Dylan McDermott
Reykjavik University

Degrading lists

Maciej Pirog

Wroctaw University

PPDP 2020

Tarmo Uustalu
Reykjavik University
Tallinn University of

Technology

What is the relationship between monads and
graded monads?

> Monads T organize computations into sets TX
(e.g. TX = lists over X)

> Graded monads organize computations into sets TyX
(e.g. TyX = lists over X of length g)

> The grades g provide quantitative information
(e.g. number of alternatives in a nondeterministic computation)

What is the relationship between monads and
graded monads?

> Monads T organize computations into sets TX
(e.g. TX = lists over X)

> Graded monads organize computations into sets TyX
(e.g. TyX = lists over X of length g)

> The grades g provide quantitative information
(e.g. number of alternatives in a nondeterministic computation)

Specifically: can we construct monads from graded monads?

Monads and graded monads
A monad consists of
> A functor T : Set — Set
(with map f : TX — TY for each f : X — Y)
» A unit nx : X — TX for each X (aka return)
» A multiplication px : T(TX) — TX for each X (aka join)

Example (non-empty lists):

TX = List, X nx=[x] U xss = concat xss

Alternatively:
> A set TX for each set X
> A unit return : X — TX for each X
> A bind operator >=:TX — (X - TY) — TY for each X,Y

(in both cases, satisfying some laws)

Monads and graded monads

Given a monoid of grades:

G.-1)
A G-graded monad consists of
> A functor T, : Set — Set for each grade g € G
(with map f : T, X — T,Y for each f: X —Y)
> A unit nx : X — T;X for each X
> A multiplication pyy x : T,(TyX) — T,.4X for each g,¢', X
(satisfying some laws)

Alternatively, use

=:T,X > (X > T,Y) > T,,Y

Monads and graded monads

Given a monoid of grades:

G.-1)
A G-graded monad consists of
> A functor T, : Set — Set for each grade g € G
(with map f : T, X — T,Y for each f: X —Y)
> A unit nx : X — T;X for each X
> A multiplication pyy x : T,(TyX) — T,.4X for each g,¢', X
(satisfying some laws)

Example (non-empty lists)
> Grades are positive integers with multiplication (N, -, 1)

» Graded monad is:

T,X = List,_, X nx=[x] L XSs = concat xss

Monads and graded monads

Given a monoid of grades:

G.-1)
A G-graded monad consists of
> A functor T, : Set — Set for each grade g € G
(with map f : T, X — T,Y for each f: X —Y)
> A unit nx : X — T;X for each X
> A multiplication pyy x : T,(TyX) — T,.4X for each g,¢', X
(satisfying some laws)

Example (possibly-empty lists)
> Grades are natural numbers with multiplication (N, -, 1)

» Graded monad is:

T,X = List., X nx = [x] Jxss = concat xss

Monads from graded monads
Can we turn graded monads T into non-graded monads T?

For example:

» Can we construct a monad by constructing the corresponding
graded monad first?
(e.g. [Fritz and Perrone '18]'s Kantorovich monad)

> If we can model a language with grades, can we model the
language without grades?

FgM:int —— [M]eT,Z

! T4

FM:int —— [M]eTZ
» Do we have

List,_ — List, List_ +— List

Degradings

A degrading of a graded monad (T, n, i) consists of
» A monad (T, 4, i)

> Functions Ay x : T,X — TX preserving the structure, e.g. the
multiplications:

7
T,(TyX) — T,¢X

Agomap Ag/l \L)Lg,g,

T(TX) — X

Example: (Listy, [—], concat) forms a degrading of
(List,— [—], concat)

Anx : Listy_, X C List, X

Constructing degradings

Take the coproduct of g — Tg:
Ay i X — X

T: Set — Set
t— (g,1)

TX=Y,e6T,X
so that elements of TX are pairs (g € G,t € T,X)

> Have a unit
h:X > Ygeg X

x — (Lnx)
» But what about the multiplication?

?
l,[: deg Tg(zgleg Tg/X) e Zgneg Tg//X

from
Hog Tg(TyX) — Tg.g X

Algebraic coproducts

The coproduct T is an algebraic coproduct if:
> It forms a degrading

> For every other degrading T’, there are unique
structure-preserving functions TX — T’X

(more generally: algebraic Kan extension)

For models of effectful languages:

» A computation would be a pair of a g and a computation of
grade g

> For any other model given by a degrading T’, the unique
functions preserve interpretations of terms

Algebraic coproducts

Algebraic Kan extensions sometimes exist:
Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors

but often don't

> Neither List,_ nor List- has an algebraic coproduct

Algebraic coproducts

Algebraic Kan extensions sometimes exist:
Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors

but often don't

> Neither List,_ nor List- has an algebraic coproduct

Introduce two weakenings:

» Unique shallow degrading: don't require structure-preservation
for TX > T'X

> Initial degrading: don't require a coproduct

Algebraic coproduct < unique shallow degrading A initial degrading

First weakening: unique shallow degrading

If the coproduct T uniquely forms a degrading, call it the unique
shallow degrading

> There are unique A-preserving functions TX — T’X, but they
don’t preserve all of the structure

Non-example

List does not form the unique shallow degrading of List-

(] if [] € xss

[1xss = concat xss or [1xss = i
concat xss otherwise

Example

(Listy, [—], concat) is the unique shallow degrading of List,_

10

How many list monads are there?

Answer: infinitely many

T = List, nx=[x]

pxsy,...,xsp] = headxs;:---:headxs,_1 = xsy

X
e o o o

X X X X @
X

X X X X @
X

11

How many list monads are there?
Answer: infinitely many
T = List, nx=[x]

concat xss if xss is a singleton, or all-singletons
UXSS =

take 11 (concat xss) otherwise

X
X X X X

e o o o o
[}

X X X X @
X

11

How many list monads are there?
Answer: infinitely many

T = List, nx =[x, x]

uxss = head (headxss) = concat(tail (map tail xss))

[]
e o o X

X X X X @
[}

e e o o X
[]

11

How many list monads are there?

Answer: infinitely many (for both non-empty and possibly-empty)
» Can discard elements
» Can duplicate elements
» Can have no finite presentation

» Can have nx # [x]

12

How many list monads are there?

Answer: infinitely many (for both non-empty and possibly-empty)
» Can discard elements
» Can duplicate elements
» Can have no finite presentation

» Can have nx # [x]

But for List,: only one agrees with the graded monad

12

List, is a unique shallow degrading

If a non-empty list monad satisfies
U Xss = concat xss (for balanced xss)
then p = concat

Proof sketch:

1. Show that pxss cannot discard elements, by considering
elements of List> X

2. Implies p cannot duplicate elements

3. Prove p[[x,yl],[2z]] = [x,y, 2] = ullx], [y, z]] by brute force

4. So p just concatenates, then permutes the result based on the
length

5. These permutations must be identities

13

Second weakening: initial degrading

T is the initial degrading of a graded monad T if:
> It is a degrading

» For any other degrading T’, there are unique
structure-preserving functions

X - T'X

But: T does not have to be the coproduct
(it is actually a Kan extension in MonCat instead of Cat)

14

Constructing initial degradings

Start with a graded monad T
1. Take the (ordinary) coproduct of g — T
2. Construct the free monad on the coproduct

3. Quotient to get a degrading

These often exist, but are not intuitive:
> List- and List,- have initial degradings

> They don't have simple descriptions: they are not List or List.,

15

Conclusions

Degradings are much more complicated than they first seem

» List, is the unique shallow degrading, but not the initial
degrading, of List,_

> List isn't the unique shallow degrading or the initial degrading
of List-

Neither is an algebraic coproduct

There are a lot of list monads:

https://github.com/maciejpirog/exotic-list-monads

16

