
Degrading lists

Dylan McDermott
Reykjavik University

Maciej Piróg
Wrocław University

Tarmo Uustalu
Reykjavik University
Tallinn University of

Technology

PPDP 2020

1

What is the relationship between monads and
graded monads?

▶ Monads 𝑇 organize computations into sets 𝑇𝑋
(e.g. 𝑇𝑋 = lists over 𝑋)

▶ Graded monads organize computations into sets 𝑇𝑔𝑋
(e.g. 𝑇𝑔𝑋 = lists over 𝑋 of length 𝑔)

▶ The grades 𝑔 provide quantitative information
(e.g. number of alternatives in a nondeterministic computation)

Specifically: can we construct monads from graded monads?

2

What is the relationship between monads and
graded monads?

▶ Monads 𝑇 organize computations into sets 𝑇𝑋
(e.g. 𝑇𝑋 = lists over 𝑋)

▶ Graded monads organize computations into sets 𝑇𝑔𝑋
(e.g. 𝑇𝑔𝑋 = lists over 𝑋 of length 𝑔)

▶ The grades 𝑔 provide quantitative information
(e.g. number of alternatives in a nondeterministic computation)

Specifically: can we construct monads from graded monads?

2

Monads and graded monads
A monad consists of
▶ A functor 𝑇 : Set → Set

(with map 𝑓 : 𝑇𝑋 → 𝑇𝑌 for each 𝑓 : 𝑋 → 𝑌)
▶ A unit 𝜂𝑋 : 𝑋 → 𝑇𝑋 for each 𝑋 (aka return)
▶ A multiplication 𝜇𝑋 : 𝑇 (𝑇𝑋) → 𝑇𝑋 for each 𝑋 (aka join)

Example (non-empty lists):

𝑇𝑋 = List+𝑋 𝜂 𝑥 = [𝑥] 𝜇 xss = concat xss

Alternatively:
▶ A set 𝑇𝑋 for each set 𝑋
▶ A unit return : 𝑋 → 𝑇𝑋 for each 𝑋
▶ A bind operator ≫= : 𝑇𝑋 → (𝑋 → 𝑇𝑌) → 𝑇𝑌 for each 𝑋,𝑌

(in both cases, satisfying some laws)
3

Monads and graded monads
Given a monoid of grades:

(G, ·, 1)
A G-graded monad consists of
▶ A functor 𝑇𝑔 : Set → Set for each grade 𝑔 ∈ G

(with map 𝑓 : 𝑇𝑔𝑋 → 𝑇𝑔𝑌 for each 𝑓 : 𝑋 → 𝑌)
▶ A unit 𝜂𝑋 : 𝑋 → 𝑇1𝑋 for each 𝑋
▶ A multiplication 𝜇𝑔,𝑔′,𝑋 : 𝑇𝑔 (𝑇𝑔′𝑋) → 𝑇𝑔 ·𝑔′𝑋 for each 𝑔,𝑔′, 𝑋

(satisfying some laws)

Alternatively, use

≫= : 𝑇𝑔𝑋 → (𝑋 → 𝑇𝑔′𝑌) → 𝑇𝑔 ·𝑔′𝑌

4

Monads and graded monads
Given a monoid of grades:

(G, ·, 1)
A G-graded monad consists of
▶ A functor 𝑇𝑔 : Set → Set for each grade 𝑔 ∈ G

(with map 𝑓 : 𝑇𝑔𝑋 → 𝑇𝑔𝑌 for each 𝑓 : 𝑋 → 𝑌)
▶ A unit 𝜂𝑋 : 𝑋 → 𝑇1𝑋 for each 𝑋
▶ A multiplication 𝜇𝑔,𝑔′,𝑋 : 𝑇𝑔 (𝑇𝑔′𝑋) → 𝑇𝑔 ·𝑔′𝑋 for each 𝑔,𝑔′, 𝑋

(satisfying some laws)

Example (non-empty lists)
▶ Grades are positive integers with multiplication (N+, ·, 1)
▶ Graded monad is:

𝑇𝑛𝑋 = List+=𝑛𝑋 𝜂 𝑥 = [𝑥] 𝜇 xss = concat xss

4

Monads and graded monads
Given a monoid of grades:

(G, ·, 1)
A G-graded monad consists of
▶ A functor 𝑇𝑔 : Set → Set for each grade 𝑔 ∈ G

(with map 𝑓 : 𝑇𝑔𝑋 → 𝑇𝑔𝑌 for each 𝑓 : 𝑋 → 𝑌)
▶ A unit 𝜂𝑋 : 𝑋 → 𝑇1𝑋 for each 𝑋
▶ A multiplication 𝜇𝑔,𝑔′,𝑋 : 𝑇𝑔 (𝑇𝑔′𝑋) → 𝑇𝑔 ·𝑔′𝑋 for each 𝑔,𝑔′, 𝑋

(satisfying some laws)

Example (possibly-empty lists)
▶ Grades are natural numbers with multiplication (N, ·, 1)
▶ Graded monad is:

𝑇𝑛𝑋 = List=𝑛𝑋 𝜂 𝑥 = [𝑥] 𝜇 xss = concat xss

4

Monads from graded monads
Can we turn graded monads 𝑇 into non-graded monads 𝑇?

For example:
▶ Can we construct a monad by constructing the corresponding

graded monad first?
(e.g. [Fritz and Perrone ’18]’s Kantorovich monad)

▶ If we can model a language with grades, can we model the
language without grades?

⊢𝑔 𝑀 : int J𝑀K ∈ 𝑇𝑔 Z

⊢ 𝑀 : int J𝑀K ∈ 𝑇 Z

𝜆𝑔

▶ Do we have

List+= ↦→ List+ List= ↦→ List

5

Degradings
A degrading of a graded monad (𝑇, 𝜂, 𝜇) consists of
▶ A monad (𝑇, 𝜂, 𝜇)
▶ Functions 𝜆𝑔,𝑋 : 𝑇𝑔𝑋 → 𝑇𝑋 preserving the structure, e.g. the

multiplications:

𝑇𝑔 (𝑇𝑔′𝑋) 𝑇𝑔 ·𝑔′𝑋

𝑇 (𝑇𝑋) 𝑇𝑋

𝜇

𝜆𝑔 ◦map𝜆𝑔′ 𝜆𝑔·𝑔′

𝜇

Example: (List+, [−], concat) forms a degrading of
(List+=, [−], concat)

𝜆𝑛,𝑋 : List+=𝑛𝑋 ⊆ List+𝑋

6

Constructing degradings
Take the coproduct of 𝑔 ↦→ 𝑇𝑔:

𝑇 : Set → Set

𝑇 𝑋 =
∑

𝑔∈G 𝑇𝑔𝑋

𝜆𝑔 : 𝑇𝑔𝑋 → 𝑇𝑋

𝑡 ↦→ (𝑔, 𝑡)

so that elements of 𝑇𝑋 are pairs (𝑔 ∈ G, 𝑡 ∈ 𝑇𝑔𝑋)
▶ Have a unit

𝜂 : 𝑋 → ∑
𝑔∈G 𝑇𝑔𝑋

𝑥 ↦→ (1, 𝜂 𝑥)
▶ But what about the multiplication?

𝜇 :
∑

𝑔∈G 𝑇𝑔
(∑

𝑔′∈G 𝑇𝑔′𝑋
) ?−→ ∑

𝑔′′∈G 𝑇𝑔′′𝑋

from
𝜇𝑔,𝑔′ : 𝑇𝑔 (𝑇𝑔′𝑋) → 𝑇𝑔 ·𝑔′𝑋

7

Algebraic coproducts

The coproduct 𝑇 is an algebraic coproduct if:
▶ It forms a degrading
▶ For every other degrading 𝑇 ′, there are unique

structure-preserving functions 𝑇𝑋 → 𝑇 ′𝑋

(more generally: algebraic Kan extension)

For models of effectful languages:
▶ A computation would be a pair of a 𝑔 and a computation of

grade 𝑔

▶ For any other model given by a degrading 𝑇 ′, the unique
functions preserve interpretations of terms

8

Algebraic coproducts

Algebraic Kan extensions sometimes exist:

Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors

but often don’t
▶ Neither List+= nor List= has an algebraic coproduct

Introduce two weakenings:
▶ Unique shallow degrading: don’t require structure-preservation

for 𝑇𝑋 → 𝑇 ′𝑋

▶ Initial degrading: don’t require a coproduct

Algebraic coproduct ⇔ unique shallow degrading ∧ initial degrading

9

Algebraic coproducts

Algebraic Kan extensions sometimes exist:

Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors

but often don’t
▶ Neither List+= nor List= has an algebraic coproduct

Introduce two weakenings:
▶ Unique shallow degrading: don’t require structure-preservation

for 𝑇𝑋 → 𝑇 ′𝑋

▶ Initial degrading: don’t require a coproduct

Algebraic coproduct ⇔ unique shallow degrading ∧ initial degrading

9

First weakening: unique shallow degrading

If the coproduct 𝑇 uniquely forms a degrading, call it the unique
shallow degrading
▶ There are unique 𝜆-preserving functions 𝑇𝑋 → 𝑇 ′𝑋 , but they

don’t preserve all of the structure

Non-example
List does not form the unique shallow degrading of List=

𝜇 xss = concat xss or 𝜇 xss =

{
[] if [] ∈ xss

concat xss otherwise

Example
(List+, [−], concat) is the unique shallow degrading of List+=

10

How many list monads are there?

Answer: infinitely many

𝑇 = List+ 𝜂 𝑥 = [𝑥]

𝜇 [xs1, . . . , xs𝑛] = head xs1 :: · · · :: head xs𝑛−1 :: xs𝑛

11

How many list monads are there?

Answer: infinitely many

𝑇 = List+ 𝜂 𝑥 = [𝑥]

𝜇 xss =

{
concat xss if xss is a singleton, or all-singletons
take 11 (concat xss) otherwise

11

How many list monads are there?

Answer: infinitely many

𝑇 = List+ 𝜂 𝑥 = [𝑥, 𝑥]

𝜇 xss = head (head xss) :: concat(tail (map tail xss))

11

How many list monads are there?

Answer: infinitely many (for both non-empty and possibly-empty)
▶ Can discard elements
▶ Can duplicate elements
▶ Can have no finite presentation
▶ Can have 𝜂 𝑥 ≠ [𝑥]

But for List+: only one agrees with the graded monad

12

How many list monads are there?

Answer: infinitely many (for both non-empty and possibly-empty)
▶ Can discard elements
▶ Can duplicate elements
▶ Can have no finite presentation
▶ Can have 𝜂 𝑥 ≠ [𝑥]

But for List+: only one agrees with the graded monad

12

List+ is a unique shallow degrading

If a non-empty list monad satisfies

𝜇 xss = concat xss (for balanced xss)

then 𝜇 = concat

Proof sketch:
1. Show that 𝜇 xss cannot discard elements, by considering

elements of List3+𝑋
2. Implies 𝜇 cannot duplicate elements
3. Prove 𝜇 [[𝑥,𝑦], [𝑧]] = [𝑥,𝑦, 𝑧] = 𝜇 [[𝑥], [𝑦, 𝑧]] by brute force
4. So 𝜇 just concatenates, then permutes the result based on the

length
5. These permutations must be identities

13

Second weakening: initial degrading

𝑇 is the initial degrading of a graded monad 𝑇 if:
▶ It is a degrading
▶ For any other degrading 𝑇 ′, there are unique

structure-preserving functions

𝑇𝑋 → 𝑇 ′𝑋

But: 𝑇 does not have to be the coproduct
(it is actually a Kan extension in MonCat instead of Cat)

14

Constructing initial degradings

Start with a graded monad 𝑇

1. Take the (ordinary) coproduct of 𝑔 ↦→ 𝑇𝑔

2. Construct the free monad on the coproduct
3. Quotient to get a degrading

These often exist, but are not intuitive:
▶ List= and List+= have initial degradings
▶ They don’t have simple descriptions: they are not List or List+

15

Conclusions

Degradings are much more complicated than they first seem
▶ List+ is the unique shallow degrading, but not the initial

degrading, of List+=
▶ List isn’t the unique shallow degrading or the initial degrading

of List=
Neither is an algebraic coproduct

There are a lot of list monads:

https://github.com/maciejpirog/exotic-list-monads

16

