## What makes a strong monad?

Dylan McDermott ${ }^{1}$ Tarmo Uustalu ${ }^{1,2}$

${ }^{1}$ Reykjavik University, Iceland
${ }^{2}$ Tallinn University of Technology, Estonia

## Strength

$$
\begin{aligned}
& {[1.3] \gg=(\backslash x->} \\
& {[4.6] \gg=(\backslash y->} \\
& \quad \text { return }(x+y)))
\end{aligned}
$$

Since List is a monad

$$
\frac{f: X \rightarrow \operatorname{List} Y}{\gg=f: \operatorname{List} X \rightarrow \operatorname{List} Y}
$$

we can interpret >>= ( $\backslash \mathrm{x}->\ldots$ ):

$$
\frac{(x \mapsto[x+4, x+5, x+6]): \mathbb{Z} \rightarrow \text { List } \mathbb{Z}}{\gg=(x \mapsto[x+4, x+5, x+6]): \text { List } \mathbb{Z} \rightarrow \text { List } \mathbb{Z}}
$$

## Strength

$$
\begin{aligned}
& {[1.3] \gg=(\backslash x->} \\
& {[4.6] \gg=(\backslash y->} \\
& \quad \text { return }(x+y)))
\end{aligned}
$$

Since List is a strong monad

$$
\frac{f: \Gamma \times X \rightarrow \operatorname{List} Y}{\gg=f: \Gamma \times \operatorname{List} X \rightarrow \operatorname{List} Y}
$$

we can interpret >>= ( $\backslash \mathrm{y}$-> ...):

$$
\frac{((x, y) \mapsto[x+y]): \mathbb{Z} \times \mathbb{Z} \rightarrow \operatorname{List} \mathbb{Z}}{\gg=((x, y) \mapsto[x+y]): \mathbb{Z} \times \operatorname{List} \mathbb{Z} \rightarrow \operatorname{List} \mathbb{Z}}
$$

## This work

Collect together some useful results about strength:

- When do strengths exist?
- When are they unique?
- What about equivalent formulations?


## Actions

An action of a monoidal category $(\mathrm{V}, \mathrm{I}, \otimes)$ on a category C is:

- a bifunctor $\triangleright: \mathrm{V} \times \mathrm{C} \rightarrow \mathrm{C}$
- with isomorphisms

$$
\lambda_{X}: I \triangleright X \cong X \quad \alpha_{\Gamma^{\prime}, \Gamma, X}:\left(\Gamma^{\prime} \otimes \Gamma\right) \triangleright X \cong \Gamma^{\prime} \triangleright(\Gamma \triangleright X)
$$

- satisfying coherence laws

Example: (Set, 1, $\times$ ) acts on Set with:
$(\triangleright)=(\times):$ Set $\times$ Set $\rightarrow$ Set $\quad \lambda(\star, x)=x \quad \alpha\left(\left(\gamma^{\prime}, \gamma\right), x\right)=\left(\gamma^{\prime},(\gamma, x)\right)$

## Actions

An action of a monoidal category $(\mathrm{V}, \mathrm{I}, \otimes)$ on a category C is:

- a bifunctor $\triangleright: \mathrm{V} \times \mathrm{C} \rightarrow \mathrm{C}$
- with isomorphisms

$$
\lambda_{X}: I \triangleright X \cong X \quad \alpha_{\Gamma^{\prime}, \Gamma, X}:\left(\Gamma^{\prime} \otimes \Gamma\right) \triangleright X \cong \Gamma^{\prime} \triangleright(\Gamma \triangleright X)
$$

- satisfying coherence laws

More generally: every cartesian monoidal V acts on itself with

$$
(\triangleright)=(\times): V \times V \rightarrow V
$$

- Poset: posets and monotone functions
- Set ${ }_{*}$ : pointed sets and point-preserving functions
- $[\mathbb{N}$, Set]:
- objects: pairs $(X, e: X \rightarrow X)$,
- morphisms: functions $f: X \rightarrow Y$ such that $f\left(e_{X} x\right)=e_{Y}(f x)$
- products: $X \times Y$ with $e_{X \times Y}(x, y)=\left(e_{X} x, e_{Y} y\right)$


## Actions

An action of a monoidal category $(\mathrm{V}, \mathrm{I}, \otimes)$ on a category C is:

- a bifunctor $\triangleright: \mathrm{V} \times \mathrm{C} \rightarrow \mathrm{C}$
- with isomorphisms

$$
\lambda_{X}: I \triangleright X \cong X \quad \alpha_{\Gamma^{\prime}, \Gamma, X}:\left(\Gamma^{\prime} \otimes \Gamma\right) \triangleright X \cong \Gamma^{\prime} \triangleright(\Gamma \triangleright X)
$$

- satisfying coherence laws

Morphisms $\Gamma \triangleright X \rightarrow Y$ are "maps from $X$ to $Y$ in context $\Gamma$ "

Identities:

$$
\overline{\lambda_{X}: I \triangleright X \rightarrow X}
$$

Composition:

$$
\begin{array}{rl}
f: \Gamma \triangleright X \rightarrow Y & g: \Gamma^{\prime} \triangleright Y \rightarrow Z \\
\hline\left(g \circ\left(\Gamma^{\prime} \triangleright f\right) \circ \alpha\right):\left(\Gamma^{\prime} \otimes \Gamma\right) \triangleright X \rightarrow Z
\end{array}
$$

## Strong functors

A strong functor $F:\left(\mathrm{C}, \triangleright_{\mathrm{C}}\right) \rightarrow\left(\mathrm{D}, \triangleright_{\mathrm{D}}\right)$ is

- an object assignment $F:|\mathbf{C}| \rightarrow|\mathbf{D}|$
- a morphism assignment

$$
\frac{f: \Gamma \triangleright_{\mathrm{C}} X \rightarrow Y}{F^{(\Gamma)} f: \Gamma \triangleright_{\mathrm{D}} F X \rightarrow F Y}
$$

- natural in $\Gamma$, and preserving identities and composition

Every strong functor induces an ordinary functor:

$$
\frac{X \rightarrow Y}{\frac{I \triangleright_{\mathrm{C}} X \rightarrow Y}{I \triangleright_{\mathrm{D}} F X \rightarrow F Y}} \underset{F X \rightarrow F Y}{\underline{F X}}
$$

## Strong functors

A strong functor $F:\left(\mathrm{C}, \triangleright_{\mathrm{C}}\right) \rightarrow\left(\mathrm{D}, \triangleright_{\mathrm{D}}\right)$ is

- an object assignment $F:|\mathbf{C}| \rightarrow|\mathbf{D}|$
- a morphism assignment

$$
\frac{f: \Gamma \triangleright_{\mathrm{C}} X \rightarrow Y}{F^{(\Gamma)} f: \Gamma \triangleright_{\mathrm{D}} F X \rightarrow F Y}
$$

- natural in $\Gamma$, and preserving identities and composition

Every strong functor induces an ordinary functor

Example:

$$
\begin{gathered}
\text { List }:(\text { Set }, \times) \rightarrow(\text { Set }, \times) \\
\text { List } X=\text { lists over } X \\
\text { List }^{(\Gamma)} f\left(\gamma,\left[x_{1}, \ldots, x_{n}\right]\right)=\left[f\left(\gamma, x_{1}\right), \ldots, f\left(\gamma, x_{n}\right)\right]
\end{gathered}
$$

## Strong functors

A strong functor $F:\left(\mathrm{C}, \triangleright_{\mathrm{C}}\right) \rightarrow\left(\mathrm{D}, \triangleright_{\mathrm{D}}\right)$ is

- an object assignment $F:|\mathbf{C}| \rightarrow|\mathbf{D}|$
- a morphism assignment

$$
\frac{f: \Gamma \triangleright_{\mathrm{C}} X \rightarrow Y}{F^{(\Gamma)} f: \Gamma \triangleright_{\mathrm{D}} F X \rightarrow F Y}
$$

- natural in $\Gamma$, and preserving identities and composition

Every strong functor induces an ordinary functor

Example:

$$
\begin{aligned}
\mathbb{N} \times-:([\mathbb{N}, \text { Set }], \times) & \rightarrow([\mathbb{N}, \text { Set }], \times) \quad(\text { with } e(n, x)=(n, e x)) \\
\mathbb{N} \times^{(\Gamma)} f:(\gamma,(n, x)) & \mapsto(n, f(\gamma, x))
\end{aligned}
$$

## Strong functors

A strong functor $F:\left(\mathrm{C}, \triangleright_{\mathrm{C}}\right) \rightarrow\left(\mathrm{D}, \triangleright_{\mathrm{D}}\right)$ is

- an object assignment $F:|\mathbf{C}| \rightarrow|\mathbf{D}|$
- a morphism assignment

$$
\frac{f: \Gamma \triangleright_{\mathrm{C}} X \rightarrow Y}{F^{(\Gamma)} f: \Gamma \triangleright_{\mathrm{D}} F X \rightarrow F Y}
$$

- natural in $\Gamma$, and preserving identities and composition

Every strong functor induces an ordinary functor

Example:

$$
\begin{aligned}
\mathbb{N} \times-:([\mathbb{N}, \text { Set }], \times) & \rightarrow([\mathbb{N}, \text { Set }], \times) \quad(\text { with } e(n, x)=(n, e x)) \\
\mathbb{N} \times^{(\Gamma)} f:(\gamma,(n, x)) & \mapsto(n, f(\gamma, x))
\end{aligned}
$$

or:

$$
\mathbb{N} \times^{(\Gamma)} f:(\gamma,(n, x)) \mapsto\left(n, f\left(e^{n} \gamma, x\right)\right)
$$

## Strong functors

A strong functor $F:\left(\mathrm{C}, \triangleright_{\mathrm{C}}\right) \rightarrow\left(\mathrm{D}, \triangleright_{\mathrm{D}}\right)$ is

- an object assignment $F:|\mathbf{C}| \rightarrow|\mathbf{D}|$
- a morphism assignment

$$
\frac{f: \Gamma \triangleright_{\mathrm{C}} X \rightarrow Y}{F^{(\Gamma)} f: \Gamma \triangleright_{\mathrm{D}} F X \rightarrow F Y}
$$

- natural in $\Gamma$, and preserving identities and composition

Equivalently:

- an ordinary functor $F: \mathbf{C} \rightarrow \mathbf{D}$
- with a strength $\operatorname{str}_{\Gamma, X}: \Gamma \triangleright_{\mathrm{D}} F X \rightarrow F\left(\Gamma \triangleright_{\mathrm{C}} X\right)$

Example: $\mathbb{N} \times-:[\mathbb{N}$, Set $] \rightarrow[\mathbb{N}$, Set $]$ with
$\operatorname{str}(\gamma,(n, x))=(n,(\gamma, x))$ or $\operatorname{str}(\gamma,(n, x))=\left(n,\left(e^{n} \gamma, x\right)\right)$

## Uniqueness of strengths

Every morphism $f: \Gamma \triangleright_{\mathrm{D}} X \rightarrow Y$ can be applied at points of $\Gamma$ :

$$
\begin{aligned}
(f): \mathrm{V}(I, \Gamma) & \rightarrow \mathbf{D}(X, Y) \\
\gamma & \mapsto\left(X \xrightarrow{\lambda^{-1}} I \triangleright_{\mathrm{D}} X \xrightarrow{\gamma \triangleright_{\mathrm{D}} X} \Gamma \triangleright_{\mathrm{D}} X \xrightarrow{f} Y\right)
\end{aligned}
$$

Every strength for $F: \mathrm{C} \rightarrow \mathrm{D}$ satisfies

$$
\left(\operatorname{str}_{\Gamma, X}\right) \gamma=F\left(\left(\gamma \triangleright_{\mathrm{C}} X\right) \circ \lambda^{-1}\right)
$$

so if $\triangleright_{D}$ is well-pointed ( $(0-)$ is injective), strengths are unique

## Uniqueness of strengths

Every morphism $f: \Gamma \triangleright_{\mathrm{D}} X \rightarrow Y$ can be applied at points of $\Gamma$ :

$$
\begin{aligned}
(f): \mathrm{V}(I, \Gamma) & \rightarrow \mathbf{D}(X, Y) \\
\gamma & \mapsto\left(X \xrightarrow{\lambda^{-1}} I \triangleright_{\mathrm{D}} X \xrightarrow{\gamma \triangleright_{\mathrm{D}} X} \Gamma \triangleright_{\mathrm{D}} X \xrightarrow{f} Y\right)
\end{aligned}
$$

Every strength for $F: \mathrm{C} \rightarrow \mathrm{D}$ satisfies

$$
\left(\operatorname{str}_{\Gamma, X}\right) \gamma=F\left(\left(\gamma \triangleright_{\mathrm{C}} X\right) \circ \lambda^{-1}\right)
$$

so if $\triangleright_{D}$ is well-pointed ( $(-)$ is injective), strengths are unique

Example: every $F:$ Set $\rightarrow$ Set has a unique strength

$$
\operatorname{str}_{\Gamma, X}(\gamma, t)=F(x \mapsto(\gamma, x)) t
$$

## Uniqueness of strengths

Every morphism $f: \Gamma \triangleright_{\mathrm{D}} X \rightarrow Y$ can be applied at points of $\Gamma$ :

$$
\begin{aligned}
(f): \mathrm{V}(I, \Gamma) & \rightarrow \mathbf{D}(X, Y) \\
\gamma & \mapsto\left(X \xrightarrow{\lambda^{-1}} I \triangleright_{\mathrm{D}} X \xrightarrow{\gamma \triangleright_{\mathrm{D}} X} \Gamma \triangleright_{\mathrm{D}} X \xrightarrow{f} Y\right)
\end{aligned}
$$

Every strength for $F: \mathrm{C} \rightarrow \mathrm{D}$ satisfies

$$
\left(\operatorname{str}_{\Gamma, X}\right) \gamma=F\left(\left(\gamma \triangleright_{\mathrm{C}} X\right) \circ \lambda^{-1}\right)
$$

so if $\triangleright_{D}$ is well-pointed ( $(-)$ is injective), strengths are unique

Example: $|-|:(X, \leq) \mapsto(X,=):$ Poset $\rightarrow$ Poset has no strength:

$$
\operatorname{str}_{\Gamma, X}:(\gamma, x) \mapsto(\gamma, x): \Gamma \times|X| \rightarrow|\Gamma \times X| \text { is not monotone }
$$

## Existence of strengths

If for every

$$
\zeta: \mathrm{V}(I, \Gamma) \rightarrow \mathrm{D}(X, Y)
$$

there is a

$$
\Phi_{\Gamma} \zeta: \Gamma \triangleright_{\mathrm{D}} X \rightarrow Y
$$

satisfying $\left(\Phi_{\Gamma} \zeta\right)=\zeta$ and respecting the action structure of $\triangleright_{\mathrm{D}}$, then

- every functor $F: \mathbf{C} \rightarrow \mathbf{D}$ forms a strong functor
- in a coherent way (natural transformations are strong)

Example: for $(\mathrm{D}, \triangleright)=($ Set,$\times)$, take $\Phi_{\Gamma} \zeta(\gamma, x)=\zeta \gamma x$, then

$$
F^{(\Gamma)} f(\gamma, t)=F(x \mapsto f(\gamma, x)) t
$$

## Existence of strengths

If for every

$$
\zeta: \mathrm{V}(I, \Gamma) \rightarrow \mathrm{D}(X, Y)
$$

there is a

$$
\Phi_{\Gamma} \zeta: \Gamma \triangleright_{\mathrm{D}} X \rightarrow Y
$$

satisfying $\left(\Phi_{\Gamma} \zeta\right)=\zeta$ and respecting the action structure of $\triangleright_{\mathrm{D}}$, then

- every functor $F: \mathbf{C} \rightarrow \mathbf{D}$ forms a strong functor
- in a coherent way (natural transformations are strong)

Example: for $(\mathrm{D}, \triangleright)=\left(\operatorname{Set}_{*}, \times\right)$, take $\Phi_{\Gamma} \zeta(\gamma, x)=\zeta \star x$, then

$$
F^{(\Gamma)} f(\gamma, t)=F(x \mapsto f(\star, x)) t
$$

$\left(\right.$ since $\left.\operatorname{Set}_{*}(1, \Gamma)=\{\star\}\right)$

## Strong monads

A strong monad on $\left(\mathrm{C}, \triangleright_{\mathrm{C}}\right)$ is:

- an object mapping $X \mapsto T X$
- with unit morphisms $\eta_{X}: X \rightarrow T X$
- and a Kleisli extension operation

$$
\frac{f: \Gamma \triangleright X \rightarrow T Y}{f^{\dagger}: \Gamma \triangleright T X \rightarrow T Y}
$$

- natural in $\Gamma$ and satisfying three laws


## Strong monads

A strong monad on $\left(\mathrm{C}, \triangleright_{\mathrm{C}}\right)$ is:

- an object mapping $X \mapsto T X$
- with unit morphisms $\eta_{X}: X \rightarrow T X$
- and a Kleisli extension operation

$$
\frac{f: \Gamma \triangleright X \rightarrow T Y}{f^{\dagger}: \Gamma \triangleright T X \rightarrow T Y}
$$

- natural in $\Gamma$ and satisfying three laws

Example: take $(\mathbf{C}, \triangleright)=($ Set,$\times)$ and

- List $X=$ lists over $X$
- $\eta x=[x]$
- $f^{\dagger}\left(\gamma,\left[x_{1}, \ldots, x_{n}\right]\right)=f\left(\gamma, x_{1}\right)+\cdots+f\left(\gamma, x_{n}\right)$


## Strong monads

A strong monad on $\left(\mathrm{C}, \triangleright_{\mathrm{C}}\right)$ is:

- an object mapping $X \mapsto T X$
- with unit morphisms $\eta_{X}: X \rightarrow T X$
- and a Kleisli extension operation

$$
\frac{f: \Gamma \triangleright X \rightarrow T Y}{f^{\dagger}: \Gamma \triangleright T X \rightarrow T Y}
$$

- natural in $\Gamma$ and satisfying three laws

Example: take $(\mathbf{C}, \triangleright)=([\mathbb{N}$, Set $], \times)$ and

- $X \mapsto \mathbb{N} \times X$ (with $e(n, x)=(n, e x))$
- $\eta x=(0, x)$
- $f^{\dagger}(\gamma,(n, x))=(n+m, y)$ where $(m, y)=f(\gamma, x)$ -or-
$f^{\dagger}(\gamma,(n, x))=(n+m, y)$ where $(m, y)=f\left(e^{n} \gamma, x\right)$


## Strong monads

A strong monad on $\left(\mathrm{C}, \triangleright_{\mathrm{C}}\right)$ is:

- an object mapping $X \mapsto T X$
- with unit morphisms $\eta_{X}: X \rightarrow T X$
- and a Kleisli extension operation

$$
\frac{f: \Gamma \triangleright X \rightarrow T Y}{f^{\dagger}: \Gamma \triangleright T X \rightarrow T Y}
$$

- natural in $\Gamma$ and satisfying three laws

Equivalently:

- A strong functor $T$, with a strong unit and a strong multiplication, satisfying the monad laws
- A monad $(T, \eta, \mu)$ with a lifting of $\triangleright$ to KlT



## Uniqueness and existence of strengths

- If $\triangleright$ is well-pointed, then strengths are unique

$$
\left(\operatorname{str}_{\Gamma, X}\right) \gamma=T\left(\left(\gamma \triangleright_{\mathrm{C}} X\right) \circ \lambda^{-1}\right)
$$

- Existence doesn't work as well: $\Phi$ makes Id into a strong monad only if $\triangleright$ is well-pointed
- On Set ${ }_{*}$, defining $f^{\dagger}(\gamma, x)=f(\star, x)$ does not make Id into a strong monad


## Equivalent perspectives: enrichment

For each $\mathbf{C}$, if $-\triangleright X \dashv X \rightarrow-: \mathbf{C} \rightarrow \mathbf{V}$ for each $X$ :

- to make $\triangleright$ into an action is equivalently
- to make $\rightarrow$ into an enrichment of C over V such that $(\Gamma \triangleright X) \rightarrow Y \cong \Gamma \multimap(X \rightarrow Y)$
(when V is left closed)


## Equivalent perspectives: enrichment

For each $\mathbf{C}$, if $-\triangleright X \dashv X \rightarrow-: \mathbf{C} \rightarrow \mathbf{V}$ for each $X$ :

- to make $\triangleright$ into an action is equivalently
- to make $\rightarrow$ into an enrichment of C over V such that

$$
(\Gamma \triangleright X) \rightarrow Y \cong \Gamma \multimap(X \rightarrow Y)
$$

(when V is left closed)
Under this bijection:

- strong functors are the same as enriched functors

$$
\begin{aligned}
X & \mapsto F X \\
\mathrm{fmap}_{X, Y}:(X & \rightarrow Y) \rightarrow(F X \rightarrow F Y)
\end{aligned}
$$

- strong monads are the same as enriched monads

$$
\begin{gathered}
X \mapsto T X \\
\eta_{X}: X \rightarrow T X
\end{gathered}
$$

$\operatorname{bind}_{X, Y}:(X \rightarrow T Y) \rightarrow(T X \rightarrow T Y)$

## Equivalent perspectives: enrichment

For each C , if $-\triangleright X \dashv X \rightarrow-: \mathrm{C} \rightarrow \mathrm{V}$ for each $X$ :

- to make $\triangleright$ into an action is equivalently
- to make $\rightarrow$ into an enrichment of C over V such that

$$
(\Gamma \triangleright X) \rightarrow Y \cong \Gamma \multimap(X \rightarrow Y)
$$

(when V is left closed)
Under this bijection:

- strong functors are the same as enriched functors

$$
\begin{array}{cl}
X & \mapsto F X \\
\mathrm{fmap}_{X, Y}:(X \rightarrow Y) \rightarrow(F X \rightarrow F Y) & \text { class Functor f where } \\
& \text { fmap }::(\mathrm{a} \rightarrow \mathrm{~b}) \rightarrow \mathrm{f} \mathrm{a} \rightarrow \mathrm{f} \mathrm{~b}
\end{array}
$$

- strong monads are the same as enriched monads

$$
\begin{array}{cl}
X \mapsto T X & \text { class Monad t where } \\
& \text { return }:: \mathrm{a}->\mathrm{t} \mathrm{a} \\
\eta_{X}: X \rightarrow T X & (\gg=)::(\mathrm{a} \rightarrow \mathrm{t} \mathrm{~b}) \rightarrow \mathrm{t} \mathrm{a} \rightarrow \mathrm{t} \mathrm{~b}
\end{array}
$$

- There are many different ways of formulating strength
- arising by looking at strength from different perspectives
- leading to various different properties (existence, uniqueness, etc.)

Some other things (in the paper):

- Third perspective: powering $\Gamma \triangleright-\dashv \Gamma \in-: \mathbf{C} \rightarrow \mathbf{C}$
$\leadsto$ formulation of strength in terms of $\operatorname{Alg}(T)$
$\leadsto$ strengths for free monads
- Bistrengths and commutative monads

