cut) ⊕ (ys′, 𝑐) = (ys, cut)
(ys, nocut) ⊕ (ys′, 𝑐) = (ys ++ ys′, 𝑐)
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Algebraic operations
Definition
A (𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑)-ary algebraic operation for a graded monad T is a family of functions

𝛼𝑋,𝑒 :
∏

𝑖 𝑇𝑋 (𝑑 ′𝑖 · 𝑒) → 𝑇𝑋 (𝑑 · 𝑒)

natural in 𝑒 and satisfying

𝑓 †
𝑑 ·𝑒 (𝛼𝑋,𝑒 (𝑡1, . . . , 𝑡𝑛)) = 𝛼𝑌,𝑒 ·𝑒′ (𝑓 †𝑑 ′

1 ·𝑒
𝑡1, . . . , 𝑓

†
𝑑 ′
𝑛 ·𝑒

𝑡𝑛) (𝑓 : 𝑋 → 𝑇𝑌𝑒′)

Example
For the graded monad Cut, we have

⟦or𝑑 ′
1,𝑑

′
2
⟧𝑋,𝑒 = (⊕) : Cut𝑋 (𝑑 ′1 · 𝑒) × Cut𝑋 (𝑑 ′2 · 𝑒) → Cut𝑋 ((𝑑 ′1 ⊓ 𝑑 ′2) · 𝑒)

⟦fail⟧𝑋,𝑒 = (𝜆_. ( [], nocut)) : 1 → Cut𝑋 (⊤ · 𝑒)
⟦cut⟧𝑋,𝑒 = (𝜆_. ( [], cut)) : 1 → Cut𝑋 (⊥ · 𝑒)
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Presenting graded monads

Given a flexibly graded presentation (Σ, 𝐸), we want
▶ a graded monad 𝑇(Σ,𝐸 )
▶ with a (𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑)-ary algebraic operation

⟦op⟧𝑋,𝑒 :
∏

𝑖 𝑇(Σ,𝐸 )𝑋 (𝑑 ′𝑖 · 𝑒) → 𝑇(Σ,𝐸 )𝑋 (𝑑 · 𝑒)

for each op ∈ Σ(𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑) (satisfying equations)
▶ that is in some sense canonical
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Algebras
If (Σ, 𝐸) is a flexibly graded presentation, a (Σ, 𝐸)-algebra (𝐴, ⟦−⟧) is
▶ a graded set 𝐴
▶ with a natural family of functions

⟦op⟧𝑒 :
∏

𝑖 𝐴(𝑑 ′𝑖 · 𝑒) → 𝐴(𝑑 · 𝑒)
for each op ∈ Σ(𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑)

▶ such that
⟦𝑡⟧𝑒 = ⟦𝑢⟧𝑒 :

∏
𝑖 𝐴(𝑑 ′𝑖 · 𝑒) → 𝐴(𝑑 · 𝑒)

for each 𝑒 ∈ E and axiom 𝑥1 : 𝑑 ′1, . . . , 𝑥𝑛 : 𝑑 ′𝑛 ⊢ 𝑡 ≡ 𝑢 : 𝑑

Example
▶ 𝑇(Σ,𝐸 )𝑋 , with algebraic operations ⟦op⟧𝑋
▶ Tm(Σ,𝐸 )Γ, with ⟦op⟧𝑒 ([𝑡1]≡, . . . , [𝑡𝑛]≡) = [op(𝑒; 𝑡1, . . . , 𝑡𝑛)]≡

The equational logic is sound and complete:
Γ ⊢ 𝑡 ≡ 𝑢 : 𝑑 ⇔ for all (Σ, 𝐸)-algebras (𝐴, ⟦−⟧), ⟦𝑡⟧ = ⟦𝑢⟧

A morphism 𝑓 : (𝐴, ⟦−⟧) 𝑒 (𝐴′, ⟦−⟧′) of grade 𝑒 is a natural family of functions
𝑓𝑑 : 𝐴𝑑 → 𝐴′(𝑑 · 𝑒)

preserving ⟦op⟧
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Locally graded categories [Wood ’76]

Definition
A locally graded category C consists of
▶ a collection |C| of objects
▶ graded sets C(𝑋,𝑌 ) of morphisms (𝑓 : 𝑋 𝑒 𝑌 means 𝑓 ∈ C(𝑋,𝑌 )𝑒)
▶ identities id𝑋 : 𝑋 1 𝑋

▶ composition
𝑓 : 𝑋 𝑒 𝑌 𝑔 : 𝑌 𝑒′ 𝑍

𝑔 ◦ 𝑓 : 𝑋 𝑒 · 𝑒′ 𝑍

natural in 𝑒, 𝑒′

such that
id𝑌 ◦ 𝑓 = 𝑓 = 𝑓 ◦ id𝑋 (ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓 )

(These are categories enriched over [E, Set] with Day convolution)
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Locally graded categories
Every graded monad T has a locally graded Kleisli category Kl(T):
▶ Objects are sets 𝑋
▶ Morphisms 𝑓 : 𝑋 𝑒 𝑌 are functions 𝑓 : 𝑋 → 𝑇𝑌𝑒

The locally graded category GSet:
▶ Objects are graded sets
▶ Morphisms 𝑓 : 𝑋 𝑒 𝑌 are families of functions 𝑓𝑑 : 𝑋𝑑 → 𝑌 (𝑑 · 𝑒), natural in 𝑑
▶ Identities are the identity functions
▶ Composition 𝑔 ◦ 𝑓 is

(𝑔 ◦ 𝑓 )𝑑 : 𝑋𝑑
𝑓𝑑−→ 𝑌 (𝑑 · 𝑒)

𝑔𝑑 ·𝑒−−−→ 𝑍 (𝑑 · 𝑒 · 𝑒′)

Alg(Σ, 𝐸):
▶ Objects are (Σ, 𝐸)-algebras
▶ Morphisms are as in GSet, but preserving ⟦−⟧
▶ Identities and composition: as in GSet
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Functors
Definition
A functor 𝐹 : C → D between locally graded categories is an object mapping
𝐹 : |C| → |D| with a mapping of morphisms

𝑓 : 𝑋 𝑒 𝑌

𝐹 𝑓 : 𝐹𝑋 𝑒 𝐹𝑌

natural in 𝑒, and preserving identities and composition.

There is a forgetful functor

𝑈 (Σ,𝐸 ) : Alg(Σ, 𝐸) → GSet

(𝐴, ⟦−⟧) ↦→ 𝐴

𝑓 ↦→ 𝑓
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Algebra

An (Eilenberg-Moore) algebra for a graded monad T is
▶ a graded set A
▶ with an extension operator

𝑓 : 𝑋 → 𝐴𝑒

𝑓 ‡
𝑑
: 𝑇𝑋𝑑 → 𝐴(𝑑 · 𝑒)

▶ satisfying some laws

These form a locally graded category, with a forgetful functor:

𝑈T : EM(T) → GSet
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Presenting graded monads

Theorem
For every flexibly graded presentation (Σ, 𝐸), there is
▶ a graded monad T(Σ,𝐸 )
▶ and functor 𝑅 (Σ,𝐸 ) : Alg(Σ, 𝐸) → EM(T(Σ,𝐸 ) ) over GSet

such that
▶ (𝑇(Σ,𝐸 )𝑋, (−)†) = 𝑅 (Σ,𝐸 ) (𝑇(Σ,𝐸 )𝑋, ⟦−⟧𝑋 ) for some ⟦−⟧𝑋
▶ for every graded monad T′ and functor 𝑅′ : Alg(Σ, 𝐸) → EM(T′) over GSet, there

is a unique 𝐹 : EM(T(Σ,𝐸 ) ) → EM(T′) over GSet such that

Alg(Σ, 𝐸) EM(T(Σ,𝐸 ) )

EM(T′)
𝑅′

𝑅 (Σ,𝐸)

𝐹
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Presenting graded monads
For the presentation of nondeterminism with Cut

T(Σ,𝐸 ) � Cut

with algebraic operations ⟦cut𝑑 ′
1,𝑑

′
2
⟧, ⟦fail⟧, ⟦cut⟧

For the presentation of stacks of booleans:

𝑇(Σ,𝐸 )𝑋𝑒 � Stk𝑋𝑒 � {𝑡 : List 2 → List 2 × 𝑋 | (∀vs. |fst(𝑡 vs) | ≤ |vs| + 𝑒) ∧ · · · }

⟦push𝑣⟧𝑋,𝑒 : Stk𝑋𝑒 → Stk𝑋 (1 + 𝑒)
⟦push𝑣⟧𝑋,𝑒 𝑡 vs = 𝑡 (𝑣 :: vs)

⟦pop⟧𝑋,𝑒 : Stk𝑋𝑒 × Stk𝑋 (1 + 𝑒) × Stk𝑋 (1 + 𝑒) → Stk𝑋𝑒

⟦pop⟧𝑋,𝑒 (𝑡empty, 𝑢true, 𝑢false) vs =
{
𝑡empty [] if vs = []
𝑢head vs (tail vs) otherwise
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Constructing 𝑇(Σ,𝐸)

flexibly graded presentations

flexibly graded clones = sets of terms, with variables and substitution

flexibly graded monads = monad on GSet

graded monads

(Σ,𝐸 ) ↦→ Tm(Σ,𝐸)

left Kan extension along
FCtx→GSet

compose with
Free(Set)→GSet
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Constructing 𝑇(Σ,𝐸)

flexibly graded presentations

flexibly graded clones = (FCtx → GSet)-relative monad

flexibly graded monads
preserving conical sifted colimits

=
monad on GSet

preserving conical sifted colimits

graded monads
preserving conical sifted colimits

=
(Free(Set) → GSet)-relative monad

preserving conical sifted colimits

(Σ,𝐸 ) ↦→ Tm(Σ,𝐸)

left Kan extension along
FCtx→GSet

compose with
FCtx→GSet

compose with
Free(Set)→GSet⊣

≃

≃

algebraic theories and relative monads are
closely connected (jww Nathanael Arkor)
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Given a flexibly graded presentation (Σ, 𝐸), there is
▶ a graded monad 𝑇(Σ,𝐸 )
▶ with a (𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑)-ary algebraic operation

⟦op⟧𝑋,𝑒 :
∏

𝑖 𝑇(Σ,𝐸 )𝑋 (𝑑 ′𝑖 · 𝑒) → 𝑇(Σ,𝐸 )𝑋 (𝑑 · 𝑒)

for each op ∈ Σ(𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑) (satisfying equations)
▶ that is in some sense canonical

Every graded monad that preserves conical sifted colimits has a flexibly graded
presentation

Some of this is available at

https://dylanm.org/drafts/flexibly-graded-monads.pdf
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