
Flexible presentations of graded monads

Shin-ya Katsumata1 Dylan McDermott2 Tarmo Uustalu2,3 Nicolas Wu4

1 National Institute of Informatics, Japan
2 Reykjavik University, Iceland

3 Tallinn University of Technology, Estonia
4 Imperial College London, UK

1



Example: nondeterminism with backtracking and cut

or(or(or(or(return11, return12), fail),
or(return13, cut)), return14)

or
or

or

or

11 12

fail

or

13 cut

14

Terms should satisfy some equations:
or(𝑀, 𝑁 ) ≡ 𝑀 whenever 𝑀 cuts

©­«
do x <- 𝑁1

y <- 𝑁2

𝑀

ª®¬ ≡ ©­«
do y <- 𝑁2

x <- 𝑁1

𝑀

ª®¬
whenever 𝑀 cuts
and 𝑁1 cuts or returns something
and 𝑁2 cuts or returns something

2



Models of effects from presentations
1. Effects can be modelled using monads [Moggi ’89]
2. which often come from presentations [Plotkin and Power ’02]
3. which induce algebraic operations [Plotkin and Power ’03]

Example: (based on [Piróg and Staton ’17])
1. Nondeterminism with can be modelled using a monad Cut

Cut𝑋 = List𝑋 × {cut, nocut}
2. which comes from the presentation of monoids with a left zero:

or : 2 fail : 0 cut : 0
or(or(𝑥,𝑦), 𝑧) ≡ or(𝑥, or(𝑦, 𝑧)) or(fail, 𝑥) ≡ 𝑥 ≡ or(𝑥, fail) or(cut, 𝑥) ≡ 𝑥

3. which induces algebraic operations
or𝑋 : Cut𝑋 × Cut𝑋 → Cut𝑋

fail𝑋 : 1 → Cut𝑋 cut𝑋 : 1 → Cut𝑋

3



Example: nondeterminism with backtracking and cut

or(𝑀, 𝑁 ) ≡ 𝑀 whenever 𝑀 cuts

©­«
do x <- 𝑁1

y <- 𝑁2

𝑀

ª®¬ ≡ ©­«
do y <- 𝑁2

x <- 𝑁1

𝑀

ª®¬
whenever 𝑀 cuts
and 𝑁1 cuts or returns something
and 𝑁2 cuts or returns something

4



Grading

Grade computations by elements of an ordered monoid:

(E, ≤, 1, ·)

so that they form a graded monad

For example:
▶ lists graded by (N,=, 1, ·)

Vec𝑋 𝑒 = lists over 𝑋 of length exactly 𝑒

▶ lists graded by (N, ≤, 1, ·)

BVec𝑋 𝑒 = lists over 𝑋 of length at most 𝑒

5



Example: grading nondeterminism with backtracking and cut

or(𝑀,𝑁 ) ≡ 𝑀 whenever 𝑀 has grade ⊥

Assign grades 𝑒 ∈ {⊥, 1,⊤} to computations:

⊤ don’t know anything

≤

1
definitely cuts
or returns something

≤

⊥ definitely cuts

Graded monad Cut:

Cut𝑋𝑒 = {(xs, 𝑐) ∈ List𝑋 × {cut, nocut}
| (𝑒 = ⊥ ⇒ 𝑐 = cut)
∧ (𝑒 = 1 ⇒ 𝑐 = cut ∨ xs ≠ [])}

Kleisli extension:

𝑓 : 𝑋 → Cut𝑌𝑒

𝑓 †
𝑑
: Cut𝑋𝑑 → Cut𝑌 (𝑑 · 𝑒)

where
⊤ · 𝑒 = ⊤
1 · 𝑒 = 𝑒
⊥ · 𝑒 = ⊥

6



Example: grading nondeterminism with backtracking and cut

1. Nondeterminism with cut can be modelled using a graded monad Cut

Cut𝑋𝑒 = {(xs, 𝑐) ∈ List𝑋 × {cut, nocut}
| (𝑒 = ⊥ ⇒ 𝑐 = cut)
∧ (𝑒 = 1 ⇒ 𝑐 = cut ∨ xs ≠ [])}

2. which comes from a graded presentation of monoids with a left zero?
3. which induces graded algebraic operations?

or𝑑1,𝑑2,𝑋 : Cut𝑋 𝑑1 × Cut𝑋 𝑑2 → Cut𝑋 (𝑑1 ⊓ 𝑑2) (𝑑1, 𝑑2 ∈ {⊥, 1,⊤})
fail𝑋 : 1 → Cut𝑋 ⊤ cut𝑋 : 1 → Cut𝑋 ⊥

The existing notions of graded presentation are not general enough

[Smirnov ’08, Milius et al. ’15, Dorsch et al. ’19, Kura ’20]
7



This work

Develop a notion of flexibly graded presentation
▶ Every flexibly graded presentation (Σ, 𝐸) induces

▶ a canonical graded monad T(Σ,𝐸 )
▶ along with a flexibly graded algebraic operation for each operation of the

presentation
▶ Examples like Cut have computationally natural flexibly graded presentations
▶ The constructions are mathematically justified by locally graded categories, and a

notion of flexibly graded abstract clone

8



Flexibly graded presentations

Given an ordered monoid (E, ≤, 1, ·) of grades, Part of the presentation of
nondeterminism with cut:

grades E = {⊥ ≤ 1 ≤ ⊤}
a flexibly graded presentation (Σ, 𝐸) consists of
▶ a signature Σ: sets

Σ(𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑)
of operations
𝑒 ∈ E Γ ⊢ 𝑡1 : 𝑑 ′1 · 𝑒 · · · Γ ⊢ 𝑡𝑛 : 𝑑 ′𝑛 · 𝑒

Γ ⊢ op(𝑒; 𝑡1, . . . , 𝑡𝑛) : 𝑑 · 𝑒
Γ ⊢ 𝑡1 : 𝑑 ′1 · 𝑒 Γ ⊢ 𝑡2 : 𝑑 ′2 · 𝑒

Γ ⊢ or𝑑 ′
1,𝑑

′
2
(𝑒; 𝑡1, 𝑡2) : (𝑑 ′1 ⊓ 𝑑 ′2) · 𝑒

▶ a collection of axioms 𝐸: sets
𝐸 (𝑑 ′1, . . . , 𝑑 ′𝑛 ;𝑑)

of equations
𝑥1 : 𝑑

′
1, . . . , 𝑥𝑛 : 𝑑 ′𝑛 ⊢ 𝑡 ≡ 𝑢 : 𝑑 or⊥,𝑒 (1;𝑥,𝑦) ≡ 𝑥

9



Semantics
For every flexibly graded presentation (Σ, 𝐸), there is:
▶ a notion of (Σ, 𝐸)-algebra, forming a locally graded category Alg(Σ, 𝐸)

[Wood ’76]

A (Σ, 𝐸)-algebra (𝐴, ⟦−⟧) is:
▶ a graded set 𝐴 : E→ Set
▶ with an interpretation

⟦op⟧𝑒 :
∏

𝑖 𝐴(𝑑 ′𝑖 · 𝑒) → 𝐴(𝑑 · 𝑒) natural in 𝑒

of each op ∈ Σ(𝑑 ′1, . . . , 𝑑 ′𝑛 ; 𝑑)
▶ satisfying each axiom 𝑡 ≡ 𝑢 of 𝐸:

⟦𝑡⟧𝑒 = ⟦𝑢⟧𝑒 for every 𝑒

▶ a sound and complete equational logic
▶ a graded monad T(Σ,𝐸 ) on Set and concrete functor

𝑅 (Σ,𝐸 ) : Alg(Σ, 𝐸) → EM(T(Σ,𝐸 ) ), satisfying a universal property
▶ for every op in Σ, a flexibly graded algebraic operation for T(Σ,𝐸 )

A large class of graded monads have flexibly graded presentations:
▶ exactly the finitary graded monads on Set

▶ correspondence goes via flexibly graded clones

Graded monads we care about have natural flexibly graded presentations

10



Semantics
For every flexibly graded presentation (Σ, 𝐸), there is:
▶ a notion of (Σ, 𝐸)-algebra, forming a locally graded category Alg(Σ, 𝐸)

[Wood ’76]

▶ a sound and complete equational logic

Γ ⊢ 𝑡 ≡ 𝑢 : 𝑑 generated by

(𝑡,𝑢) ∈ 𝐸 (𝑑 ′1, . . . , 𝑑 ′𝑛 ; 𝑑) Γ ⊢ 𝑠1 : 𝑑 ′1 · 𝑒 · · · Γ ⊢ 𝑠𝑛 : 𝑑 ′𝑛 · 𝑒
Γ ⊢ 𝑡{𝑒;𝑥1 ↦→ 𝑠1, . . . , 𝑥𝑛 ↦→ 𝑠𝑛} ≡ 𝑢{𝑒;𝑥1 ↦→ 𝑠1, . . . , 𝑥𝑛 ↦→ 𝑠𝑛} : 𝑑 · 𝑒

and some other rules

Soundness and completeness:

⟦𝑡⟧ = ⟦𝑢⟧ in every (Σ, 𝐸)-algebra ⇔ Γ ⊢ 𝑡 ≡ 𝑢 : 𝑑 is derivable

▶ a graded monad T(Σ,𝐸 ) on Set and concrete functor
𝑅 (Σ,𝐸 ) : Alg(Σ, 𝐸) → EM(T(Σ,𝐸 ) ), satisfying a universal property

▶ for every op in Σ, a flexibly graded algebraic operation for T(Σ,𝐸 )

A large class of graded monads have flexibly graded presentations:
▶ exactly the finitary graded monads on Set

▶ correspondence goes via flexibly graded clones

Graded monads we care about have natural flexibly graded presentations

10



Semantics
For every flexibly graded presentation (Σ, 𝐸), there is:
▶ a notion of (Σ, 𝐸)-algebra, forming a locally graded category Alg(Σ, 𝐸)

[Wood ’76]

▶ a sound and complete equational logic
▶ a graded monad T(Σ,𝐸 ) on Set and concrete functor

𝑅 (Σ,𝐸 ) : Alg(Σ, 𝐸) → EM(T(Σ,𝐸 ) ), satisfying a universal property

For every graded monad T′ and concrete functor 𝑅′ : Alg(Σ, 𝐸) → EM(T′):

Alg(Σ, 𝐸) EM(T(Σ,𝐸 ) ) T(Σ,𝐸 )

EM(T′) T′
𝑅′

𝑅 (Σ,𝐸)

EM(𝛼 ) 𝛼

(But 𝑅 (Σ,𝐸 ) is usually not an isomorphism)

▶ for every op in Σ, a flexibly graded algebraic operation for T(Σ,𝐸 )

A large class of graded monads have flexibly graded presentations:
▶ exactly the finitary graded monads on Set

▶ correspondence goes via flexibly graded clones

Graded monads we care about have natural flexibly graded presentations

10



Semantics
For every flexibly graded presentation (Σ, 𝐸), there is:
▶ a notion of (Σ, 𝐸)-algebra, forming a locally graded category Alg(Σ, 𝐸)

[Wood ’76]

▶ a sound and complete equational logic
▶ a graded monad T(Σ,𝐸 ) on Set and concrete functor

𝑅 (Σ,𝐸 ) : Alg(Σ, 𝐸) → EM(T(Σ,𝐸 ) ), satisfying a universal property
▶ for every op in Σ, a flexibly graded algebraic operation for T(Σ,𝐸 )

For op ∈ Σ(𝑑 ′1, . . . , 𝑑 ′𝑛 ; 𝑑):

𝛼op,𝑋,𝑒 :
∏

𝑖 𝑇(Σ,𝐸 )𝑋 (𝑑 ′𝑖 · 𝑒) → 𝑇(Σ,𝐸 )𝑋 (𝑑 · 𝑒)

natural in 𝑒, and compatible with Kleisli extension
(Because each free T(Σ,𝐸 ) -algebra 𝑇(Σ,𝐸 )𝑋 forms a (Σ, 𝐸)-algebra)

A large class of graded monads have flexibly graded presentations:
▶ exactly the finitary graded monads on Set

▶ correspondence goes via flexibly graded clones

Graded monads we care about have natural flexibly graded presentations

10



Semantics
For every flexibly graded presentation (Σ, 𝐸), there is:
▶ a notion of (Σ, 𝐸)-algebra, forming a locally graded category Alg(Σ, 𝐸)

[Wood ’76]

▶ a sound and complete equational logic
▶ a graded monad T(Σ,𝐸 ) on Set and concrete functor

𝑅 (Σ,𝐸 ) : Alg(Σ, 𝐸) → EM(T(Σ,𝐸 ) ), satisfying a universal property
▶ for every op in Σ, a flexibly graded algebraic operation for T(Σ,𝐸 )

A large class of graded monads have flexibly graded presentations:
▶ exactly the finitary graded monads on Set

▶ correspondence goes via flexibly graded clones

Graded monads we care about have natural flexibly graded presentations

10


