Degrading lists

Dylan McDermott
Reykjavik University

Maciej Piróg
Wrocław University

Tarmo Uustalu
Reykjavik University Tallinn University of
Technology

PPDP 2020

What is the relationship between monads and graded monads?

- Monads T organize computations into sets $T X$ (e.g. $T X=$ lists over X)
- Graded monads organize computations into sets $T_{g} X$ (e.g. $T_{g} X=$ lists over X of length g)
- The grades g provide quantitative information (e.g. number of alternatives in a nondeterministic computation)

What is the relationship between monads and graded monads?

- Monads T organize computations into sets $T X$ (e.g. $T X=$ lists over X)
- Graded monads organize computations into sets $T_{g} X$ (e.g. $T_{g} X=$ lists over X of length g)
- The grades g provide quantitative information (e.g. number of alternatives in a nondeterministic computation)

Specifically: can we construct monads from graded monads?

Monads and graded monads

A monad consists of

- A functor T : Set \rightarrow Set
(with map $f: T X \rightarrow T Y$ for each $f: X \rightarrow Y$)
- A unit $\eta_{X}: X \rightarrow T X$ for each X (aka return)
- A multiplication $\mu_{X}: T(T X) \rightarrow T X$ for each X (aka join)

Example (non-empty lists):

$$
T X=\operatorname{List}_{+} X \quad \eta x=[x] \quad \mu \text { xss }=\text { concat xss }
$$

Alternatively:

- A set $T X$ for each set X
- A unit return : $X \rightarrow T X$ for each X
- A bind operator $\gg: T X \rightarrow(X \rightarrow T Y) \rightarrow T Y$ for each X, Y
(in both cases, satisfying some laws)

Monads and graded monads

Given a monoid of grades:

$$
(\mathcal{G}, \cdot, 1)
$$

A \mathcal{G}-graded monad consists of

- A functor $T_{g}:$ Set \rightarrow Set for each grade $g \in \mathcal{G}$ (with map $f: T_{g} X \rightarrow T_{g} Y$ for each $f: X \rightarrow Y$)
- A unit $\eta_{X}: X \rightarrow T_{1} X$ for each X
- A multiplication $\mu_{g, g^{\prime}, X}: T_{g}\left(T_{g^{\prime}} X\right) \rightarrow T_{g \cdot g^{\prime}} X$ for each g, g^{\prime}, X (satisfying some laws)

Alternatively, use

$$
\gg: T_{g} X \rightarrow\left(X \rightarrow T_{g^{\prime}} Y\right) \rightarrow T_{g \cdot g^{\prime}} Y
$$

Monads and graded monads

Given a monoid of grades:

$$
(\mathcal{G}, \cdot, 1)
$$

A \mathcal{G}-graded monad consists of

- A functor $T_{g}:$ Set \rightarrow Set for each grade $g \in \mathcal{G}$ (with map $f: T_{g} X \rightarrow T_{g} Y$ for each $f: X \rightarrow Y$)
- A unit $\eta_{X}: X \rightarrow T_{1} X$ for each X
- A multiplication $\mu_{g, g^{\prime}, X}: T_{g}\left(T_{g^{\prime}} X\right) \rightarrow T_{g \cdot g^{\prime}} X$ for each g, g^{\prime}, X (satisfying some laws)

Example (non-empty lists)

- Grades are positive integers with multiplication $\left(\mathbb{N}_{+}, \cdot, 1\right)$
- Graded monad is:

$$
T_{n} X=\text { List }_{+=n} X \quad \eta x=[x] \quad \mu \text { xss }=\text { concat xss }
$$

Monads and graded monads

Given a monoid of grades:

$$
(\mathcal{G}, \cdot, 1)
$$

A \mathcal{G}-graded monad consists of

- A functor $T_{g}:$ Set \rightarrow Set for each grade $g \in \mathcal{G}$ (with map $f: T_{g} X \rightarrow T_{g} Y$ for each $f: X \rightarrow Y$)
- A unit $\eta_{X}: X \rightarrow T_{1} X$ for each X
- A multiplication $\mu_{g, g^{\prime}, X}: T_{g}\left(T_{g^{\prime}} X\right) \rightarrow T_{g \cdot g^{\prime}} X$ for each g, g^{\prime}, X (satisfying some laws)

Example (possibly-empty lists)

- Grades are natural numbers with multiplication ($\mathbb{N}, \cdot, 1$)
- Graded monad is:

$$
T_{n} X=\text { List }_{=n} X \quad \eta x=[x] \quad \mu \text { xss }=\text { concat xss }
$$

Monads from graded monads

Can we turn graded monads T into non-graded monads \hat{T} ?

For example:

- Can we construct a monad by constructing the corresponding graded monad first?
(e.g. [Fritz and Perrone '18]'s Kantorovich monad)
- If we can model a language with grades, can we model the language without grades?

$$
\begin{array}{ccc}
\vdash_{g} M: \text { int } & \longmapsto & \llbracket M \rrbracket \in T_{g} \mathbb{Z} \\
\downarrow & & \downarrow \lambda_{g} \\
\vdash \underline{M}: \text { int } & \longmapsto & \llbracket \underline{M} \rrbracket \in \hat{T} \mathbb{Z}
\end{array}
$$

- Do we have

$$
\text { List }_{+}=\mapsto \text { List }_{+} \quad \text { List }=\mapsto \text { List }
$$

Degradings

A degrading of a graded monad (T, η, μ) consists of

- A monad $(\hat{T}, \hat{\eta}, \hat{\mu})$
- Functions $\lambda_{g, X}: T_{g} X \rightarrow \hat{T} X$ preserving the structure, e.g. the multiplications:

$$
\begin{array}{cc}
T_{g}\left(T_{g^{\prime}} X\right) & \stackrel{\mu}{\longrightarrow} \\
\lambda_{g \cdot g^{\prime}} X \\
\lambda_{g \text { map } \lambda_{g^{\prime}}}^{\downarrow} & \downarrow^{\downarrow} \lambda_{g \cdot g^{\prime}} \\
\hat{T}(\hat{T} X) \xrightarrow[\hat{\mu}]{\longrightarrow} X
\end{array}
$$

Example: (List ${ }_{+},[-]$, concat) forms a degrading of (List ${ }_{+=,}[-]$, concat)

$$
\lambda_{n, X}: \text { List }_{+=n} X \subseteq \operatorname{List}_{+} X
$$

Constructing degradings

Take the coproduct of $g \mapsto T_{g}$:

$$
\begin{array}{lrl}
\hat{T}: \text { Set } \rightarrow \text { Set } & \lambda_{g}: T_{g} X & \rightarrow \hat{T} X \\
\hat{T} X=\sum_{g \in \mathcal{G}} T_{g} X & t & \mapsto(g, t)
\end{array}
$$

so that elements of $\hat{T} X$ are pairs $\left(g \in \mathcal{G}, t \in T_{g} X\right)$

- Have a unit

$$
\begin{aligned}
\hat{\eta}: X & \rightarrow \sum_{g \in \mathcal{G}} T_{g} X \\
x & \mapsto(1, \eta x)
\end{aligned}
$$

- But what about the multiplication?

$$
\hat{\mu}: \sum_{g \in \mathcal{G}} T_{g}\left(\sum_{g^{\prime} \in \mathcal{G}} T_{g^{\prime}} X\right) \xrightarrow{?} \sum_{g^{\prime \prime} \in \mathcal{G}} T_{g^{\prime \prime}} X
$$

from

$$
\mu_{g, g^{\prime}}: T_{g}\left(T_{g^{\prime}} X\right) \rightarrow T_{g \cdot g^{\prime}} X
$$

Algebraic coproducts

The coproduct \hat{T} is an algebraic coproduct if:

- It forms a degrading
- For every other degrading T^{\prime}, there are unique structure-preserving functions $\hat{T} X \rightarrow T^{\prime} X$
(more generally: algebraic Kan extension)

For models of effectful languages:

- A computation would be a pair of a g and a computation of grade g
- For any other model given by a degrading T^{\prime}, the unique functions preserve interpretations of terms

Algebraic coproducts

Algebraic Kan extensions sometimes exist:
Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors
but often don't

- Neither List ${ }_{+=}$nor List= has an algebraic coproduct

Algebraic coproducts

Algebraic Kan extensions sometimes exist:
Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors
but often don't

- Neither List ${ }_{+=}$nor List= has an algebraic coproduct

Introduce two weakenings:

- Unique shallow degrading: don't require structure-preservation for $\hat{T} X \rightarrow T^{\prime} X$
- Initial degrading: don't require a coproduct

Algebraic coproduct \Leftrightarrow unique shallow degrading \wedge initial degrading

First weakening: unique shallow degrading

If the coproduct \hat{T} uniquely forms a degrading, call it the unique shallow degrading

- There are unique λ-preserving functions $\hat{T} X \rightarrow T^{\prime} X$, but they don't preserve all of the structure

Non-example
List does not form the unique shallow degrading of List=

$$
\hat{\mu} \mathrm{xss}=\text { concat xss } \quad \text { or } \quad \hat{\mu} \mathrm{xss}= \begin{cases}{[]} & \text { if }[] \in \mathrm{xss} \\ \text { concat xss } & \text { otherwise }\end{cases}
$$

Example
(List ${ }_{+},[-]$, concat) is the unique shallow degrading of List $_{+=}$

How many list monads are there?

Answer: infinitely many

$$
\begin{aligned}
T & =\text { List }_{+} \quad \eta x=[x] \\
\mu\left[\mathrm{xs}_{1}, \ldots, \mathrm{xs}_{n}\right] & =\text { head } \mathrm{xs}_{1}:: \cdots:: \text { head } \mathrm{xs}_{n-1}:: \mathrm{xs}_{n}
\end{aligned}
$$

How many list monads are there?

Answer: infinitely many

\[

\]

How many list monads are there?

Answer: infinitely many

$$
\begin{gathered}
T=\text { List }_{+} \quad \eta x=[x, x] \\
\mu \mathrm{xss}=\operatorname{head}(\text { head xss }):: \operatorname{concat}(\text { tail (map tail xss }))
\end{gathered}
$$

How many list monads are there?

Answer: infinitely many (for both non-empty and possibly-empty)

- Can discard elements
- Can duplicate elements
- Can have no finite presentation
- Can have $\eta x \neq[x]$

How many list monads are there?

Answer: infinitely many (for both non-empty and possibly-empty)

- Can discard elements
- Can duplicate elements
- Can have no finite presentation
- Can have $\eta x \neq[x]$

But for List $_{+}$: only one agrees with the graded monad

List $_{+}$is a unique shallow degrading

If a non-empty list monad satisfies

$$
\mu \text { xss }=\text { concat xss }
$$

then $\mu=$ concat
Proof sketch:

1. Show that μ xss cannot discard elements, by considering elements of List $_{+}^{3} X$
2. Implies μ cannot duplicate elements
3. Prove $\mu[[x, y],[z]]=[x, y, z]=\mu[[x],[y, z]]$ by brute force
4. So μ just concatenates, then permutes the result based on the length
5. These permutations must be identities

Second weakening: initial degrading

\hat{T} is the initial degrading of a graded monad T if:

- It is a degrading
- For any other degrading T^{\prime}, there are unique structure-preserving functions

$$
\hat{T} X \rightarrow T^{\prime} X
$$

But: \hat{T} does not have to be the coproduct (it is actually a Kan extension in MonCat instead of Cat)

Constructing initial degradings

Start with a graded monad T

1. Take the (ordinary) coproduct of $g \mapsto T_{g}$
2. Construct the free monad on the coproduct
3. Quotient to get a degrading

These often exist, but are not intuitive:

- List= and List ${ }_{+=}$have initial degradings
- They don't have simple descriptions: they are not List or List+

Conclusions

Degradings are much more complicated than they first seem

- List $_{+}$is the unique shallow degrading, but not the initial degrading, of List $_{+=}$
- List isn't the unique shallow degrading or the initial degrading of List=

Neither is an algebraic coproduct

There are a lot of list monads:

> https://github.com/maciejpirog/exotic-list-monads

