Flexible presentations of graded monads

Shin-ya Katsumata Dylan McDermott

Tarmo Uustalu Nicolas Wu

Motivation

1. Effects can be modelled using monads
[Moggi '89]
2. which often come from presentations [Plotkin and Power '02]

3. which induce algebraic operations [Plotkin and Power '03]

Motivation
1. Effects can be modelled using monads

[Moggi '89]
2. which often come from presentations [Plotkin and Power '02]
3. which induce algebraic operations [Plotkin and Power '03]

Example:
1. Nondeterminism can be modelled using List
2. which comes from the presentation of monoids

fail : 0 or: 2
or(fail, x) = x = or(x, fail) or(or(x,y),z) = or(x,or(y,z))
3. which induces algebraic operations
faily = (A_.[]) : 1 > ListX
orx = (A(xs,ys).xs +ys) : ListX X ListX — ListX

Motivation
1. Effects with quantitative information can be modelled using graded monads
[Katsumata '14]
2. which often come from graded presentations?
[Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]
3. which induce algebraic operations?

Running example: nondeterminism with backtracking and cut

/ \
or(or(or(or(returnii, returni2), fail), / \
or(returni3, cut)), returni4) / \ / \
or fail 13 cut
/ N\
11 12
is equivalent to
or
/ N\
or(returnili, 11 /or\
t 12, t 13, cut
or(returni?2, or(returni3, cut))) 19 or

/ \
13 cut

Running example: nondeterminism with backtracking and cut

/ \
or(or(or(or(returnii, returni2), fail), / \
or(returni3, cut)), returni4) / \ / \
or fail 13 cut
/ N\
11 12

These computations can be modelled using a monad Cut
Cut X = List X X {cut, nocut}

which has a presentation involving or : 2, fail : 0, cut : 0 [Pirég and Staton '17]

Running example: nondeterminism with backtracking and cut

or(t,u) =t if t cuts

Running example: nondeterminism with backtracking and cut

Assign grades e € {1, 1, T} to computations:

t; has gradee; t, has gradee,

T don't know anything

or(ty, t;) has grade (e Mey)
\4 returnx has grade1

definitely cuts
or returns something
Y t has grade e’

thas gradee e<e’ failhas grade T

] cut has grade L
L definitely cuts

Then:
or(t,u) =t if t has grade L

Running example: nondeterminism with backtracking and cut

Assign grades e € {1, 1, T} to computations:

Graded monad Cut:

T 't k hi
don’t know anything CutXe = {(xs,¢) € ListX x {cut, nocut}

Vi | (e =1 = c=cut)
definitely cuts Ale=1=c=cutvxs#][])}
or returns something
\ Kleisli extension:
L definitely cuts £:X - Cutve T.e = T
T where 1:-e = e
f; : CutXd — CutY(d - e) Loe = |

ngldly graded presentations [Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]

Each operation op has an arity n € N and grade d

t; has gradee --- t, has grade e

op(ty,...,t,) has grade d - e

ngldly graded presentations [Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]

Each operation op has an arity n € N and grade d

t; has gradee --- t, has grade e

op(ty,...,ty) has grade d - e

These work well mathematically, but:

t; has gradee; t; has gradee,

or(ty, tz) has grade (e;Mey)

For or, we must have d > 1, but then or(cut, return 14) will not have grade L

Flexibly graded presentations

t; has grade d; -e - t, has grade d;, - e

op(ty,...,ty) has grade d - e

t; has gradee; t, has gradee,

or(ty, t) has grade (e Mey)

Grading

Have an ordered monoid (E, 1, -, <) of grades d, e € E:
» a monoid (E, 1, ")
> with a partial order < on E

» such that (1) : EXE — E is monotone

Examples:
T-e
> Nondeterminism with cut: (E,<)={L <1< T} 1-e
1l-e

> Gifford-style effect systems: (P{get, put,raise,...},0,U, Q)

Flexibly graded presentations

Syntax:
> a flexibly graded signature is a collection of operations

> given a signature 3, generate terms
xp:dy,.. xp:dyrt:d

> a flexibly graded presentation is a signature 3, with a collection E of equations

> given a presentation (X, E), have an equational logic
F'rt=u:d

Semantics ~ graded monads

Terms and substitution

Terms in context:
xp:idyy .. xpidyrtad

Variables:

. ’ . ’ . ’
xp:dy, .. xpidy b d]

Substitution:

xp:dp, ..., xp:dprt:d Trup:di-e - IF'ru,:d,-e

F'rt{e;x1 > u,...,xp > u,}:d-e

A special case:

x1:L,...,xp:1rt:d Tru:e --- I'tu,:e f :[n] — CutYe

F'rt{e;x; > u,...,xp > uy}:d-e f;:Cut [n]d — CutY(d -

10

Flexibly graded signatures

Definition
A flexibly graded signature consists of a set

S(d,....d,;d)

for each di,...,d;,d € E.

Example
Ofg,d, € 2(dy, da; (dy M dy))
faile 2(;T)
cute X(;1)

(for each d,d, € E)

11

Terms
Given a signature X, generate terms by
(x:d)eT d<d Tvrt:d
F'tx:d Tt (d<d)*t:d

opeX(d,...,d;d) Frty:di-e -+ Trty:dy-e

ns

T'rop(ety,....th):d-e

Substitution:

(op(esty,....t)){esx1 = ug, ... }

= op(ee’sti{esx1 = uy,... } ... thfelsx1 > ug, ... })

12

Terms
Given a signature X, generate terms by
(x:d)eT d<d Tvrt:d
F'tx:d Tt (d<d)*t:d

opeX(d,...,d;d) Frty:di-e -+ Trty:dy-e

ns

T'rop(ety,....th):d-e

Example
Fktlzdi-e I“thrd;-e

'k oorga(et,tz) : (dindy) e (=(dj-e)n(dy-e))

(orar.a, € 2(d}, dy; (df M d3)))

T+fail(e;): T-e(=T) (faile2(;1))

Trecut(e;):L-e(=1) (cuteX(;1))

12

Flexibly graded presentations
Definition
A flexibly graded presentation consists of
> a signature X
> for each di,...,d;,d € E, aset E(d],...,d;; d) of equations

s Yno fl;

xp:dfy.oxpidypt=u:d

Example
x:iep-d,y:ey-droree (d;x,y) =0re .de-d(1;x,y) : (e1Mez) - d
x:e,y: ek (erMey<erMes) (Ore e, (15X, Y)) = Ofe, e, (1; (e1<e€])"x, (e2<€3)"y) : €1 M ey
x:etrorre(L;fail(l;),x)=x:e x:erx=orer(L;xfail(1;)) :e
X i€,y :ezZ: €3k Ole e, e (1500 e, (15X, 1), 2) = OF¢ eyries (15,00, e, (15, 2)) : €

x:Ly:eror (Lxy)=x:1

13

Example: stacks of booleans
A grading of a presentation from [Goncharov '13]:
> Grades: (N,0,+ <) (has grade e € N = pushes at most e values)
> QOperations:

T'rt:e

I+ push,(e;t): 1+e
Ik tempty : € T'Fugpe: 1+ € I'Fufaise : 1+ €

push, € 2(0;1) (v € {true, false})

pop € 2(0,1,1;0)

I' + pop(e; Temptys Utrues Ufalse) : €

» Equations:

pushy,ye (05 pop(0; X, Ytrue, Yralse)) = Ytrue
pushise (0; POP(0; X, Ytrue, Yfalse)) = Yralse
Pop(0;x, pushir,e (05 x), pushgyee (0;X)) = x
Pop(0; Pop(0; X, Ytrues Yfalse)s Ztrues Zfalse) = POP(0; X, Ztrues Zfalse)

14

Flexibly graded equational logic
Generate
F'rt=u:d

by reflexivity, transitivity, symmetry, congruence, naturality of operations, functoriality
of (-)*, and

(tw) €Ed,....djsd) Trsi:id-e - Trsyid,-e

F'rt{e;x1 > s1,...,xn spt=ufe;xy > sq,...,x, > spt:d-e

Example: using pUShtrue((); pop(O;x, Ytrues yfalse)) = Ytrue WE have

I'rt:e Trugpe:1+e T'Fupee:1+e
Tk pUShtrue(e§ POP(e; t, Utryes ufalse)) = Upue : 1+e

15

Graded sets

Definition
A graded set X is a functor X : (E, <) — Set:
> a set Xe for each e € E (elements of X of grade e)
> a function (e<e’)” : Xe — Xe’ foreach e <e’ € E
such that X(e <e) =id and X(e'<e”) o X(e<e’) = X(e<e”).

Example: for each presentation (2, E) and context T

Tm(z’Eﬂ“e = {[t]=|T+rt:e}

16

Graded monads

Definition (Smirnov '08, Melligs '12, Katsumata '14)
A graded monad T (on Set) consists of:
> a graded set TX for each (ungraded) set X

» unit functions nx : X — TX1

. . : X — TYe)
> Kleisli extension — f natural in d, e

f] :TXd - TY(d-e)
satisfying some laws

Example
Cut is a graded monad:
nxx = ([x], nocut)
fixn. . xl) =fx1 @& fxn® ([].c)
(ys, cut) ® (ys’, ¢) = (ys, cut)
(ys, nocut) @ (ys’,¢) = (ys +ys’,¢)

CutX e = {(xs,¢) € ListX x {cut, nocut}
| (e= L= c=cut)
Ale=1=c=cutvxs#[])}

17

Algebraic operations
Definition
A (d},...,d;;d)-ary algebraic operation for a graded monad T is a family of functions
axe: [1; TX(d]-e) = TX(d-e)

natural in e and satisfying

£l (axe(ti. .. t)) = ayee (Qetl, . ..,f;;.et,,) (f : X > TYe)

Example
For the graded monad Cut, we have

[[OFd;,d;]]X,e = (®) : CutX(d] - e) X CutX(d, - e) — CutX((d; Md) -e)
[fail]x.e = (A_. ([],nocut)) : 1 — CutX(T -e)
[cut]lxe = (A_. ([],cut)) : 1 — CutX(L -e)

18

Presenting graded monads

Given a flexibly graded presentation (2, E), we want
> a graded monad T(5)

> with a (d/,...,d};d)-ary algebraic operation

5 n!
[oplxe : [1; Tsp)X(d] - €) = T(sp)X(d - €)

for each op € 2(d!,...,d);d) (satisfying equations)

() n’

» that is in some sense canonical

19

Algebras
If (3,E) is a flexibly graded presentation, a (I, E)-algebra (A, [-]) is
> a graded set A
> with a natural family of functions

[oplle : [1; A(d! - e) — A(d - e)
for each op € 2(d},...,d;d)

> such that
[[t]]e = I[u]]e : HiA(dl{ e) > A(d - e)
for each e € E and axiom x; : dj,...,x,:d, bt =u:d
Example

> T(s.p)X, with algebraic operations [[op] x
» Tmy g T, with [oplle([t1]=, ..., [ta]=) = [op(e; t1, ..., tn)]=

The equational logic is sound and complete:

Trit=u:d & forall (3,E)-algebras (A [-]), [t] =[u]

20

Algebras
If (3,E) is a flexibly graded presentation, a (I, E)-algebra (A, [-]) is

> a graded set A

> with a natural family of functions

[opl : T, A(d; - €) = A(d -¢)
for each op € 2(d},...,d;d)
> such that
[[t]]e = I[u]]e : HiA(dl{ e) > A(d - e)

for each e € E and axiom x; : dj,...,x,:d, bt =u:d

A morphism f: (A, [-]) — (A%, [-]’) is a natural family of functions
fa:Ad — A'd
preserving [op]

20

Algebras
If (3,E) is a flexibly graded presentation, a (I, E)-algebra (A, [-]) is

> a graded set A

> with a natural family of functions

[opl : T, A(d; - €) = A(d -¢)
for each op € 2(d},...,d;d)
> such that
[[t]]e = I[u]]e : HiA(dl{ e) > A(d - e)

for each e € E and axiom x; : dj,...,x,:d, bt =u:d

A morphism f: (A, [-]) —e~ (A’,[-]") of grade e is a natural family of functions
fa:Ad — A'(d - e)
preserving [op]

20

Locally graded categories [Wood '76]

Definition

A locally graded category C consists of
> a collection |C| of objects
> graded sets C(X,Y) of morphisms (f: X -e>Y means f € C(X,Y)e)
> identities idx : X -1+ X

> composition
f:X—-esY g:Y—-e>Z

gof:X—-e-e'>Z

natural in e, e’
such that

idyof=f=foidy (hog)of=ho(gof)

(These are categories enriched over [E, Set] with Day convolution)

21

Locally graded categories
Every graded monad T has a locally graded Kleisli category KI(T):

> Objects are sets X
» Morphisms f : X —e~+ Y are functions f : X — TYe

The locally graded category GSet:

> Objects are graded sets
> Morphisms f: X —e~ Y are families of functions f; : Xd — Y(d - e), natural in d

> lIdentities are the identity functions
» Composition g o f is

(9o fa:Xd T v(d e) 2% 2(d-e-¢)

Alg(3,E):
> Objects are (2, E)-algebras
» Morphisms are as in GSet, but preserving [—]
> |dentities and composition: as in GSet

22

Functors

Definition
A functor F : C — D between locally graded categories is an object mapping
F :|C| — |D] with a mapping of morphisms
f:X—-esY
Ff:FX —e>FY

natural in e, and preserving identities and composition.

There is a forgetful functor
U(Z,E) : Alg(Z, E) — GSet
Af-D—A
f=f

23

Algebra

An (Eilenberg-Moore) algebra for a graded monad T is
> a graded set A
> with an extension operator
f:X — Ae
fF.TXd — A(d - e)

> satisfying some laws

These form a locally graded category, with a forgetful functor:

Ut : EM(T) — GSet

24

Presenting graded monads

Theorem
For every flexibly graded presentation (3, E), there is

> a graded monad T (5)

> and functor R(sg) : Alg(%, E) — EM(T (5,g)) over GSet
such that

> (TzpX. (") = Rsp) (Ts.p) X, [-1x) for some [-]x

> for every graded monad T’ and functor R : Alg(Z, E) — EM(T’) over GSet, there
is a unique F : EM(T (55)) — EM(T’) over GSet such that

R(s.E)
Alg(Z,E) — EM(T(5.p))

TV

EM(T’)

25

Presenting graded monads
For the presentation of nondeterminism with Cut

T(Z,E) = Cut

with algebraic operations [[cuta 4 |, [fail], [cut]

For the presentation of stacks of booleans:

Ts,p)Xe = StkXe = {t : List2 — List2 x X | (Vvs. [fst(t vs)| < |vs|+e) A ---

[push,]lx.e : StkXe — StkX (1 +e)
[push,lx.etvs=t(v = vs)

[pop]lx.e : StkXe x StkX (1 + e) x StkX (1 +e) — StkXe

Tempty [1 if vs =[]

POP || x.e (femptys Utrue, Ufalse) VS = ' _
Lpoplixetempry: trrve e Upeadvs (tail vs) otherwise

26

Constructing T(s,p)

flexibly graded presentations

(Z,E) = Tm(zyE)
N

flexibly graded clones

left Kan extension along
FCtx—GSet

~N

flexibly graded monads

compose with
Free(Set) —>GSet

~N

graded monads

sets of terms, with variables and substitution

monad on GSet

27

Constructing T(s,p)

flexibly graded presentations

A

(Z,E) (o= Tm(zyE) >~

~

flexibly graded clones

AN

left Kan extension along | .| compose with
FCtx—GSet FCtx—GSet

~

flexibly graded monads

preserving conical sifted colimits

4 compose with
Free(Set) —GSet

graded monads

preserving conical sifted colimits

algebraic theories and relative monads are

closely connected (jww Nathanael Arkor)

= (FCtx — GSet)-relative monad

3 monad on GSet

preserving conical sifted colimits

_ (Free(Set) — GSet)-relative monad

preserving conical sifted colimits

27

Given a flexibly graded presentation (3, E), there is
> a graded monad T5,f)

> with a (d/,...,d};d)-ary algebraic operation

9n3

[[op]]X,e : Hi T(E,E)X(dl/ . e) i T(Z,E)X(d . e)

for each op € 2(d/,...,d);d) (satisfying equations)

> that is in some sense canonical

Every graded monad that preserves conical sifted colimits has a flexibly graded
presentation

Some of this is available at

https://dylanm.org/drafts/flexibly-graded-monads.pdf

28

https://dylanm.org/drafts/flexibly-graded-monads.pdf

